Branches of the External Carotid Artery of the Dromedary, Camelus Dromedarius Artery Origin Course Distribution

Total Page:16

File Type:pdf, Size:1020Kb

Branches of the External Carotid Artery of the Dromedary, Camelus Dromedarius Artery Origin Course Distribution Table 3.4: Branches of the External Carotid Artery of the Dromedary, Camelus dromedarius Artery Origin Course Distribution Originates at the bifurcatio of the occipital artery from the common carotid artery. Superficial Occipital region, lateral face, pharynx, Common Carotid External Carotid course is throughout occipital and posteroinferior tongue, hyoid musculature, and Artery facial regions; deeper course is throughout sublingual glands. pharyngeal, lingual, and hyoid regions. The proper occipital artery is the first dorsal branch of the ECA. It arises near the caudal border of the wing of the atlas, traverses the atlantal fossa, and then splits into: 1. Multitude External Carotid of muscular branches; 2. Anastomosis with Collateral circulation with vertebral Occipital Artery vertebral artery (through alar foramen); 3. arteries; neck and occipital muscles Superior termination continues to course toward the external occipital protuberance, supplying the parenchyma of the occipital region inferior to and surrounding the foramen magnum. Variable origin: from the ECA or the "ascending pharyngeal." Condylar and ascending pharyngeal External Carotid may share a short common trunk. An anterior Artery (var: branch of the condylar artery follows the Inferior meninges and inferolateral Condylar Ascending hypoglossal nerve into the hypoglossal canal to occipital region. Pharyngeal) supply the inferior meninges. A posterior branch of the condylar provides collateral circulation to the occipital region. External Carotid Small, tortuous division from medial wall of Cranial Thyroid Thyroid Artery ECA From posteromedial surface of ECA Descending External Carotid immediately posterior to the jugular process. Extensive distribution throughout the Pharyngeal Artery Convoluted and highly dendritic throughout the pharynx lateral and posterior wall of the pharynx. Artery Origin Course Distribution Nearly all oxygenated blood to the ear The common auricular departs the superior wall is supplied through this singular, large of the ECA near the jugular process and follows parent artery. At its dorsal termination, External Carotid the temporal crest toward the auricle. Near the Caudal Auricular the common auricular divides into no Artery external acoustic meatus, the common auricular fewer than 7 branches that distribute gives off the ramus occipitalis. It is highly to the circumference of the auricular dendritic near tis superior termination. base The occiputal ramus of the common auricular artery breaks away from the parent artery approximately posterior to the external acoustic meatus. While the common auricular traverses the rostral/dorsal surface of the mastoid and nuchal crest, the ramus occipitalis scours the posterior/caudal surface of the same bones, leaving an oblique impression on the mastoid Occipital region superior to the Ramus Occipitalis Common auricular and a consistent groove on the inferior surface of foramen magnum; caudal meninges the nuchal crest. The ramus occipitalis sends several branches into the muscle, connective tissue, and skin of the superior occipital region, and then terminates by entering the large mastoid foramen. Upon entering the braincase, the artery continues as the caudal meningeal artery. Before entering the mastoid foramen, the ramus receives collateral input from the caudal deep temporal. From deep surface of the common auricular a., immediately distal to the departure of the Stylomastoid Common auricular occipital ramus. Virtually indetectable Middle ear and tympanum extracranial course; enters stylomastoid foramen, traverses facial canal to supply middle ear. Intracranial continuation of the ramus occipitalis Caudal Meningeal Ramus occipitalis Caudal portion of the meninges artery Artery Origin Course Distribution Common trunk for facial and common auricular = first major dorsal branch of the ECA; the facial departs laterally near the condylar process of the mandible / temporomandibular joint. Proceeds rostroventrally along the posterior border of the mandibular ramus. At the Parotid gland (minimal), masseter, mandibular angle, the facial artery curves parenchyma of face, muscles of facial External Carotid anteriorly, coursing superficial to the masseter expression below the zygomaticus, Facial Artery / Common muscle. Across this muscle, the facial artery lateral nasal region, lower lip, and to a auricular contributes a number of small branches to lesser extent, the upper lip. Note that perfuse the muscle and its fibrous sheath. At the upper lip receives most of its