Geodesy in Japan: Legends and Highlights Kosuke Heki*

Total Page:16

File Type:pdf, Size:1020Kb

Geodesy in Japan: Legends and Highlights Kosuke Heki* Heki Earth, Planets and Space (2020) 72:38 https://doi.org/10.1186/s40623-020-01164-8 FRONTIER LETTER Open Access Geodesy in Japan: legends and highlights Kosuke Heki* Abstract Here, I review modern history of geodesy and geodynamics in Japan, highlighting a few episodes during the last two centuries. The review starts with the frst measurement of the meridional arc length in Japan by Tadataka Ino (1745– 1818) early in the nineteenth century, done as a part of the mapping campaign of the country. Next, I mention the frst international recognition of Japanese geodesy realized by the discovery of a new term in the Earth’s polar motion by Hisashi Kimura (1870–1943) at the beginning of the twentieth century. Finally, I review an unsuccessful campaign to detect present-day continental drift in Japan shortly before World War II, conducted by the Geodetic Committee of Japan being inspired by the hypothesis of active opening of the Sea of Japan by Torahiko Terada (1878–1935). Keywords: Geodesy, History, Japan, Arc length, Polar motion, Continental drift, GNSS Dawn of geodesy in Japan: frst meridional arc the arc lengths were available in Chinese books, Ino and length measurement Takahashi recognized their inconsistency between lit- Figure 1 summarizes the geodetic episodes that I intro- erature and uncertainty in the conversion to the units of duce in this article, and frst of all, I focus on the frst length formerly used in Japan. An accurate value of the geodesist in Japan. Te last samurai government of Japan arc length was also necessary for astronomical calibra- (the Edo Bakufu in Japanese) closed the country in 1639, tion of latitudes in making precise maps. prohibiting most interactions with foreign countries, and Takahashi and Ino submitted a proposal to perform a the stable feudal regime lasted until the Meiji Restoration geodetic survey from Edo to the northernmost part of in 1868. Te government had an astronomical bureau the main island (Honshu) of Japan, and Ezo (Hokkaido). (the Tenmon-kata) responsible for compilation of calen- Te government approved their proposal, considering dars. People in the bureau acquired necessary expertise its importance from the viewpoint of foreign afairs. At in astronomy from literature published in seventeenth– that time, occasional interactions with Russians occurred eighteenth centuries in China based on knowledge in and around Ezo, and the government recognized it an brought by Jesuit missionaries from Europe. urgent need to have precise geographic knowledge of the Tadataka Ino (1745–1818) retired from his family busi- country. Such a social situation matched the personal ness as a merchant in Sawara (currently in the Chiba Pre- interest of people in the astronomical bureau. fecture, Kanto) at the age of 50. He moved to Edo (Tokyo) Ino and his team conducted the frst survey in 1800 and started to study astronomy and geodetic survey- and obtained a preliminary quantity for the meridian arc ing under Yoshitoki Takahashi (1764–1804), the leading length by comparing the astronomical latitude difer- astronomer in the bureau nearly 20 years younger than ences and the distances measured by ground surveying. T. Ino. Tey were interested in determining the merid- Next year, his mapping mission was upgraded to an of- ian arc length of the Earth because they needed accurate cial national project. His team fnished the frst compre- dimension of the Earth to compile a calendar predicting hensive surveys of NE Japan and submitted the maps to precise dates and times of lunar/solar eclipses. Although the government in 1804. By compiling the data observed until then, he determined the one-degree meridional arc length in Japan as 110.75 km (originally published in a *Correspondence: [email protected] Dept. Earth Planet. Sci., Hokkaido Univ., N10 W8 Kita-ku, Japanese unit of length). Tis is only ~ 0.2% shorter than Sapporo 060-0810, Japan the modern value 110.95 km (Fig. 2). © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. Heki Earth, Planets and Space (2020) 72:38 Page 2 of 9 JAPAN WORLD Earth’s elliptical shape with the latitude dependence of Earth shape 1750 1750 the arc length. Takahashi passed away in 1804, but Ino and his group Metric system continued geodetic surveys, also in SW Japan, subse- 1800 Modern survey (1799) 1800 quent to those in NE Japan. Te