Advanced Positioning for Offshore Norway
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geomatics Guidance Note 3
Geomatics Guidance Note 3 Contract area description Revision history Version Date Amendments 5.1 December 2014 Revised to improve clarity. Heading changed to ‘Geomatics’. 4 April 2006 References to EPSG updated. 3 April 2002 Revised to conform to ISO19111 terminology. 2 November 1997 1 November 1995 First issued. 1. Introduction Contract Areas and Licence Block Boundaries have often been inadequately described by both licensing authorities and licence operators. Overlaps of and unlicensed slivers between adjacent licences may then occur. This has caused problems between operators and between licence authorities and operators at both the acquisition and the development phases of projects. This Guidance Note sets out a procedure for describing boundaries which, if followed for new contract areas world-wide, will alleviate the problems. This Guidance Note is intended to be useful to three specific groups: 1. Exploration managers and lawyers in hydrocarbon exploration companies who negotiate for licence acreage but who may have limited geodetic awareness 2. Geomatics professionals in hydrocarbon exploration and development companies, for whom the guidelines may serve as a useful summary of accepted best practice 3. Licensing authorities. The guidance is intended to apply to both onshore and offshore areas. This Guidance Note does not attempt to cover every aspect of licence boundary definition. In the interests of producing a concise document that may be as easily understood by the layman as well as the specialist, definitions which are adequate for most licences have been covered. Complex licence boundaries especially those following river features need specialist advice from both the survey and the legal professions and are beyond the scope of this Guidance Note. -
Reference Systems for Surveying and Mapping Lecture Notes
Delft University of Technology Reference Systems for Surveying and Mapping Lecture notes Hans van der Marel ii The front cover shows the NAP (Amsterdam Ordnance Datum) ”datum point” at the Stopera, Amsterdam (picture M.M.Minderhoud, Wikipedia/Michiel1972). H. van der Marel Lecture notes on Reference Systems for Surveying and Mapping: CTB3310 Surveying and Mapping CTB3425 Monitoring and Stability of Dikes and Embankments CIE4606 Geodesy and Remote Sensing CIE4614 Land Surveying and Civil Infrastructure February 2020 Publisher: Faculty of Civil Engineering and Geosciences Delft University of Technology P.O. Box 5048 Stevinweg 1 2628 CN Delft The Netherlands Copyright ©20142020 by H. van der Marel The content in these lecture notes, except for material credited to third parties, is licensed under a Creative Commons AttributionsNonCommercialSharedAlike 4.0 International License (CC BYNCSA). Third party material is shared under its own license and attribution. The text has been type set using the MikTex 2.9 implementation of LATEX. Graphs and diagrams were produced, if not mentioned otherwise, with Matlab and Inkscape. Preface This reader on reference systems for surveying and mapping has been initially compiled for the course Surveying and Mapping (CTB3310) in the 3rd year of the BScprogram for Civil Engineering. The reader is aimed at students at the end of their BSc program or at the start of their MSc program, and is used in several courses at Delft University of Technology. With the advent of the Global Positioning System (GPS) technology in mobile (smart) phones and other navigational devices almost anyone, anywhere on Earth, and at any time, can determine a three–dimensional position accurate to a few meters. -
Vertical Component
ARTIFICIAL SATELLITES, Vol. 46, No. 3 – 2011 DOI: 10.2478/v10018-012-0001-2 THE PROBLEM OF COMPATIBILITY AND INTEROPERABILITY OF SATELLITE NAVIGATION SYSTEMS IN COMPUTATION OF USER’S POSITION Jacek Januszewski Gdynia Maritime University, Navigation Department al. JanaPawla II 3, 81–345 Gdynia, Poland e–mail:[email protected] ABSTRACT. Actually (June 2011) more than 60 operational GPS and GLONASS (Satellite Navigation Systems – SNS), EGNOS, MSAS and WAAS (Satellite Based Augmentation Systems – SBAS) satellites are in orbits transmitting a variety of signals on multiple frequencies. All these satellite signals and different services designed for the users must be compatible and open signals and services should also be interoperable to the maximum extent possible. Interoperability definition addresses signal, system time and geodetic reference frame considerations. The part of compatibility and interoperability of all these systems and additionally several systems under construction as Compass, Galileo, GAGAN, SDCM or QZSS in computation user’s position is presented in this paper. Three parameters – signal in space, system time and coordinate reference frame were taken into account in particular. Keywords: Satellite Navigation System (SNS), Saellite Based Augmentation System (SBAS), compability, interoperability, coordinate reference frame, time reference, signal in space INTRODUCTION Information about user’s position can be obtained from specialized electronic position-fixing systems, in particular, Satellite Navigation Systems (SNS) as GPS and GLONASS, and Satellite Based Augmentation Systems (SBAS) as EGNOS, WAAS and MSAS. All these systems are known also as GNSS (Global Navigation Satellite System). Actually (June 2011) more than 60 operational GPS, GLONASS, EGNOS, MSAS and WAAS satellites are in orbits transmitting a variety of signals on multiple frequencies. -