blood approximately the third lower muscle, the facial supply from the infraorbital artery artery splits into dorsal and ventral rami. The smaller dorsal ramus anastomoses with the transverse facial and infraorbital/lateral nasal arteries. The larger ventral ramus continues anteriorly toward the lower lip. No single, discrete vessel supplies the upper lip. Inferolateral fleshy nasal vestibule; Anastomosis between A large anastomotic network from the lateral mucosa, epithelium, and muscles of Maxillary Labial dorsal rami facialis nasal region (largely consisting of the dorsal the upper lip.; rami to angularis oculi and infraorbital artery rami facialis and the infraorbital artery) supply and angularis oris m.'s the lip with a variable number of branches. Blood supply to the lower lip is more discrete Ventral Ramus Also ramified by the mental/inferior Mandibular Labial than that of the upper lip; the rostral termination Facialis alveolar artery of the facial artery Distributes across angle of the mouth, Ventral Ramus Dorsal branch from the ventral branch of the Angular anastomoses with dorsal rami facialis, Facialis facial artery infraorbital Artery Origin Course Distribution Common trunk with transverse facial artery has a 2.5 cm recurving course around mandible; within mandibular incisure (between condylar and angular processes) before bifurcating. Dorsal Zygomaticus, skin and muscle of External Carotid branch = superficial temporal; rostral Superficial Temporal temporal region, and posterior TMJ Artery continuation = transverse facial. The STA is capsule. relatively small and has a short course over the zygomaticotemporal junction before perfusing the inferolateral quadrant of the temporalis m. Sends small branches to the TMJ The transverse facial artery shares a common origin with the superficial temporal artery. The transverse facial is the larger caliber vessel. After the STA departs, the transverse facial External Carotid Muscles of mastication; superficial Transverse Facial continues rostrally. Close to the origin of the Artery structures overlying. TFA proper, 3 large branches depart the artery, radiating between 90 degrees ventrally to 20 degrees below the TFA. These distribute to the lateral muscles of mastication. Immediately posterior to the jugular process, the lingual artery branches from the ECA. It courses External Carotid Lingual along the ventral border of the hyoid apparatus Tongue and floor of oral cavity Artery before splitting into a deep lingual artery and a sublingual artery Lateral terminal branch of the lingual artery; Sublingual Lingual follows internal border of mandible, supplying Sublingual gland the sublingual gland Tortuous, profusely branching Deep Lingual Lingual Continuation of the lingual artery distribution within the intrinsic tongue musculature .
Recommended publications
  • Branches of the Maxillary Artery of the Dromedary, Camelus Dromedarius
    Table 3.5: Branches of the Maxillary Artery of the Dromedary, Camelus dromedarius Artery Origin Course Distribution Departs from common trunk with the deep temporal vessels, close to mandibular foramen; traverses mandibular canal, supplying Mandibular dentition; lower lip; Inferior Alveolar Maxillary Artery mandibular dentition. Terminates as mental anastomoses freely with ventral ramus artery after exiting at mental foramen, of the facial artery. whereupon supplies skin, mucosa, and muscle of the lower lip. Single deep temporal vessel is first major dorsal branch of the MA; ascends deep to the coronoid Deep Temporal Maxillary Artery Temporalis muscle process and fans out on the deep surface of the temporalis muscle. Lower lateral branch of deep temporal artery; passes through the mandibular incisure and Masseteric Deep Temporal Artery Masseter muscle curves rostrally to pierce the internal surface of the masseter muscle. Proximal to the foramen orbitorotundum and optic foramen, numerous rami anastomotica connect the maxillary artery to the carotid rete. Carotid rete, ophthalmic rete, external Ramus anastomoticus Maxillary Artery The network in the dromedary is extensive, ophthalmic artery; intracranial cavity forming a plexus between the carotid and ophthalmic retia, and giving rise to the external ophthalmic artery. Condenses from a dense retial mat (composed of maxillary rami, the extradural/extracranial portion of the carotid rete, and the ophthalmic Extraocular muscles, periorbita, External Ophthalmic MA/CR/OR rete). Perfuses the majority of the periorbita, lacrimal gland including branches to the extraocular muscles and the lacrimal gland Lateral branch of the MA, begins opposite the rami anastomotica; traverses parenchyma orbital Supplies the buccal fat pad, Buccal MA fossa, between malar and anterior border of buccinator; contributes ventral coronoid process.