prime meridian was (1800-1816) T. Ino defned at Kyoto, the ancient capital of the country. Ino 1745-1818 T. Terada 1850 Meiji Restoration 1878-1935 1850 conducted astronomical measurements to calibrate lati- tudes in mapping NE Japan. However, SW Japan elon- Chandler wobble (1891) gates in east–west, and he needed to calibrate the ground 1900 Z-term (1902) ILS (1899) 1900 Continental drift (1912) Tobishima geodetic survey results by performing astronomical lon- survey (1928-) gitude measurements. An accurate chronometer was 1950 End of WWII 1950 Sputnik (1957) necessary for precise longitude measurements, but it VLBI/SLR H. Kimura was not available then in Japan. Instead of it, Ino and his GPS array 1870-1943 GNSS 2000 Satellites for time- 2000 group tried to determine the longitude diferences in SW variable gravity Japan in 1805 by comparing the occultation times of the Fig. 1 History of geodesy in Japan. The three pioneers in Japanese Galilean satellites of Jupiter at remote points. In doing geodesy and geodynamics, Ino, Kimura, and Terada, and related that, they employed the procedure explained in Lalande events in Japan and the world mentioned in this article (1771), brought to Japan in a Dutch version only 2 years before. Tey continued observations of these Jovian satel- lites for 6 years but were not able to obtain enough data Neither Ino nor Takahashi was aware of the elliptic- to calibrate longitudes in SW Japan (Kazu 2005). ity of the Earth when they started the survey, i.e., they Tey continued the survey in SW Japan, and the fnal assumed the spherical Earth. In the closed Japan, the gov- version of the whole map of Japan, known as Dai-nihon- ernment only allowed direct contacts with Dutch traders enkai-yochi-zenzu, was submitted to the government through a tiny window at Nagasaki, Kyushu. For exam- in 1821, 3 years after Ino passed away. Japan resumed ple, the Dutch version of the French book Astronomie foreign diplomacy shortly before the Meiji Restoration (ver.2) (Lalande 1771) was imported to Japan as Astro- in 1868, the turning epoch to a modern country, and nomia of Sterrekunde, published in 1773. Y. Takahashi the maps made by Ino served as the basis of a series of obtained the book in 1803 and immediately understood national maps that the new government started to issue the importance of its contents. Over subsequent years, in 1877. Te quality and technical aspects of these maps his group translated it into Japanese and shared the latest are discussed in detail in Oda (1974). Ino is also known astronomical and geodetic knowledge in Europe (includ- in Japan as a hero who lived two lives, as a merchant and ing the shape of the Earth) within their community. It is a geodesist, proving that 50-year old is not too late to important to note that Takahashi and Ino indeed meas- become a geodesist. ured the arc length in Japan but not for studying the First international recognition of Japanese geodesy: Z‑term of polar motion 112 Lapland It is common nowadays that Japanese earth scientists publish papers in English journals, some of which may become internationally recognized and frequently cited. France A paper written by Hisashi Kimura (1870–1943) in 1902 111 would be one of the earliest examples. It was written Japan in response to unduly low rating to Japanese data in an Ecuador Arc length (km) international observing campaign of latitude variations. 110 In the last decade of the nineteenth century, Frie- 0306090 drich Küstner (1856–1936) in Germany and Seth Chan- Latitude (degree) dler (1846–1913) in America independently discovered Fig. 2 Meridian arc length measurements in Japan and the world. the Earth’s polar motion, which was theoretically pre- Comparison of the meridian arc length measurements in eighteenth dicted by Leonhard Euler (1707–1783) back in 1756. century by Europeans (expedition to Ecuador and Lapland, northern First, Küstner reported a quasi-annual latitude variation Finland, in early eighteenth century and measurements by the of 0.2 arcseconds in 1888. Te International Associa- French government to establish the metric system in late eighteenth century), and around 1802 by Ino and his team in NE Japan tion of Geodesy (IAG) coordinated an observing session in 1891 and confrmed that this variation was a polar Heki Earth, Planets and Space (2020) 72:38 Page 3 of 9 motion from the phase reversal of the latitude variations misconduct then). Te ILS central bureau admitted and observed in Hawaii and Germany.
