Geodetic System 1 Geodetic System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geomatics Guidance Note 3
Geomatics Guidance Note 3 Contract area description Revision history Version Date Amendments 5.1 December 2014 Revised to improve clarity. Heading changed to ‘Geomatics’. 4 April 2006 References to EPSG updated. 3 April 2002 Revised to conform to ISO19111 terminology. 2 November 1997 1 November 1995 First issued. 1. Introduction Contract Areas and Licence Block Boundaries have often been inadequately described by both licensing authorities and licence operators. Overlaps of and unlicensed slivers between adjacent licences may then occur. This has caused problems between operators and between licence authorities and operators at both the acquisition and the development phases of projects. This Guidance Note sets out a procedure for describing boundaries which, if followed for new contract areas world-wide, will alleviate the problems. This Guidance Note is intended to be useful to three specific groups: 1. Exploration managers and lawyers in hydrocarbon exploration companies who negotiate for licence acreage but who may have limited geodetic awareness 2. Geomatics professionals in hydrocarbon exploration and development companies, for whom the guidelines may serve as a useful summary of accepted best practice 3. Licensing authorities. The guidance is intended to apply to both onshore and offshore areas. This Guidance Note does not attempt to cover every aspect of licence boundary definition. In the interests of producing a concise document that may be as easily understood by the layman as well as the specialist, definitions which are adequate for most licences have been covered. Complex licence boundaries especially those following river features need specialist advice from both the survey and the legal professions and are beyond the scope of this Guidance Note. -
Reference Systems for Surveying and Mapping Lecture Notes
Delft University of Technology Reference Systems for Surveying and Mapping Lecture notes Hans van der Marel ii The front cover shows the NAP (Amsterdam Ordnance Datum) ”datum point” at the Stopera, Amsterdam (picture M.M.Minderhoud, Wikipedia/Michiel1972). H. van der Marel Lecture notes on Reference Systems for Surveying and Mapping: CTB3310 Surveying and Mapping CTB3425 Monitoring and Stability of Dikes and Embankments CIE4606 Geodesy and Remote Sensing CIE4614 Land Surveying and Civil Infrastructure February 2020 Publisher: Faculty of Civil Engineering and Geosciences Delft University of Technology P.O. Box 5048 Stevinweg 1 2628 CN Delft The Netherlands Copyright ©20142020 by H. van der Marel The content in these lecture notes, except for material credited to third parties, is licensed under a Creative Commons AttributionsNonCommercialSharedAlike 4.0 International License (CC BYNCSA). Third party material is shared under its own license and attribution. The text has been type set using the MikTex 2.9 implementation of LATEX. Graphs and diagrams were produced, if not mentioned otherwise, with Matlab and Inkscape. Preface This reader on reference systems for surveying and mapping has been initially compiled for the course Surveying and Mapping (CTB3310) in the 3rd year of the BScprogram for Civil Engineering. The reader is aimed at students at the end of their BSc program or at the start of their MSc program, and is used in several courses at Delft University of Technology. With the advent of the Global Positioning System (GPS) technology in mobile (smart) phones and other navigational devices almost anyone, anywhere on Earth, and at any time, can determine a three–dimensional position accurate to a few meters. -
Vertical Component
ARTIFICIAL SATELLITES, Vol. 46, No. 3 – 2011 DOI: 10.2478/v10018-012-0001-2 THE PROBLEM OF COMPATIBILITY AND INTEROPERABILITY OF SATELLITE NAVIGATION SYSTEMS IN COMPUTATION OF USER’S POSITION Jacek Januszewski Gdynia Maritime University, Navigation Department al. JanaPawla II 3, 81–345 Gdynia, Poland e–mail:[email protected] ABSTRACT. Actually (June 2011) more than 60 operational GPS and GLONASS (Satellite Navigation Systems – SNS), EGNOS, MSAS and WAAS (Satellite Based Augmentation Systems – SBAS) satellites are in orbits transmitting a variety of signals on multiple frequencies. All these satellite signals and different services designed for the users must be compatible and open signals and services should also be interoperable to the maximum extent possible. Interoperability definition addresses signal, system time and geodetic reference frame considerations. The part of compatibility and interoperability of all these systems and additionally several systems under construction as Compass, Galileo, GAGAN, SDCM or QZSS in computation user’s position is presented in this paper. Three parameters – signal in space, system time and coordinate reference frame were taken into account in particular. Keywords: Satellite Navigation System (SNS), Saellite Based Augmentation System (SBAS), compability, interoperability, coordinate reference frame, time reference, signal in space INTRODUCTION Information about user’s position can be obtained from specialized electronic position-fixing systems, in particular, Satellite Navigation Systems (SNS) as GPS and GLONASS, and Satellite Based Augmentation Systems (SBAS) as EGNOS, WAAS and MSAS. All these systems are known also as GNSS (Global Navigation Satellite System). Actually (June 2011) more than 60 operational GPS, GLONASS, EGNOS, MSAS and WAAS satellites are in orbits transmitting a variety of signals on multiple frequencies. -