    [Show full text]
  • Neurovascular Anatomy (1): Anterior Circulation Anatomy
    Neurovascular Anatomy (1): Anterior Circulation Anatomy Natthapon Rattanathamsakul, MD. December 14th, 2017 Contents: Neurovascular Anatomy Arterial supply of the brain . Anterior circulation . Posterior circulation Arterial supply of the spinal cord Venous system of the brain Neurovascular Anatomy (1): Anatomy of the Anterior Circulation Carotid artery system Ophthalmic artery Arterial circle of Willis Arterial territories of the cerebrum Cerebral Vasculature • Anterior circulation: Internal carotid artery • Posterior circulation: Vertebrobasilar system • All originates at the arch of aorta Flemming KD, Jones LK. Mayo Clinic neurology board review: Basic science and psychiatry for initial certification. 2015 Common Carotid Artery • Carotid bifurcation at the level of C3-4 vertebra or superior border of thyroid cartilage External carotid artery Supply the head & neck, except for the brain the eyes Internal carotid artery • Supply the brain the eyes • Enter the skull via the carotid canal Netter FH. Atlas of human anatomy, 6th ed. 2014 Angiographic Correlation Uflacker R. Atlas of vascular anatomy: an angiographic approach, 2007 External Carotid Artery External carotid artery • Superior thyroid artery • Lingual artery • Facial artery • Ascending pharyngeal artery • Posterior auricular artery • Occipital artery • Maxillary artery • Superficial temporal artery • Middle meningeal artery – epidural hemorrhage Netter FH. Atlas of human anatomy, 6th ed. 2014 Middle meningeal artery Epidural hematoma http://www.jrlawfirm.com/library/subdural-epidural-hematoma
    [Show full text]
  • The Facial Artery of the Dog
    Oka jimas Folia Anat. Jpn., 57(1) : 55-78, May 1980 The Facial Artery of the Dog By MOTOTSUNA IRIFUNE Department of Anatomy, Osaka Dental University, Osaka (Director: Prof. Y. Ohta) (with one textfigure and thirty-one figures in five plates) -Received for Publication, November 10, 1979- Key words: Facial artery, Dog, Plastic injection, Floor of the mouth. Summary. The course, branching and distribution territories of the facial artery of the dog were studied by the acryl plastic injection method. In general, the facial artery was found to arise from the external carotid between the points of origin of the lingual and posterior auricular arteries. It ran anteriorly above the digastric muscle and gave rise to the styloglossal, the submandibular glandular and the ptery- goid branches. The artery continued anterolaterally giving off the digastric, the inferior masseteric and the cutaneous branches. It came to the face after sending off the submental artery, which passed anteromedially, giving off the digastric and mylohyoid branches, on the medial surface of the mandible, and gave rise to the sublingual artery. The gingival, the genioglossal and sublingual plical branches arose from the vessel, while the submental artery gave off the geniohyoid branches. Posterior to the mandibular symphysis, various communications termed the sublingual arterial loop, were formed between the submental and the sublingual of both sides. They could be grouped into ten types. In the face, the facial artery gave rise to the mandibular marginal, the anterior masseteric, the inferior labial and the buccal branches, as well as the branch to the superior, and turned to the superior labial artery.