Recommended publications
  • Geodetic Surveying, Earth Modeling, and the New Geodetic Datum of 2022
    Geodetic Surveying, Earth Modeling, and the New Geodetic Datum of 2022 PDH330 3 Hours PDH Academy PO Box 449 Pewaukee, WI 53072 (888) 564-9098 www.pdhacademy.com [email protected] Geodetic Surveying Final Exam 1. Who established the U.S. Coast and Geodetic Survey? A) Thomas Jefferson B) Benjamin Franklin C) George Washington D) Abraham Lincoln 2. Flattening is calculated from what? A) Equipotential surface B) Geoid C) Earth’s circumference D) The semi major and Semi minor axis 3. A Reference Frame is based off how many dimensions? A) two B) one C) four D) three 4. Who published “A Treatise on Fluxions”? A) Einstein B) MacLaurin C) Newton D) DaVinci 5. The interior angles of an equilateral planar triangle adds up to how many degrees? A) 360 B) 270 C) 180 D) 90 6. What group started xDeflec? A) NGS B) CGS C) DoD D) ITRF 7. When will NSRS adopt the new time-based system? A) 2022 B) 2020 C) Unknown due to delays D) 2021 8. Did the State Plane Coordinate System of 1927 have more zones than the State Plane Coordinate System of 1983? A) No B) Yes C) They had the same D) The State Plane Coordinate System of 1927 did not have zones 9. A new element to the State Plane Coordinate System of 2022 is: A) The addition of Low Distortion Projections B) Adjoining tectonic plates C) Airborne gravity collection D) None of the above 10. The model GRAV-D (Gravity for Redefinition of the American Vertical Datum) created will replace _____________ and constitute the new vertical height system of the United States A) Decimal degrees B) Minutes C) NAVD 88 D) All of the above Introduction to Geodetic Surveying The early curiosity of man has driven itself to learn more about the vastness of our planet and the universe.
    [Show full text]
  • Geodesy in the 21St Century
    Eos, Vol. 90, No. 18, 5 May 2009 VOLUME 90 NUMBER 18 5 MAY 2009 EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION PAGES 153–164 geophysical discoveries, the basic under- Geodesy in the 21st Century standing of earthquake mechanics known as the “elastic rebound theory” [Reid, 1910], PAGES 153–155 Geodesy and the Space Era was established by analyzing geodetic mea- surements before and after the 1906 San From flat Earth, to round Earth, to a rough Geodesy, like many scientific fields, is Francisco earthquakes. and oblate Earth, people’s understanding of technology driven. Over the centuries, it In 1957, the Soviet Union launched the the shape of our planet and its landscapes has developed as an engineering discipline artificial satellite Sputnik, ushering the world has changed dramatically over the course because of its practical applications. By the into the space era. During the first 5 decades of history. These advances in geodesy— early 1900s, scientists and cartographers of the space era, space geodetic technolo- the study of Earth’s size, shape, orientation, began to use triangulation and leveling mea- gies developed rapidly. The idea behind and gravitational field, and the variations surements to record surface deformation space geodetic measurements is simple: Dis- of these quantities over time—developed associated with earthquakes and volcanoes. tance or phase measurements conducted because of humans’ curiosity about the For example, one of the most important between Earth’s surface and objects in Earth and because of geodesy’s application to navigation, surveying, and mapping, all of which were very practical areas that ben- efited society.