The History of Geodesy Told Through Maps
The History of Geodesy Told through Maps Prof. Dr. Rahmi Nurhan Çelik & Prof. Dr. Erol KÖKTÜRK 16 th May 2015 Sofia Missionaries in 5000 years With all due respect... 3rd FIG Young Surveyors European Meeting 1 SUMMARIZED CHRONOLOGY 3000 BC : While settling, people were needed who understand geometries for building villages and dividing lands into parts. It is known that Egyptian, Assyrian, Babylonian were realized such surveying techniques. 1700 BC : After floating of Nile river, land surveying were realized to set back to lost fields’ boundaries. (32 cm wide and 5.36 m long first text book “Papyrus Rhind” explain the geometric shapes like circle, triangle, trapezoids, etc. 550+ BC : Thereafter Greeks took important role in surveying. Names in that period are well known by almost everybody in the world. Pythagoras (570–495 BC), Plato (428– 348 BC), Aristotle (384-322 BC), Eratosthenes (275–194 BC), Ptolemy (83–161 BC) 500 BC : Pythagoras thought and proposed that earth is not like a disk, it is round as a sphere 450 BC : Herodotus (484-425 BC), make a World map 350 BC : Aristotle prove Pythagoras’s thesis. 230 BC : Eratosthenes, made a survey in Egypt using sun’s angle of elevation in Alexandria and Syene (now Aswan) in order to calculate Earth circumferences. As a result of that survey he calculated the Earth circumferences about 46.000 km Moreover he also make the map of known World, c. 194 BC. 3rd FIG Young Surveyors European Meeting 2 150 : Ptolemy (AD 90-168) argued that the earth was the center of the universe. -
Advanced Positioning for Offshore Norway
Advanced Positioning for Offshore Norway Thomas Alexander Sahl Petroleum Geoscience and Engineering Submission date: June 2014 Supervisor: Sigbjørn Sangesland, IPT Co-supervisor: Bjørn Brechan, IPT Norwegian University of Science and Technology Department of Petroleum Engineering and Applied Geophysics Summary When most people hear the word coordinates, they think of latitude and longitude, variables that describe a location on a spherical Earth. Unfortunately, the reality of the situation is far more complex. The Earth is most accurately represented by an ellipsoid, the coordinates are three-dimensional, and can be found in various forms. The coordinates are also ambiguous. Without a proper reference system, a geodetic datum, they have little meaning. This field is what is known as "Geodesy", a science of exactly describing a position on the surface of the Earth. This Thesis aims to build the foundation required for the position part of a drilling software. This is accomplished by explaining, in detail, the field of geodesy and map projections, as well as their associated formulae. Special considerations is taken for the area offshore Norway. Once the guidelines for transformation and conversion have been established, the formulae are implemented in MATLAB. All implemented functions are then verified, for every conceivable method of opera- tion. After which, both the limitation and accuracy of the various functions are discussed. More specifically, the iterative steps required for the computation of geographic coordinates, the difference between the North Sea Formulae and the Bursa-Wolf transformation, and the accuracy of Thomas-UTM series for UTM projections. The conclusion is that the recommended guidelines have been established and implemented. -
Eratosthenes' Map of the Oecumene Re Vie W
GEODESY AND CARTOGRAPHY ISSN 2029-6991 print / ISSN 2029-7009 online 2012 Volume 38(2): 81–85 doi:10.3846/20296991.2012.695332 REVIEW UDK 528.9 ERATOSTHENES’ MAP OF THE OECUMENE Viktoras Lukoševičius1, Tomas Duksa2 1Technology Faculty, Šiauliai University, Vilniaus g. 141, LT-76353 Šiauliai, Lithuania 2Lithuanian Cartographic Society, M. K. Čiurlionio g. 21/27, LT-03101 Vilnius, Lithuania E-mails: [email protected] (corresponding author); [email protected] Received 26 April 2012; accepted 21 June 2012 Abstract. Eratosthenes (circa 276 B.C.–194 B.C.) is considered a famous scientist of ancient Greece. He was a mathematician and geographer. Born in Cyrene, now Shahhat (Libya), he was appointed to teach the son of the Egyptian King Ptolemy III Euergetes. In 240 B.C., he became the third chief librarian the Great Library of Alexan- dria. Eratosthenes laid basics for mathematical geography. He was the first to calculate precisely in an original way the Earth meridian’s length between Syene and Alexandria. For this purpose he used perpendicular projection of the sun rays during summer solstice (06.22) near the town Syene, now Aswan. His estimation of the length of the Earth’s radius (6300 km) is close to present estimation (6371 km). He calculated that a year possesses 365.25 days. He also emphasized the significance of maps as the most important thing in geography. Eratosthenes was the first one to use the term “geographem” to describe the Earth. In this way he legitimized the term of geography. He also put into system geographical information from various sources in order to obtain a map of the world as precise as possible. -
