Dural Arteriovenous Malformation of the Major Venous Sinuses: an Acquired Lesion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neurovascular Anatomy (1): Anterior Circulation Anatomy
Neurovascular Anatomy (1): Anterior Circulation Anatomy Natthapon Rattanathamsakul, MD. December 14th, 2017 Contents: Neurovascular Anatomy Arterial supply of the brain . Anterior circulation . Posterior circulation Arterial supply of the spinal cord Venous system of the brain Neurovascular Anatomy (1): Anatomy of the Anterior Circulation Carotid artery system Ophthalmic artery Arterial circle of Willis Arterial territories of the cerebrum Cerebral Vasculature • Anterior circulation: Internal carotid artery • Posterior circulation: Vertebrobasilar system • All originates at the arch of aorta Flemming KD, Jones LK. Mayo Clinic neurology board review: Basic science and psychiatry for initial certification. 2015 Common Carotid Artery • Carotid bifurcation at the level of C3-4 vertebra or superior border of thyroid cartilage External carotid artery Supply the head & neck, except for the brain the eyes Internal carotid artery • Supply the brain the eyes • Enter the skull via the carotid canal Netter FH. Atlas of human anatomy, 6th ed. 2014 Angiographic Correlation Uflacker R. Atlas of vascular anatomy: an angiographic approach, 2007 External Carotid Artery External carotid artery • Superior thyroid artery • Lingual artery • Facial artery • Ascending pharyngeal artery • Posterior auricular artery • Occipital artery • Maxillary artery • Superficial temporal artery • Middle meningeal artery – epidural hemorrhage Netter FH. Atlas of human anatomy, 6th ed. 2014 Middle meningeal artery Epidural hematoma http://www.jrlawfirm.com/library/subdural-epidural-hematoma -
Anomalous Origin of the Middle Meningeal Artery
The Internet Journal of Radiology ISPUB.COM Volume 4 Number 2 Anomalous Origin of the Middle Meningeal Artery from the Petrous Segment of the Internal Carotid Artery Associated with Multiple Cerebrovascular Abnormalities I Omeis, M Crupain, M Tenner, R Murali Citation I Omeis, M Crupain, M Tenner, R Murali. Anomalous Origin of the Middle Meningeal Artery from the Petrous Segment of the Internal Carotid Artery Associated with Multiple Cerebrovascular Abnormalities. The Internet Journal of Radiology. 2005 Volume 4 Number 2. Abstract A 25-year-old male with a history of seizure disorder was found incidentally on cerebral angiography to have numerous congenital anomalies of the cerebral vascular system. Among these anomalies were the derivation of the left middle meningeal artery from the petrous portion of the internal carotid artery, the presence of a left cavernous angioma, cavernous origin of the left ophthalmic artery, and an accessory middle cerebral artery. Awareness of cerebral circulatory anatomical anomalies of this nature is of importance to all physicians who plan surgical and endovascular interventions. INTRODUCTION resonance imaging (MRI) with and without gadolinium The middle meningeal artery in most individuals arises from revealed a left temporal lobe cavernoma and associated the maxillary branch of the external carotid artery and enters developmental venous anomaly in the region of the collateral the skull through the foramen spinosum. It then divides into gyrus that were unchanged from of first diagnosis (Fig. 2). anterior and posterior branches to supply the dura and An electroencephalogram (EEG) showed some mild cerebral adjacent calvarium. A few instances have been reported of dysfunction over the left temporal region with no the aberrant origin of the middle meningeal artery from epileptiform abnormality. -
Clinical Importance of the Middle Meningeal Artery