    [Show full text]
  • NASA Space Geodesy Program: Catalogue of Site Information
    NASA Technical Memorandum 4482 NASA Space Geodesy Program: Catalogue of Site Information M. A. Bryant and C. E. Noll March 1993 N93-2137_ (NASA-TM-4482) NASA SPACE GEODESY PROGRAM: CATALOGUE OF SITE INFORMATION (NASA) 688 p Unclas Hl146 0154175 v ,,_r NASA Technical Memorandum 4482 NASA Space Geodesy Program: Catalogue of Site Information M. A. Bryant McDonnell Douglas A erospace Seabro'ok, Maryland C. E. Noll NASA Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 1993 . _= _qum_ Table of Contents Introduction .......................................... ..... ix Map of Geodetic Sites - Global ................................... xi Map of Geodetic Sites - Europe .................................. xii Map of Geodetic Sites - Japan .................................. xiii Map of Geodetic Sites - North America ............................. xiv Map of Geodetic Sites - Western United States ......................... xv Table of Sites Listed by Monument Number .......................... xvi Acronyms ............................................... xxvi Subscription Application ..................................... xxxii Site Information ............................................. Site Name Site Number Page # ALGONQUIN 67 ............................ 1 AMERICAN SAMOA 91 ............................ 5 ANKARA 678 ............................ 9 AREQUIPA 98 ............................ 10 ASKITES 674 ........................... , 15 AUSTIN 400 ...........................
    [Show full text]
  • Space Geodesy and Satellite Laser Ranging
    Space Geodesy and Satellite Laser Ranging Michael Pearlman* Harvard-Smithsonian Center for Astrophysics Cambridge, MA USA *with a very extensive use of charts and inputs provided by many other people Causes for Crustal Motions and Variations in Earth Orientation Dynamics of crust and mantle Ocean Loading Volcanoes Post Glacial Rebound Plate Tectonics Atmospheric Loading Mantle Convection Core/Mantle Dynamics Mass transport phenomena in the upper layers of the Earth Temporal and spatial resolution of mass transport phenomena secular / decadal post -glacial glaciers polar ice post-glacial reboundrebound ocean mass flux interanaual atmosphere seasonal timetime scale scale sub --seasonal hydrology: surface and ground water, snow, ice diurnal semidiurnal coastal tides solid earth and ocean tides 1km 10km 100km 1000km 10000km resolution Temporal and spatial resolution of oceanographic features 10000J10000 y bathymetric global 1000J1000 y structures warming 100100J y basin scale variability 1010J y El Nino Rossby- 11J y waves seasonal cycle eddies timetime scale scale 11M m mesoscale and and shorter scale fronts physical- barotropic 11W w biological variability interaction Coastal upwelling 11T d surface tides internal waves internal tides and inertial motions 11h h 10m 100m 1km 10km 100km 1000km 10000km 100000km resolution Continental hydrology Ice mass balance and sea level Satellite gravity and altimeter mission products help determine mass transport and mass distribution in a multi-disciplinary environment Gravity field missions Oceanic
    [Show full text]
  • Reference Systems for Surveying and Mapping Lecture Notes
    Delft University of Technology Reference Systems for Surveying and Mapping Lecture notes Hans van der Marel ii The front cover shows the NAP (Amsterdam Ordnance Datum) ”datum point” at the Stopera, Amsterdam (picture M.M.Minderhoud, Wikipedia/Michiel1972). H. van der Marel Lecture notes on Reference Systems for Surveying and Mapping: CTB3310 Surveying and Mapping CTB3425 Monitoring and Stability of Dikes and Embankments CIE4606 Geodesy and Remote Sensing CIE4614 Land Surveying and Civil Infrastructure February 2020 Publisher: Faculty of Civil Engineering and Geosciences Delft University of Technology P.O. Box 5048 Stevinweg 1 2628 CN Delft The Netherlands Copyright ©2014­2020 by H. van der Marel The content in these lecture notes, except for material credited to third parties, is licensed under a Creative Commons Attributions­NonCommercial­SharedAlike 4.0 International License (CC BY­NC­SA). Third party material is shared under its own license and attribution. The text has been type set using the MikTex 2.9 implementation of LATEX. Graphs and diagrams were produced, if not mentioned otherwise, with Matlab and Inkscape. Preface This reader on reference systems for surveying and mapping has been initially compiled for the course Surveying and Mapping (CTB3310) in the 3rd year of the BSc­program for Civil Engineering. The reader is aimed at students at the end of their BSc program or at the start of their MSc program, and is used in several courses at Delft University of Technology. With the advent of the Global Positioning System (GPS) technology in mobile (smart) phones and other navigational devices almost anyone, anywhere on Earth, and at any time, can determine a three–dimensional position accurate to a few meters.