Map Projections and Coordinate Systems Datums Tell Us the Latitudes and Longi- Vertex, Node, Or Grid Cell in a Data Set, Con- Tudes of Features on an Ellipsoid
116 GIS Fundamentals Map Projections and Coordinate Systems Datums tell us the latitudes and longi- vertex, node, or grid cell in a data set, con- tudes of features on an ellipsoid. We need to verting the vector or raster data feature by transfer these from the curved ellipsoid to a feature from geographic to Mercator coordi- flat map. A map projection is a systematic nates. rendering of locations from the curved Earth Notice that there are parameters we surface onto a flat map surface. must specify for this projection, here R, the Nearly all projections are applied via Earth’s radius, and o, the longitudinal ori- exact or iterated mathematical formulas that gin. Different values for these parameters convert between geographic latitude and give different values for the coordinates, so longitude and projected X an Y (Easting and even though we may have the same kind of Northing) coordinates. Figure 3-30 shows projection (transverse Mercator), we have one of the simpler projection equations, different versions each time we specify dif- between Mercator and geographic coordi- ferent parameters. nates, assuming a spherical Earth. These Projection equations must also be speci- equations would be applied for every point, fied in the “backward” direction, from pro- jected coordinates to geographic coordinates, if they are to be useful. The pro- jection coordinates in this backward, or “inverse,” direction are often much more complicated that the forward direction, but are specified for every commonly used pro- jection. Most projection equations are much more complicated than the transverse Mer- cator, in part because most adopt an ellipsoi- dal Earth, and because the projections are onto curved surfaces rather than a plane, but thankfully, projection equations have long been standardized, documented, and made widely available through proven programing libraries and projection calculators. -
Determination of Geoid and Transformation Parameters by Using GPS on the Region of Kadınhanı in Konya
Determination of Geoid And Transformation Parameters By Using GPS On The Region of Kadınhanı In Konya Fuat BAŞÇİFTÇİ, Hasan ÇAĞLA, Turgut AYTEN, Sabahattin Akkuş, Beytullah Yalcin and İsmail ŞANLIOĞLU, Turkey Key words: GPS, Geoid Undulation, Ellipsoidal Height, Transformation Parameters. SUMMARY As known, three dimensional position (3D) of a point on the earth can be obtained by GPS. It has emerged that ellipsoidal height of a point positioning by GPS as 3D position, is vertical distance measured along the plumb line between WGS84 ellipsoid and a point on the Earth’s surface, when alone vertical position of a point is examined. If orthometric height belonging to this point is known, the geoid undulation may be practically found by height difference between ellipsoidal and orthometric height. In other words, the geoid may be determined by using GPS/Levelling measurements. It has known that the classical geodetic networks (triangulation or trilateration networks) established by terrestrial methods are insufficient to contemporary requirements. To transform coordinates obtained by GPS to national coordinate system, triangulation or trilateration network’s coordinates of national system are used. So high accuracy obtained by GPS get lost a little. These results are dependent on accuracy of national coordinates on region worked. Thus results have different accuracy on the every region. The geodetic network on the region of Kadınhanı in Konya had been established according to national coordinate system and the points of this network have been used up to now. In this study, the test network will institute on Kadınhanı region. The geodetic points of this test network will be established in the proper distribution for using of the persons concerned. -
A Guide to Coordinate Systems in Great Britain
A guide to coordinate systems in Great Britain An introduction to mapping coordinate systems and the use of GPS datasets with Ordnance Survey mapping A guide to coordinate systems in Great Britain D00659 v2.3 Mar 2015 © Crown copyright Page 1 of 43 Contents Section Page no 1 Introduction .................................................................................................................................. 3 1.1 Who should read this booklet? .......................................................................................3 1.2 A few myths about coordinate systems ..........................................................................4 2 The shape of the Earth ................................................................................................................ 6 2.1 The first geodetic question ..............................................................................................6 2.2 Ellipsoids ......................................................................................................................... 6 2.3 The Geoid ....................................................................................................................... 7 2.3.1 Local geoids .....................................................................................................8 3 What is position? ......................................................................................................................... 9 3.1 Types of coordinates ......................................................................................................9 -