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository FOLIA MEDICA CRACOVIENSIA 41 Vol. LIII, 1, 2013: 41–46 PL ISSN 0015-5616 Przemysław Chmielewski1, Janusz skrzat1, Jerzy waloCha1 CLINICAL IMPORTANCE OF THE MIDDLE MENINGEAL ARTERY Abstract: Middle meningeal artery (MMA)is an important branch which supplies among others cranial dura mater. It directly attaches to the cranial bones (is incorporated into periosteal layer of dura mater), favors common injuries in course of head trauma. This review describes available data on the MMA considering its varability, or treats specific diseases or injuries where the course of MMA may have clinical impact. Key words: Middle meningeal artery (MMA), aneurysm of the middle meningeal artery, epidural he- matoma, anatomical variation of MMA. TOPOGRAPHY OF THE MIDDLE MENINGEAL ARTERY AND ITS BRANCHES Middle meningeal artery (MMA) [1] is most commonly the strongest branch of maxillary artery (from external carotid artery) [2]. It supplies blood to cranial dura mater, and through the numerous perforating branches it nourishes also periosteum of the inner aspect of cranial bones. It enters the middle cranial fossa through the foramen spinosum, and courses between the dura mater and the inner aspect of the vault of the skull. Next it divides into two terminal branches — frontal (anterior) which supplies blood to bones forming anterior cranial fossa and the anterior part of the middle cranial fossa; parietal branch (posterior), which runs more horizontally toward the back and supplies posterior part of the middle cranial fossa and supratentorial part of the posterior cranial fossa. -
The Ophthalmic Artery Ii
Brit. J. Ophthal. (1962) 46, 165. THE OPHTHALMIC ARTERY II. INTRA-ORBITAL COURSE* BY SOHAN SINGH HAYREHt AND RAMJI DASS Government Medical College, Patiala, India Material THIS study was carried out in 61 human orbits obtained from 38 dissection- room cadavers. In 23 cadavers both the orbits were examined, and in the remaining fifteen only one side was studied. With the exception of three cadavers of children aged 4, 11, and 12 years, the specimens were from old persons. Method Neoprene latex was injected in situ, either through the internal carotid artery or through the most proximal part of the ophthalmic artery, after opening the skull and removing the brain. The artery was first irrigated with water. After injection the part was covered with cotton wool soaked in 10 per cent. formalin for from 24 to 48 hours to coagulate the latex. The roof of the orbit was then opened and the ophthalmic artery was carefully studied within the orbit. Observations COURSE For descriptive purposes the intra-orbital course of the ophthalmic artery has been divided into three parts (Singh and Dass, 1960). (1) The first part extends from the point of entrance of the ophthalmic artery into the orbit to the point where the artery bends to become the second part. This part usually runs along the infero-lateral aspect of the optic nerve. (2) The second part crosses over or under the optic nerve running in a medial direction from the infero-lateral to the supero-medial aspect of the nerve. (3) The thirdpart extends from the point at which the second part bends at the supero-medial aspect of the optic nerve to its termination. -
The Ascending Pharyngeal Artery: a Collateral Pathway in Complete
AJNR :8, January/February 1987 CORRESPONDENCE 177 cavernous sinuses acute inflammation, granulation tissue, and throm which it partiCipates. This report describes two cases in which bus surrounded the nerves and internal carotid arteries. The left common carotid angiography showed complete occlu sion of the carotid artery was intact, but focally inflammed. The right internal internal carotid artery at its origin. Subsequent vertebral angiography carotid artery was focally necrotic, acutely inflammed and ruptured, in both cases showed reconstitution of thi s vessel several millimeters with hemorrhage emanating from the defect. above the origin by the ascending ph aryngeal artery , which had an unusual origin from the internal carotid artery [2]. Endarterectomy as a technical option was feasible in both cases becau se the occluded Discussion segments were only millimeters in length . The first patient, a 59-year-old man , presented 5 days before We are not aware of any instances of air within the cavernous admission with a sudden pareS is of the right arm and leg. Angiograph y sinus in a normal patient or after trauma. Our case demonstrates revealed complete occlusion of the left internal carotid artery with a several of the reported findings in cavernous sinus thrombosis includ small , smooth stump (Fig. 1 A) . A left vertebral arteriogram demon ing bulging of the lateral walls , irregular low-attenuation filling defects strated reconstitution of the left internal carotid artery just above the within the cavernous sinus, and proptosis (Fig . 1). occlusion (Fig . 1 B). Collateral supply was from mu scular branches of It is unclear whether the air within the sinus originated from a gas the vertebral artery, which anastomosed with muscular branches of forming organism or via direct extension from one of the sinuses via the ascending pharyngeal artery. -