    [Show full text]
  • The Variations of the Subclavian Artery and Its Branches Ahmet H
    Okajimas Folia Anat. Jpn., 76(5): 255-262, December, 1999 The Variations of the Subclavian Artery and Its Branches By Ahmet H. YUCEL, Emine KIZILKANAT and CengizO. OZDEMIR Department of Anatomy, Faculty of Medicine, Cukurova University, 01330 Balcali, Adana Turkey -Received for Publication, June 19,1999- Key Words: Subclavian artery, Vertebral artery, Arterial variation Summary: This study reports important variations in branches of the subclavian artery in a singular cadaver. The origin of the left vertebral artery was from the aortic arch. On the right side, no thyrocervical trunk was found. The two branches which normally originate from the thyrocervical trunk had a different origin. The transverse cervical artery arose directly from the subclavian artery and suprascapular artery originated from the internal thoracic artery. This variation provides a short route for posterior scapular anastomoses. An awareness of this rare variation is important because this area is used for diagnostic and surgical procedures. The subclavian artery, the main artery of the The variations of the subclavian artery and its upper extremity, also gives off the branches which branches have a great importance both in blood supply the neck region. The right subclavian arises vessels surgery and in angiographic investigations. from the brachiocephalic trunk, the left from the aortic arch. Because of this, the first part of the right and left subclavian arteries differs both in the Subjects origin and length. The branches of the subclavian artery are vertebral artery, internal thoracic artery, This work is based on a dissection carried out in thyrocervical trunk, costocervical trunk and dorsal the Department of Anatomy in the Faculty of scapular artery.
    [Show full text]
  • The Mandibular Landmarks About the Facial Artery and Vein With
    Int. J. Morphol., 30(2):504-509, 2012. The Mandibular Landmarks about the Facial Artery and Vein with Multidetector Computed Tomography Angiography (MDCTA): an Anatomical and Radiological Morphometric Study Puntos de Referencia de la Mandíbula Relacionados a la Arteria y Vena Facial con Angiografía por Tomografía Computarizada Multidetector (ATCM): un Estudio Morfométrico Anatómico y Radiológico *Aynur Emine Cicekcibasi; *Mehmet Tugrul Yılmaz; **Demet Kıresi & *Muzaffer Seker CICEKCIBASI, A. E.; YILMAZ, M. T.; KIRESI, D. & SEKER, M. The mandibular landmarks about the facial artery and vein with multidetector computed tomography angiography (MDCTA): an anatomical and radiological morphometric study. Int. J. Morphol., 30(2):504-509, 2012. SUMMARY: The aim of this study was to investigate the course of the facial vessels according to several mandibular landmarks in living individuals using multidetector computed tomography angiography (MDCTA) to determine these related to sex and side. This study was conducted in the Radiology Department, Meram Faculty of Medicine, Necmettin Erbakan University (Konya, Turkey). In total, sixty faces from 30 specimens (15 males and 15 females) with symptoms and signs of vascular disease were evaluated for the facial vessels by MDCTA scan. The facial vessel parameters were measured according to the reference points (mandibular angle, mental protuberance, mental foramen and facial midline). The distance from the point at which the facial artery first appears in the lower margin of the mandible to the mandibular angle for right and left facial artery were observed as 3.53±0.66 cm and 3.31±0.73 cm in males, respectively. These distances were determined as 2.91±0.52 cm and 3.35±0.48 cm in females.