Reference Systems for Surveying and Mapping Lecture Notes
Delft University of Technology Reference Systems for Surveying and Mapping Lecture notes Hans van der Marel ii The front cover shows the NAP (Amsterdam Ordnance Datum) ”datum point” at the Stopera, Amsterdam (picture M.M.Minderhoud, Wikipedia/Michiel1972). H. van der Marel Surveying and Mapping Lecture notes CTB3310 (Reference Systems for Surveying and Mapping) August 2014 Publisher: Faculty of Civil Engineering and Geosciences Delft University of Technology P.O. Box 5048 Stevinweg 1 2628 CN Delft The Netherlands Copyright ©2014 by H. van der Marel All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, scanning, recording or by any information storage and retrieval system, without written permission from the copyright owner. The text has been type set using the MikTex 2.9 implementation of LATEX. Graphs and diagrams were produced, if not mentioned otherwise, with Matlab and Inkscape. Contents 1 Introduction 1 2 2D Coordinate systems 3 2.1 2D Cartesian coordinates . 3 2.2 2D coordinate transformations . 4 3 3D Coordinate systems 7 3.1 3D Cartesian coordinates . 7 3.2 7-parameter similarity transformation . 9 4 Spherical and ellipsoidal coordinate systems 13 4.1 Spherical coordinates . 13 4.2 Geographic coordinates (ellipsoidal coordinates) . 14 4.3 Topocentric coordinates, azimuth and zenith angle . 18 4.4 Practical aspects of using latitude and longitude. 19 4.5 Spherical and ellipsoidal computations . 22 5 Map projections 25 6 Datum transformations and coordinate conversions 29 7 Vertical reference systems 33 8 Common reference systems and frames 37 8.1 International Terrestrial Reference System and Frames . -
Determination of Geoid and Transformation Parameters by Using GPS on the Region of Kadınhanı in Konya
Determination of Geoid And Transformation Parameters By Using GPS On The Region of Kadınhanı In Konya Fuat BAŞÇİFTÇİ, Hasan ÇAĞLA, Turgut AYTEN, Sabahattin Akkuş, Beytullah Yalcin and İsmail ŞANLIOĞLU, Turkey Key words: GPS, Geoid Undulation, Ellipsoidal Height, Transformation Parameters. SUMMARY As known, three dimensional position (3D) of a point on the earth can be obtained by GPS. It has emerged that ellipsoidal height of a point positioning by GPS as 3D position, is vertical distance measured along the plumb line between WGS84 ellipsoid and a point on the Earth’s surface, when alone vertical position of a point is examined. If orthometric height belonging to this point is known, the geoid undulation may be practically found by height difference between ellipsoidal and orthometric height. In other words, the geoid may be determined by using GPS/Levelling measurements. It has known that the classical geodetic networks (triangulation or trilateration networks) established by terrestrial methods are insufficient to contemporary requirements. To transform coordinates obtained by GPS to national coordinate system, triangulation or trilateration network’s coordinates of national system are used. So high accuracy obtained by GPS get lost a little. These results are dependent on accuracy of national coordinates on region worked. Thus results have different accuracy on the every region. The geodetic network on the region of Kadınhanı in Konya had been established according to national coordinate system and the points of this network have been used up to now. In this study, the test network will institute on Kadınhanı region. The geodetic points of this test network will be established in the proper distribution for using of the persons concerned. -
A Guide to Coordinate Systems in Great Britain
A guide to coordinate systems in Great Britain An introduction to mapping coordinate systems and the use of GPS datasets with Ordnance Survey mapping A guide to coordinate systems in Great Britain D00659 v2.3 Mar 2015 © Crown copyright Page 1 of 43 Contents Section Page no 1 Introduction .................................................................................................................................. 3 1.1 Who should read this booklet? .......................................................................................3 1.2 A few myths about coordinate systems ..........................................................................4 2 The shape of the Earth ................................................................................................................ 6 2.1 The first geodetic question ..............................................................................................6 2.2 Ellipsoids ......................................................................................................................... 6 2.3 The Geoid ....................................................................................................................... 7 2.3.1 Local geoids .....................................................................................................8 3 What is position? ......................................................................................................................... 9 3.1 Types of coordinates ......................................................................................................9 -
COURSE SYLLABUS LS 2400 – Basic Geodesy for Today's GPS