Penetrating Vascular Injuries of the Face and Neck: Clinical and Angiographic Correlation
855 Penetrating Vascular Injuries of the Face and Neck: Clinical and Angiographic Correlation Charles M. North 1. 2 A retrospective review was made of 139 clinically stable patients who had sustained Jamshid Ahmadi penetrating trauma to the face and neck. The study was done to learn more about the Hervey D. Segall indications for angiography and the impact of angiography upon patient management. Chi-Shing Zee Some relationship between the physical examination and the angiographic findings was found. In the presence of anyone of four physical signs or symptoms (absent pulse, bruit, hematoma, or alteration of neurologic status) there was a 30% incidence of vascular injury. However, it is unlikely that a clinically significant traumatic vascular lesion will be missed if angiography is not obtained when these clinical signs and symptoms are not present. In the group of 78 patients who presented with only a wound penetrating the ' platysma and no other findings or symptoms, just two had vascular injuries on angiograms; one of these lesions was minor and the other did not affect the patient's management. There was a substantially higher rate (50%) of vascular injury in patients with trauma cephalad to the angle of the mandible compared with 11 % of patients who had neck trauma. Gunshot wounds were associated with vascular damage more frequently than were stab wounds. Angiography is often performed in penetrating trauma to the head and neck to evaluate the possibility of vascular injury and to aid in planning appropriate management [1]. Nonetheless, the role of angiography in penetrating head and neck trauma has remained controversial. -
Branches of the External Carotid Artery of the Dromedary, Camelus Dromedarius Artery Origin Course Distribution
Table 3.4: Branches of the External Carotid Artery of the Dromedary, Camelus dromedarius Artery Origin Course Distribution Originates at the bifurcatio of the occipital artery from the common carotid artery. Superficial Occipital region, lateral face, pharynx, Common Carotid External Carotid course is throughout occipital and posteroinferior tongue, hyoid musculature, and Artery facial regions; deeper course is throughout sublingual glands. pharyngeal, lingual, and hyoid regions. The proper occipital artery is the first dorsal branch of the ECA. It arises near the caudal border of the wing of the atlas, traverses the atlantal fossa, and then splits into: 1. Multitude External Carotid of muscular branches; 2. Anastomosis with Collateral circulation with vertebral Occipital Artery vertebral artery (through alar foramen); 3. arteries; neck and occipital muscles Superior termination continues to course toward the external occipital protuberance, supplying the parenchyma of the occipital region inferior to and surrounding the foramen magnum. Variable origin: from the ECA or the "ascending pharyngeal." Condylar and ascending pharyngeal External Carotid may share a short common trunk. An anterior Artery (var: branch of the condylar artery follows the Inferior meninges and inferolateral Condylar Ascending hypoglossal nerve into the hypoglossal canal to occipital region. Pharyngeal) supply the inferior meninges. A posterior branch of the condylar provides collateral circulation to the occipital region. External Carotid Small, tortuous division from medial wall of Cranial Thyroid Thyroid Artery ECA From posteromedial surface of ECA Descending External Carotid immediately posterior to the jugular process. Extensive distribution throughout the Pharyngeal Artery Convoluted and highly dendritic throughout the pharynx lateral and posterior wall of the pharynx. -
The Human Central Nervous System