    [Show full text]
  • Space Geodesy and Earth System (SGES 2012) Aug 18-25, 2012, Shanghai, China
    International Symposium & Summer School on Space Geodesy and Earth System (SGES 2012) Aug 18-25, 2012, Shanghai, China http://www.shao.ac.cn/meetings; http://www.shao.ac.cn/schools Venue: 3rd floor of Astronomical Building Shanghai Astronomical Observatory, Chinese Academy of Sciences International Symposium on Space Geodesy and Earth Sytem (SGES2012) August 18-21, 2011, Shanghai, China http://www.shao.ac.cn/meetings Contact Information: Email: [email protected]; [email protected] Emergency Phone: 13167075822 Police: 110; Ambulance: 120 Venue: 3rd floor, Astronomical Building Shanghai Astronomical Observatory, Chinese Academy of Sciences 80 Nandan Road, Shanghai 200030, China Available WIFI at the workshop with the password at conference hall doors Sponsors • International Association of Geodesy (IAG) Commission 1, 3, 4 • International Association of Geodesy Sub-Commission 2.6 • Asia-Pacific Space Geodynamics Program (APSG) • Global Geodetic Observing System (GGOS) • Shanghai Astronomical Observatory (SHAO), CAS 1 Scientific Organizing Committee (SOC) • Zuheir Altamimi (IGN, France) • Jeff T. Freymueller (Uni. Alaska, USA) • Richard S. Gross (JPL, NASA, USA) • Manabu Hashimoto (Kyoto Uni., Japan) • Shuanggen Jin (SHAO, CAS, China) (Chair) • Roland Klees (TUDelft, Netherlands) • Christopher Kotsakis (AUTH, Greece) • Michael Pearlman (Harvard-CFA, USA) • Wenke Sun (Grad. Uni. of CAS, China) • Harald Schuh (TU-Vienna, Austria) • Tonie van Dam (Univ. Luxembourg) • Jens Wickert (GFZ Potsdam, Germany) • Shimon Wdowinski (Univ. Miami, USA) Local
    [Show full text]
  • VLBI, GNSS, and DORIS Systems
    The NASA Space Geodesy Project Frank Lemoine & Chopo Ma April 5, 2012 Background • Space geodetic systems provide the measurements that are needed to define and maintain an International Terrestrial Reference Field (ITRF) • The ITRF is realized through a combination of observations from globally distributed SLR, VLBI, GNSS, and DORIS systems • NASA contributes SLR, VLBI and GNSS systems to the global network, and has since the Crustal Dynamics Project in the 1980’s • But: the NASA systems are mostly “legacy” systems VLBI SLR GPS DORIS Doppler Orbitography and Radio Positioning Very Long Baseline Satellite Laser Ranging Global Positioning System Integrated by Satellite Interferometry Space Geodesy Project – 04/05/2012 2 ITRF Requirements • Requirements for the ITRF have increased dramatically since the 1980’s – Most stringent requirement comes from sea level studies: “accuracy of 1 mm, and stability at 0.1 mm/yr” – This is a factor 10-20 beyond current capability • Simulations show the required ITRF is best realized from a combination solution using data from a global network of ~30 integrated stations having all available techniques with next generation measurement capability – The current network cannot meet this requirement, even if it could be maintained over time (which it cannot) • The core NASA network is deteriorating and inadequate Space Geodesy Project – 04/05/2012 3 Geodetic Precision and Time Scale http://dels.nas.edu/Report/Precise-Geodetic-Infrastructure-National-Requirements/12954 Space Geodesy Project – 04/05/2012 4 NRC Recommendations • Deploy the next generation of automated high-repetition rate SLR tracking systems at the four current U.S. tracking sites in Hawaii, California, Texas, and Maryland; • Install the next-generation VLBI systems at the four U.S.