Uk Offshore Operators Association (Surveying and Positioning
U.K. OFFSHORE OPERATORS ASSOCIATION (SURVEYING AND POSITIONING COMMITTEE) GUIDANCE NOTES ON THE USE OF CO-ORDINATE SYSTEMS IN DATA MANAGEMENT ON THE UKCS (DECEMBER 1999) Version 1.0c Whilst every effort has been made to ensure the accuracy of the information contained in this publication, neither UKOOA, nor any of its members will assume liability for any use made thereof. Copyright ã 1999 UK Offshore Operators Association Prepared on behalf of the UKOOA Surveying and Positioning Committee by Richard Wylde, The SIMA Consultancy Limited with assistance from: Roger Lott, BP Amoco Exploration Geir Simensen, Shell Expro A Company Limited by Guarantee UKOOA, 30 Buckingham Gate, London, SW1E 6NN Registered No. 1119804 England _____________________________________________________________________________________________________________________Page 2 CONTENTS 1. INTRODUCTION AND BACKGROUND .......................................................................3 1.1 Introduction ..........................................................................................................3 1.2 Background..........................................................................................................3 2. WHAT HAS HAPPENED AND WHY ............................................................................4 2.1 Longitude 6°W (ED50) - the Thunderer Line .........................................................4 3. GUIDANCE FOR DATA USERS ..................................................................................6 3.1 How will we map the -
Geodetic Computations on Triaxial Ellipsoid
International Journal of Mining Science (IJMS) Volume 1, Issue 1, June 2015, PP 25-34 www.arcjournals.org Geodetic Computations on Triaxial Ellipsoid Sebahattin Bektaş Ondokuz Mayis University, Faculty of Engineering, Geomatics Engineering, Samsun, [email protected] Abstract: Rotational ellipsoid generally used in geodetic computations. Triaxial ellipsoid surface although a more general so far has not been used in geodetic applications and , the reason for this is not provided as a practical benefit in the calculations. We think this traditional thoughts ought to be revised again. Today increasing GPS and satellite measurement precision will allow us to determine more realistic earth ellipsoid. Geodetic research has traditionally been motivated by the need to continually improve approximations of physical reality. Several studies have shown that the Earth, other planets, natural satellites,asteroids and comets can be modeled as triaxial ellipsoids. In this paper we study on the computational differences in results,fitting ellipsoid, use of biaxial ellipsoid instead of triaxial elipsoid, and transformation Cartesian ( Geocentric ,Rectangular) coordinates to Geodetic coodinates or vice versa on Triaxial ellipsoid. Keywords: Reference Surface, Triaxial ellipsoid, Coordinate transformation,Cartesian, Geodetic, Ellipsoidal coordinates 1. INTRODUCTION Although Triaxial ellipsoid equation is quite simple and smooth but geodetic computations are quite difficult on the Triaxial ellipsoid. The main reason for this difficulty is the lack of symmetry. Triaxial ellipsoid generally not used in geodetic applications. Rotational ellipsoid (ellipsoid revolution ,biaxial ellipsoid , spheroid) is frequently used in geodetic applications . Triaxial ellipsoid is although a more general surface so far but has not been used in geodetic applications. The reason for this is not provided as a practical benefit in the calculations. -
China Geodetic Coordinate System 2000*
UNITED NATIONS E/CONF.100/CRP.16 ECONOMIC AND SOCIAL COUNCIL Eighteenth United Nations Regional Cartographic Conference for Asia and the Pacific Bangkok, 26-29 October 2009 Item 7(a) of the provisional agenda Country Reports China Geodetic Coordinate System 2000* * Prepared by Pengfei Cheng, Hanjiang Wen, Yingyan Cheng, Hua Wang, Chinese Academy of Surveying and Mapping China Geodetic Coordinate System 2000 CHENG Pengfei,WEN Hanjiang,CHENG Yingyan, WANG Hua Chinese Academy of Surveying and Mapping, Beijing 100039, China Abstract Two national geodetic coordinate systems have been used in China since 1950’s, i.e., the Beijing geodetic coordinate system 1954 and Xi’an geodetic coordinate system 1980. As non-geocentric and local systems, they were established based on national astro-geodetic network. Since 1990, several national GPS networks have been established for different applications in China, such as the GPS networks of order-A and order-B established by the State Bureau of Surveying and Mapping in 1997 were mainly used for the geodetic datum. A combined adjustment was carried out to unify the reference frame and the epoch of the control points of these GPS networks, and the national GPS control network 2000(GPS2000) was established afterwards. In order to establish the connection between CGCS2000 and the old coordinate systems and to get denser control points, so that the geo-information products can be transformed into the new system, the combined adjustment between the astro-geodetic network and GPS2000 network were also completed. China Geodetic Coordinate System 2000(CGCS2000) has been adopted as the new national geodetic reference system since July 2008,which will be used to replace the old systems. -