The Human Central Nervous System A Synopsis and Atlas Bearbeitet von Rudolf Nieuwenhuys, Jan Voogd, Christiaan van Huijzen 4th ed. 2007. Buch. xiv, 967 S. Hardcover ISBN 978 3 540 34684 5 Format (B x L): 20,3 x 27,6 cm Weitere Fachgebiete > Psychologie > Allgemeine Psychologie / Grundlagenfächer > Biologische Psychologie, Neuropsychologie, Psychophysiologie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 4 Blood Supply, Meninges and Cerebrospinal Fluid Circulation Introduction......................... 95 through the arachnoid villi to the venous sys- ArteriesoftheBrain................... 95 tem. The nervous tissue of the central nervous Meninges, Cisterns system and the CSF spaces remain segregated and Cerebrospinal Fluid Circulation ........110 from the rest of the body by barrier layers in Circumventricular Organs ................126 the meninges (the barrier layer of the arach- Veins of the Brain .....................126 noid), the choroid plexus (the blood-CSF bar- Vessels and Meninges of the Spinal Cord .....128 rier) and the capillaries (the blood-brain bar- rier). The circulation of the CSF plays an impor- tant role in maintaining the environment of the nervous tissue; moreover, the subarachnoidal space forms a bed that absorbs external shocks. Introduction The vascularization and the circulation of the Arteries of the Brain cerebrospinal fluid (liquor cerebrospinalis, CSF) of the brain and the spinal cord are of great clinical importance. -
The 0Ccipital-Vertebral Anastomosis
The 0ccipital-Vertebral Anastomosis MANNIE M. SCHECIITER,M.D. Section of Neuroradiology, Department of Radiology, Albert Einstein College of Medicine, New York, New York HE presence and significance of collat- artery. In the past this was, in fact, the basis eral circulation between the various for techniques of indirect vertebral angiog- T branches of the intracranial circulation raphy in which the right carotid artery was and branches of the intracranial and extra- compressed distal to the site of the puncture cranial circulation have been described in the during angiography.4,5 Similarly retrograde literature. With the current interest and em- carotid catheterization may also be used to phasis in the medical and surgical treatment demonstrate the vertebral artery and its of cerebrovascular disease and with improve- branches).1~ ments in diagnostic procedures, a clearer When filling of the vertebral artery occurs demonstration of these collateral channels is during the injection of contrast medium into now more frequently sought and recognized. the carotid artery or vice versa, the occipital- Most of these potential collateral channels vertebral anastomosis may be demonstrated become obvious only when occlusive vascular by including the cervical course of the verte- disease interrupts the normal pathways, and bral artery in the film. Absence of contrast the channels dilate to form alternate routes medium in the proximal portion of the com- for the passage of blood to vital areas. A mon carotid artery and vertebral artery will temporary differential in the hydrodynamics be recognized readily, excluding this as the of two opposing systems may also reverse the possible course of flow (Figs. -
Clinical Importance of the Middle Meningeal Artery
FOLIA MEDICA CRACOVIENSIA 41 Vol. LIII, 1, 2013: 41–46 PL ISSN 0015-5616 Przemysław Chmielewski1, Janusz skrzat1, Jerzy waloCha1 CLINICAL IMPORTANCE OF THE MIDDLE MENINGEAL ARTERY Abstract: Middle meningeal artery (MMA)is an important branch which supplies among others cranial dura mater. It directly attaches to the cranial bones (is incorporated into periosteal layer of dura mater), favors common injuries in course of head trauma. This review describes available data on the MMA considering its varability, or treats specific diseases or injuries where the course of MMA may have clinical impact. Key words: Middle meningeal artery (MMA), aneurysm of the middle meningeal artery, epidural he- matoma, anatomical variation of MMA. TOPOGRAPHY OF THE MIDDLE MENINGEAL ARTERY AND ITS BRANCHES Middle meningeal artery (MMA) [1] is most commonly the strongest branch of maxillary artery (from external carotid artery) [2]. It supplies blood to cranial dura mater, and through the numerous perforating branches it nourishes also periosteum of the inner aspect of cranial bones. It enters the middle cranial fossa through the foramen spinosum, and courses between the dura mater and the inner aspect of the vault of the skull. Next it divides into two terminal branches — frontal (anterior) which supplies blood to bones forming anterior cranial fossa and the anterior part of the middle cranial fossa; parietal branch (posterior), which runs more horizontally toward the back and supplies posterior part of the middle cranial fossa and supratentorial part of the posterior cranial fossa. Branches of MMA traverse the arterial grooves giving rise to abundant lateral tracts which supply dura mater and periosteum. -