    [Show full text]
  • JHR Final Report Template
    TRANSFORMING NAD 27 AND NAD 83 POSITIONS: MAKING LEGACY MAPPING AND SURVEYS GPS COMPATIBLE June 2015 Thomas H. Meyer Robert Baron JHR 15-327 Project 12-01 This research was sponsored by the Joint Highway Research Advisory Council (JHRAC) of the University of Connecticut and the Connecticut Department of Transportation and was performed through the Connecticut Transportation Institute of the University of Connecticut. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Connecticut or the Connecticut Department of Transportation. This report does not constitute a standard, specification, or regulation. i Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. JHR 15-327 N/A 4. Title and Subtitle 5. Report Date Transforming NAD 27 And NAD 83 Positions: Making June 2015 Legacy Mapping And Surveys GPS Compatible 6. Performing Organization Code CCTRP 12-01 7. Author(s) 8. Performing Organization Report No. Thomas H. Meyer, Robert Baron JHR 15-327 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) University of Connecticut N/A Connecticut Transportation Institute 11. Contract or Grant No. Storrs, CT 06269-5202 N/A 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Connecticut Department of Transportation Final 2800 Berlin Turnpike 14. Sponsoring Agency Code Newington, CT 06131-7546 CCTRP 12-01 15. Supplementary Notes This study was conducted under the Connecticut Cooperative Transportation Research Program (CCTRP, http://www.cti.uconn.edu/cctrp/).
    [Show full text]
  • Infoag Conference NSRS Modernization 2022 New Datums Scott Lokken National Geodetic Survey, NOAA Mid Atlantic Regional Geodetic Advisor July 24, 2019
    InfoAg Conference NSRS Modernization 2022 New Datums Scott Lokken National Geodetic Survey, NOAA Mid Atlantic Regional Geodetic Advisor July 24, 2019 July 24, 2019 1 NGS Regional Advisors • Geodesist • 31 Years with NGS • GIS Certified • Farm Kid from SE N.D. July 24, 2019 2 National Spatial Reference System (NSRS) NGS Mission: To define, maintain & provide access to the National Spatial Reference System (NSRS) to meet our Nation’s economic, social & environmental needs Consistent National Coordinate System • Latitude/Northing • Longitude/Easting • Height • Scale • Gravity • Orientation and how these values change with time. New Reference Systems Planned for 2022 • Replace NAD83 with a geocentric reference frame • GNSS based • Replace NAVD88 with a gravity based geoid • Replace: bluebooking, database, State Plane Coordinates July 24, 2019 • improve toolkit, surveying methodologies. 4 What matters to you? Required Accuracy vs Precision determines how the new datums will impact you. Low Precision HIgh Precision Low Precision High Precision Low Accuracy Low Accuracy High Accuracy High Accuracy July 24, 2019 5 Different times, different accuracy 2019 1981 July 24, 2019 6 Bottom Line, Up Front • If you do geospatial work in the USA… • and you work in the National Spatial Reference System.. • every product you’ve ever made… – every survey… – every map… – every lidar point cloud… – every image… – every DEM… – WILL have the wrong coordinates on it in 3 years. Let’s talk about what this means, why it is happening, and how it will affect things
    [Show full text]
  • Journal of Geodynamics the Interdisciplinary Role of Space
    Journal of Geodynamics 49 (2010) 112–115 Contents lists available at ScienceDirect Journal of Geodynamics journal homepage: http://www.elsevier.com/locate/jog The interdisciplinary role of space geodesy—Revisited Reiner Rummel Institute of Astronomical and Physical Geodesy (IAPG), Technische Universität München, Arcisstr. 21, 80290 München, Germany article info abstract Article history: In 1988 the interdisciplinary role of space geodesy has been discussed by a prominent group of leaders in Received 26 January 2009 the fields of geodesy and geophysics at an international workshop in Erice (Mueller and Zerbini, 1989). Received in revised form 4 August 2009 The workshop may be viewed as the starting point of a new era of geodesy as a discipline of Earth Accepted 6 October 2009 sciences. Since then enormous progress has been made in geodesy in terms of satellite and sensor systems, observation techniques, data processing, modelling and interpretation. The establishment of a Global Geodetic Observing System (GGOS) which is currently underway is a milestone in this respect. Wegener Keywords: served as an important role model for the definition of GGOS. In turn, Wegener will benefit from becoming Geodesy Satellite geodesy a regional entity of GGOS. −9 Global observing system What are the great challenges of the realisation of a 10 global integrated observing system? Geodesy Global Geodetic Observing System is potentially able to provide – in the narrow sense of the words – “metric and weight” to global studies of geo-processes. It certainly can meet this expectation if a number of fundamental challenges, related to issues such as the international embedding of GGOS, the realisation of further satellite missions and some open scientific questions can be solved.