    [Show full text]
  • Axis Scientific Human Circulatory System 1/2 Life Size A-105864
    Axis Scientific Human Circulatory System 1/2 Life Size A-105864 05. Superior Vena Cava 13. Ascending Aorta 21. Hepatic Vein 28. Celiac Trunk II. Lung 09. Pulmonary Trunk 19. Common III. Spleen Hepatic Artery 10. Pulmonary 15. Pulmonary Artery 17. Splenic Artery (Semilunar) Valve 20. Portal Vein 03. Left Atrium 18. Splenic Vein 01. Right Atrium 16. Pulmonary Vein 26. Superior 24. Superior 02. Right Ventricle Mesenteric Vein Mesenteric Artery 11. Supraventricular Crest 07. Interatrial Septum 22. Renal Artery 27. Inferior 14. Aortic (Semilunar) Valve Mesenteric Vein 08. Tricuspid (Right 23. Renal Vein 12. Mitral (Left Atrioventricular) Valve VI. Large Intestine Atrioventricular) Valve 29. Testicular / 30. Common Iliac Artery Ovarian Artery 32. Internal Iliac Artery 25. Inferior 31. External Iliac Artery Mesenteric Artery 33. Median Sacral Artery 41. Posterior Auricular Artery 57. Deep Palmar Arch 40. Occipital Artery 43. Superficial Temporal Artery 58. Dorsal Venous Arch 36. External Carotid Artery 42. Maxillary Artery 56. Superficial Palmar Arch 35. Internal Carotid Artery 44. Internal Jugular Vein 39. Facial Artery 45. External Jugular Vein 38. Lingual Artery and Vein 63. Deep Femoral Artery 34. Common Carotid Artery 37. Superior Thyroid Artery 62. Femoral Artery 48. Thyrocervical Trunk 49. Inferior Thyroid Artery 47. Subclavian Artery 69. Great Saphenous Vein 46. Subclavian Vein I. Heart 51. Thoracoacromial II. Lung Artery 64. Popliteal Artery 50. Axillary Artery 03. Left Atrium 01. Right Atrium 04. Left Ventricle 02. Right Ventricle 65. Posterior Tibial Artery 52. Brachial Artery 66. Anterior Tibial Artery 53. Deep Brachial VII. Descending Artery Aorta 70. Small Saphenous Vein IV. Liver 59.
    [Show full text]
  • Anatomy of the Periorbital Region Review Article Anatomia Da Região Periorbital
    RevSurgicalV5N3Inglês_RevistaSurgical&CosmeticDermatol 21/01/14 17:54 Página 245 245 Anatomy of the periorbital region Review article Anatomia da região periorbital Authors: Eliandre Costa Palermo1 ABSTRACT A careful study of the anatomy of the orbit is very important for dermatologists, even for those who do not perform major surgical procedures. This is due to the high complexity of the structures involved in the dermatological procedures performed in this region. A 1 Dermatologist Physician, Lato sensu post- detailed knowledge of facial anatomy is what differentiates a qualified professional— graduate diploma in Dermatologic Surgery from the Faculdade de Medician whether in performing minimally invasive procedures (such as botulinum toxin and der- do ABC - Santo André (SP), Brazil mal fillings) or in conducting excisions of skin lesions—thereby avoiding complications and ensuring the best results, both aesthetically and correctively. The present review article focuses on the anatomy of the orbit and palpebral region and on the important structures related to the execution of dermatological procedures. Keywords: eyelids; anatomy; skin. RESU MO Um estudo cuidadoso da anatomia da órbita é muito importante para os dermatologistas, mesmo para os que não realizam grandes procedimentos cirúrgicos, devido à elevada complexidade de estruturas envolvidas nos procedimentos dermatológicos realizados nesta região. O conhecimento detalhado da anatomia facial é o que diferencia o profissional qualificado, seja na realização de procedimentos mini- mamente invasivos, como toxina botulínica e preenchimentos, seja nas exéreses de lesões dermatoló- Correspondence: Dr. Eliandre Costa Palermo gicas, evitando complicações e assegurando os melhores resultados, tanto estéticos quanto corretivos. Av. São Gualter, 615 Trataremos neste artigo da revisão da anatomia da região órbito-palpebral e das estruturas importan- Cep: 05455 000 Alto de Pinheiros—São tes correlacionadas à realização dos procedimentos dermatológicos.