Anatomy of the Middle Meningeal Artery
Published online: 2021-08-03 THIEME Review Article | Artigo de Revisão Anatomy of the Middle Meningeal Artery Anatomia da artéria meníngea média Marco Aurélio Ferrari Sant’Anna1 Leonardo Luca Luciano2 Pedro Henrique Silveira Chaves3 Leticia Adrielle dos Santos4 Rafaela Gonçalves Moreira5 Rian Peixoto6 Ronald Barcellos7,8 Geraldo Avila Reis7,8 Carlos Umberto Pereira8 Nícollas Nunes Rabelo9 1 Hospital Celso Pierro, Pontifícia Universidade Católica de Address for correspondence Nicollas Nunes Rabelo, MD, Department Campinas, Campinas, SP, Brazil of Neurosurgery, Faculdade Atenas, Passos, Minas Gerais, Rua Oscar 2 School of Medicine, Universidade Federal de Alfenas, Alfenas, MG, Cândido Monteiro, 1000, jardim Colégio de Passos, Passos, MG, Brazil 37900, Brazil (e-mail: [email protected]). 3 Centro Universitário Atenas, Paracatu, MG, Brazil 4 Universidade Federal do Sergipe, Aracaju, SE, Brazil 8 Neurosurgery Department of the Fundação de Beneficência 5 Faculdade Atenas, Passos, MG, Brazil Hospital de Cirurgia Aracaju, SE, Brazil 6 School of Medicine, Faculdade Santa Marcelina, São Paulo, SP, Brazil 9 Neurosurgery Department, Neurosurgery Service of HGUSE and 7 Neurosurgery Department of the Hospital de Urgência de Sergipe the Benefit Foundation Hospital of Surgery, Aracaju, SE, Brazil Governador João Alves Filho, Aracaju, SE, Brazil 10Department of Neurosurgery, Faculdade Atenas, Passos, MG, Brazil Arq Bras Neurocir Abstract Introduction The middle meningeal artery (MMA) is an important artery in neuro- surgery. As the largest branch of the maxillary artery, it provides nutrition to the meninges and to the frontal and parietal regions. Diseases, including dural arteriove- nous fistula (DAVF), pseudoaneurysm, true aneurysm, traumatic arteriovenous fistula (TAVF), Moya-Moya disease (MMD), recurrent chronic subdural hematoma (CSDH), migraine, and meningioma, may be related to the MMA. -
Anatomic and Angiographic Analyses of Ophthalmic Artery Collaterals in Moyamoya Disease
Published April 12, 2018 as 10.3174/ajnr.A5622 ORIGINAL RESEARCH EXTRACRANIAL VASCULAR Anatomic and Angiographic Analyses of Ophthalmic Artery Collaterals in Moyamoya Disease X T. Robert, X G. Ciccio`, X P. Sylvestre, X A. Chiappini, X A.G. Weil, X S. Smajda, X C. Chaalala, X R. Blanc, X M. Reinert, X M. Piotin, and X M.W. Bojanowski ABSTRACT BACKGROUND AND PURPOSE: Moyamoya disease is a progressive neurovascular pathology defined by steno-occlusive disease of the distal internal carotid artery and associated with the development of compensatory vascular collaterals. The etiology and exact anatomy of vascular collaterals have not been extensively studied. The aim of this study was to describe the anatomy of collaterals developed between the ophthalmic artery and the anterior cerebral artery in a Moyamoya population. MATERIALS AND METHODS: All patients treated for Moyamoya disease from 2004 to 2016 in 4 neurosurgical centers with available cerebral digital subtraction angiography were included. Sixty-three cases were evaluated, and only 38 met the inclusion criteria. Two patients had a unilateral cervical internal carotid occlusion that limited analysis of ophthalmic artery collaterals to one hemisphere. This study is consequently based on the analysis of 74 cerebral hemispheres. RESULTS: Thirty-eight patients fulfilled the inclusion criteria. The most frequently encountered anastomosis between the ophthalmic artery and cerebral artery was a branch of the anterior ethmoidal artery (31.1%, 23 hemispheres). In case of proximal stenosis of the anterior cerebral artery, a collateral from the posterior ethmoidal artery could be visualized (16 hemispheres, 21.6%). One case (1.4%) of anastomosis between the lacrimal artery and the middle meningeal artery that permitted the vascularization of a middle cerebral artery territory was also noted.