COURSE SYLLABUS LS 2400 – Basic Geodesy for today’s GPS Land Surveyor Instructor Information: Instructor(s): John Adam Phone(s): (916) 947-0866 (C) E-mail(s): [email protected] (916) 773-0553 (H) Office(s): N/A Office Hours: TBA Course Information: Delivered and scheduled through the Outreach Credit Program Prerequisites: None Course Description: The history of geodesy including measurement techniques, coordinate systems, ellipsoids, and datums is reviewed. The modern geodetic and Cartesian coordinates systems, as well as the differences between grid and ground coordinates systems, and the current geodetic and Cartesian coordinate systems available today are discussed. Disability Statement: If you have a physical, learning, sensory or psychological disability and require accommodations, please let me know as soon as possible. You will need to register with, and provide documentation of your disability to University Disability Support Services (UDSS) in SEO, room 330 Knight Hall. Objectives/Outcomes/Standards: On completion of the class the student will understand the concepts of a datum, a projection, and a geoid model. The student will be able to select an appropriate projection and couple it with a geoid model to present data collected using GPS in a Cartesian coordinate system. Text(s) and Readings: Basic GIS Coordinates(Second Edition), Jan Van Sickle Course Requirements/Assignments: This course will consist of prerecorded video lectures, teleconferences, exercises and a proctored final exam. Grading Standards: 15 exercises at 5 points each = 75 points and a proctored final exam at 25 points for a total of 100 points A = 100 - 90, B = 89 - 80, C = 79 – 70, D = 69 - 60, F = > 60 Attendance/Participation Policy: University sponsored absences are cleared through the Office of Student Life. -
Uk Offshore Operators Association (Surveying and Positioning
U.K. OFFSHORE OPERATORS ASSOCIATION (SURVEYING AND POSITIONING COMMITTEE) GUIDANCE NOTES ON THE USE OF CO-ORDINATE SYSTEMS IN DATA MANAGEMENT ON THE UKCS (DECEMBER 1999) Version 1.0c Whilst every effort has been made to ensure the accuracy of the information contained in this publication, neither UKOOA, nor any of its members will assume liability for any use made thereof. Copyright ã 1999 UK Offshore Operators Association Prepared on behalf of the UKOOA Surveying and Positioning Committee by Richard Wylde, The SIMA Consultancy Limited with assistance from: Roger Lott, BP Amoco Exploration Geir Simensen, Shell Expro A Company Limited by Guarantee UKOOA, 30 Buckingham Gate, London, SW1E 6NN Registered No. 1119804 England _____________________________________________________________________________________________________________________Page 2 CONTENTS 1. INTRODUCTION AND BACKGROUND .......................................................................3 1.1 Introduction ..........................................................................................................3 1.2 Background..........................................................................................................3 2. WHAT HAS HAPPENED AND WHY ............................................................................4 2.1 Longitude 6°W (ED50) - the Thunderer Line .........................................................4 3. GUIDANCE FOR DATA USERS ..................................................................................6 3.1 How will we map the -
The International Association of Geodesy 1862 to 1922: from a Regional Project to an International Organization W
Journal of Geodesy (2005) 78: 558–568 DOI 10.1007/s00190-004-0423-0 The International Association of Geodesy 1862 to 1922: from a regional project to an international organization W. Torge Institut fu¨ r Erdmessung, Universita¨ t Hannover, Schneiderberg 50, 30167 Hannover, Germany; e-mail: [email protected]; Tel: +49-511-762-2794; Fax: +49-511-762-4006 Received: 1 December 2003 / Accepted: 6 October 2004 / Published Online: 25 March 2005 Abstract. Geodesy, by definition, requires international mitment of two scientists from neutral countries, the collaboration on a global scale. An organized coopera- International Latitude Service continued to observe tion started in 1862, and has become today’s Interna- polar motion and to deliver the data to the Berlin tional Association of Geodesy (IAG). The roots of Central Bureau for evaluation. After the First World modern geodesy in the 18th century, with arc measure- War, geodesy became one of the founding members of ments in several parts of the world, and national geodetic the International Union for Geodesy and Geophysics surveys in France and Great Britain, are explained. The (IUGG), and formed one of its Sections (respectively manifold local enterprises in central Europe, which Associations). It has been officially named the Interna- happened in the first half of the 19th century, are tional Association of Geodesy (IAG) since 1932. described in some detail as they prepare the foundation for the following regional project. Simultaneously, Gauss, Bessel and others developed a more sophisticated Key words: Arc measurements – Baeyer – Helmert – definition of the Earth’s figure, which includes the effect Figure of the Earth – History of geodesy – of the gravity field.