    [Show full text]
  • Of Facial Pain
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.8.963 on 1 August 1974. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1974, 37, 963-965 External carotid occlusive disease as a cause of facial pain Y. HERISHANU1, P. BENDHEIM2, AND M. DOLBERG From the Neurology Unit and Department of Radiology, Shaare Zedek General Hospital, Jerusalem, Israel SYNOPSIS A 47 year old man suffered an acute left hemiparesis after several weeks of right-sided facial pain. Right carotid angiography revealed internal carotid artery thrombosis and severe occlusion of external carotid branches supplying facial structures. An ischaemic aetiology for the facial pain is suggested. The differential diagnosis of facial pain has been pain, but the last right maxillary molar was ex- guest. Protected by copyright. extensively reviewed in the literature (Friedman, tracted without relief. Two days before hospitaliza- 1966; Hurwitz, 1968; DeLeon, 1968; Burton, tion he experienced dizziness. Other past history was 1969; Foster, 1969). Among the common noncontributory, but the family history revealed entities are odontogenic disease, trigeminal and hypertension and coronary artery disease in the glossopharyngeal neuralgias, migrainous facial patient's father. pain, post-herpetic neuralgia, various neo- On admission to the medical ward his blood pressure was 150/100 mmHg, heart rate was 92 per plasms, giant cell arteritis, cardiovascular facial minute and regular. The patient was restless but pain, and the pain associated with psycho- mental status and speech were normal. Funduscopic neurotic conditions. Other causes are recognized examination revealed a grade 1 arteriosclerotic but, nevertheless, there remains a significant retinopathy. A left hemiparesis and left, upper motor number of cases for which no cause is found.
    [Show full text]
  • The Ascending Pharyngeal Artery: a Collateral Pathway in Complete
    AJNR :8, January/February 1987 CORRESPONDENCE 177 cavernous sinuses acute inflammation, granulation tissue, and throm­ which it partiCipates. This report describes two cases in which bus surrounded the nerves and internal carotid arteries. The left common carotid angiography showed complete occlu sion of the carotid artery was intact, but focally inflammed. The right internal internal carotid artery at its origin. Subsequent vertebral angiography carotid artery was focally necrotic, acutely inflammed and ruptured, in both cases showed reconstitution of thi s vessel several millimeters with hemorrhage emanating from the defect. above the origin by the ascending ph aryngeal artery , which had an unusual origin from the internal carotid artery [2]. Endarterectomy as a technical option was feasible in both cases becau se the occluded Discussion segments were only millimeters in length . The first patient, a 59-year-old man , presented 5 days before We are not aware of any instances of air within the cavernous admission with a sudden pareS is of the right arm and leg. Angiograph y sinus in a normal patient or after trauma. Our case demonstrates revealed complete occlusion of the left internal carotid artery with a several of the reported findings in cavernous sinus thrombosis includ­ small , smooth stump (Fig. 1 A) . A left vertebral arteriogram demon­ ing bulging of the lateral walls , irregular low-attenuation filling defects strated reconstitution of the left internal carotid artery just above the within the cavernous sinus, and proptosis (Fig . 1). occlusion (Fig . 1 B). Collateral supply was from mu scular branches of It is unclear whether the air within the sinus originated from a gas­ the vertebral artery, which anastomosed with muscular branches of forming organism or via direct extension from one of the sinuses via the ascending pharyngeal artery.
    [Show full text]
  • Clinical Anatomy of the Maxillary Artery
    Okajimas CnlinicalFolia Anat. Anatomy Jpn., 87 of(4): the 155–164, Maxillary February, Artery 2011155 Clinical Anatomy of the Maxillary Artery By Ippei OTAKE1, Ikuo KAGEYAMA2 and Izumi MATAGA3 1 Department of Oral and Maxilofacial Surgery, Osaka General Medical Center (Chief: ISHIHARA Osamu) 2 Department of Anatomy I, School of Life Dentistry at Niigata, Nippon Dental University (Chief: Prof. KAGEYAMA Ikuo) 3 Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, Nippon Dental University (Chief: Prof. MATAGA Izumi) –Received for Publication, August 26, 2010– Key Words: Maxillary artery, running pattern of maxillary artery, intraarterial chemotherapy, inner diameter of vessels Summary: The Maxillary artery is a component of the terminal branch of external carotid artery and distributes the blood flow to upper and lower jawbones and to the deep facial portions. It is thus considered to be a blood vessel which supports both hard and soft tissues in the maxillofacial region. The maxillary artery is important for bleeding control during operation or superselective intra-arterial chemotherapy for head and neck cancers. The diagnosis and treatment for diseases appearing in the maxillary artery-dominating region are routinely performed based on image findings such as CT, MRI and angiography. However, validations of anatomical knowledge regarding the Maxillary artery to be used as a basis of image diagnosis are not yet adequate. In the present study, therefore, the running pattern of maxillary artery as well as the type of each branching pattern was observed by using 28 sides from 15 Japanese cadavers. In addition, we also took measurements of the distance between the bifurcation and the origin of the maxillary artery and the inner diameter of vessels.