A Global Vertical Datum Defined by the Conventional Geoid Potential And
Journal of Geodesy (2019) 93:1943–1961 https://doi.org/10.1007/s00190-019-01293-3 ORIGINAL ARTICLE A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters Hadi Amin1 · Lars E. Sjöberg1,2 · Mohammad Bagherbandi1,2 Received: 24 January 2019 / Accepted: 22 August 2019 / Published online: 12 September 2019 © The Author(s) 2019 Abstract The geoid, according to the classical Gauss–Listing definition, is, among infinite equipotential surfaces of the Earth’s gravity field, the equipotential surface that in a least squares sense best fits the undisturbed mean sea level. This equipotential surface, except for its zero-degree harmonic, can be characterized using the Earth’s global gravity models (GGM). Although, nowadays, satellite altimetry technique provides the absolute geoid height over oceans that can be used to calibrate the unknown zero- degree harmonic of the gravimetric geoid models, this technique cannot be utilized to estimate the geometric parameters of the mean Earth ellipsoid (MEE). The main objective of this study is to perform a joint estimation of W 0, which defines the zero datum of vertical coordinates, and the MEE parameters relying on a new approach and on the newest gravity field, mean sea surface and mean dynamic topography models. As our approach utilizes both satellite altimetry observations and a GGM model, we consider different aspects of the input data to evaluate the sensitivity of our estimations to the input data. Unlike previous studies, our results show that it is not sufficient to use only the satellite-component of a quasi-stationary GGM to estimate W 0. -
Appendix to Section 3: a Brief Overview of Geodetics
Appendix to Section 3: A brief overview of Geodetics MAE 5540 - Propulsion Systems Geodesy • Navigation Geeks do Calculations in Geocentric (spherical) Coordinates • Map Makers Give Surface Data in Terms !earth of Geodetic (elliptical) Coordinates • Need to have some idea how to relate one to another -- science of geodesy MAE 5540 - Propulsion Systems How Does the Earth Radius Vary with Latitude? k z ? 2 ? 2 REarth = x + y2 + z = r + z r R " Ellipse: y j ! r 2 + z 2 = 1 j 2 Req Req 1 - eEarth y x i "a" "b" r Prime Meridian ! x MAE 5540 - Propulsion Systems How Does the Earth Radius vary with Latitude? r 2 + z 2 = 1 2 Req Req 1 - eEarth ! 2 2 2 2 2 1 - eEarth r + z = Req 1 - eEarth ! z 2 2 2 2 z 2 r Req = r + 2 = r 1 + 2 1 - eEarth 1 - eEarth Rearth z " r 2 2 2 z 2 2 r = Rearth cos " r = tan " MAE 5540 - Propulsion Systems How Does the Earth Radius vary with Latitude? 2 2 Req 2 tan ! 2 = cos ! 1 + 2 = Rearth 1 - eEarth 2 2 2 1 - eEarth cos ! + sin ! 2 = 1 - eEarth Inverting .... 2 2 2 2 2 2 cos ! + sin ! - eEarth cos ! 1 - eEarth cos ! 2 = 2 1 - eEarth 1 - eEarth R earth ! = 2 Req 1 - eEarth 2 2 1 - eEarth cos ! MAE 5540 - Propulsion Systems Earth Radius vs Geocentric Latitude R earth ! = Polar Radius: 6356.75170 km 2 Req 1 - eEarth Equatorial Radius: 6378.13649 km 2 2 1 - eEarth cos ! 2 2 2 e = 1 - b = a - b = Earth a a2 6378.13649 2 6378.136492 - = 0.08181939 6378.13649 MAE 5540 - Propulsion Systems Earth Radius vs Geocentric Latitude (concluded) 6380. -
Geodetic System 1 Geodetic System
Geodetic system 1 Geodetic system Geodesy Fundamentals Geodesy · Geodynamics Geomatics · Cartography Concepts Datum · Distance · Geoid Fig. Earth · Geodetic sys. Geog. coord. system Hor. pos. represent. Lat./Long. · Map proj. Ref. ellipsoid · Sat. geodesy Spatial ref. sys. Technologies GNSS · GPS · GLONASS Standards ED50 · ETRS89 · GRS 80 NAD83 · NAVD88 · SAD69 SRID · UTM · WGS84 History History of geodesy NAVD29 Geodetic systems or geodetic data are used in geodesy, navigation, surveying by cartographers and satellite navigation systems to translate positions indicated on their products to their real position on earth. The systems are needed because the earth is an imperfect sphere. Also the earth is an imperfect ellipsoid. This can be verified by differentiating the equation for an ellipsoid and solving for dy/dx. It is a constant multiplied by x/y. Then derive the force equation from the centrifugal force acting on an object on the earth's surface and the gravitational force. Switch the x and y components and multiply one of them by negative one. This is the differential equation which when solved will yield the equation for the earth's surface. This is not a constant multiplied by x/y. Note that the earth's surface is also not an equal-potential surface, as can be verified by calculating the potential at the equator and the potential at a pole. The earth is an equal force surface. A one kilogram frictionless object on the ideal earth's surface does not have any force acting upon it to cause it to move either north or south. There is no simple analytical solution to this differential equation.