    [Show full text]
  • Lingual Perimandibular Vessels Associated with Life-Threatening Bleeding: an Anatomic Study
    Mardinger.qxd 1/25/07 2:55 PM Page 127 Lingual Perimandibular Vessels Associated with Life-Threatening Bleeding: An Anatomic Study Ofer Mardinger, DMD1/Yifat Manor, DMD2/Eitan Mijiritsky, DMD3/Abraham Hirshberg, MD, DMD4 Purpose: To describe the anatomy of the lingual perimandibular vessels and emphasize the distance to the bone. Materials and Methods: The hemifacial lower third was dissected in 12 human cadavers. The blood vessels in the floor of the mouth were exposed using sagittal incisions at the canine, mental foramen, and second molar areas. Results: The diameter of the dissected vessels ranged from 0.5 to 3 mm (mean, 1.5 mm). Most vessels were found superior to the mylohyoid muscle in the canine area and beneath the muscle in the mental and second molar areas. The smallest median vertical distance from blood vessel to bone was in the canine area (14.5 mm), followed by the mental foramen area (15.5 mm) and the second premolar area (19 mm). The median horizontal distance of the vessels from the lingual plate was 2 mm at the canine and second molar areas and 4 mm at the mental area. Discussion: Lingual plate perforation, especially anterior to the canine area, can easily injure blood vessels in the floor of the mouth and cause life-threatening hemorrhage following implant placement. Bleeding can occur when the mandibular lingual plate is perforated. Care should be taken to recognize situations where this complication may occur. Conclusions: Based on the study of human cadavers, it appears that vessels in the floor of the mouth are sometimes in close proximity to the site of implant placement.
    [Show full text]
  • Penetrating Vascular Injuries of the Face and Neck: Clinical and Angiographic Correlation
    855 Penetrating Vascular Injuries of the Face and Neck: Clinical and Angiographic Correlation Charles M. North 1. 2 A retrospective review was made of 139 clinically stable patients who had sustained Jamshid Ahmadi penetrating trauma to the face and neck. The study was done to learn more about the Hervey D. Segall indications for angiography and the impact of angiography upon patient management. Chi-Shing Zee Some relationship between the physical examination and the angiographic findings was found. In the presence of anyone of four physical signs or symptoms (absent pulse, bruit, hematoma, or alteration of neurologic status) there was a 30% incidence of vascular injury. However, it is unlikely that a clinically significant traumatic vascular lesion will be missed if angiography is not obtained when these clinical signs and symptoms are not present. In the group of 78 patients who presented with only a wound penetrating the ' platysma and no other findings or symptoms, just two had vascular injuries on angiograms; one of these lesions was minor and the other did not affect the patient's management. There was a substantially higher rate (50%) of vascular injury in patients with trauma cephalad to the angle of the mandible compared with 11 % of patients who had neck trauma. Gunshot wounds were associated with vascular damage more frequently than were stab wounds. Angiography is often performed in penetrating trauma to the head and neck to evaluate the possibility of vascular injury and to aid in planning appropriate management [1]. Nonetheless, the role of angiography in penetrating head and neck trauma has remained controversial.
    [Show full text]