    [Show full text]
  • The History of Geodesy Told Through Maps
    The History of Geodesy Told through Maps Prof. Dr. Rahmi Nurhan Çelik & Prof. Dr. Erol KÖKTÜRK 16 th May 2015 Sofia Missionaries in 5000 years With all due respect... 3rd FIG Young Surveyors European Meeting 1 SUMMARIZED CHRONOLOGY 3000 BC : While settling, people were needed who understand geometries for building villages and dividing lands into parts. It is known that Egyptian, Assyrian, Babylonian were realized such surveying techniques. 1700 BC : After floating of Nile river, land surveying were realized to set back to lost fields’ boundaries. (32 cm wide and 5.36 m long first text book “Papyrus Rhind” explain the geometric shapes like circle, triangle, trapezoids, etc. 550+ BC : Thereafter Greeks took important role in surveying. Names in that period are well known by almost everybody in the world. Pythagoras (570–495 BC), Plato (428– 348 BC), Aristotle (384-322 BC), Eratosthenes (275–194 BC), Ptolemy (83–161 BC) 500 BC : Pythagoras thought and proposed that earth is not like a disk, it is round as a sphere 450 BC : Herodotus (484-425 BC), make a World map 350 BC : Aristotle prove Pythagoras’s thesis. 230 BC : Eratosthenes, made a survey in Egypt using sun’s angle of elevation in Alexandria and Syene (now Aswan) in order to calculate Earth circumferences. As a result of that survey he calculated the Earth circumferences about 46.000 km Moreover he also make the map of known World, c. 194 BC. 3rd FIG Young Surveyors European Meeting 2 150 : Ptolemy (AD 90-168) argued that the earth was the center of the universe.
    [Show full text]
  • Potential Applications of Optical Lattice Clocks in Geodesy -An Introduction
    Potential applications of optical lattice clocks in geodesy -an introduction- Yoshiyuki Tanaka1 1) Department of Earth and Planetary Science, The University of Tokyo Key words: geodesy, reference coordinate system, Japan Science and gravity observation, relativity, clock Technology Agency Self-introduction 2002 2006 2007 2008 2018 2019 UTokyo GSI (national mapping agency) UTokyo GFZ WS on clock JST B., M. Sc Dr. Sc. (Prof. (Dept. Geophysics) (Earth Science) Katori) Geophysics/Geodesy, Theory & Observation (classical mechanics) +Relativistic Geodesy Kavli IPMU, Sep. 18 The purpose of today’s talk Fundamental Theories of Physics Observations General relativity Cosmology Physicists Quantum mechanics Space e.g., Altschul+(2015) Violation of EEP Dark matter/energy/fluid? Geodesy Physicists How is the universe changing? Near the Earth Geodesists Basic knowledge ・How do new optical clocks impact the confirmation of those theories? • Altschul et al., 2015. Quantum Tests of the Einstein Equivalence Principle with the STE-QUEST Space Mission, Adv.Space Res. 55, 501- 524 (physics) • Mehlstäubler et al., 2018. Atomic clocks for geodesy, Rep. Prog. Phys. 81, 064401 (physics & geodesy) • Müller et al., 2018. High Performance Clocks and Gravity Field Determination, Space Sci Rev, 214:5 (geodesy) Outline • Basic concept of geodesy (Part I) • Geophysical signals and measurement methods • Reference coordinate systems for geodesy • Height and geoid • Chronometric geodesy using optical clocks (Part II) • Progress in Europe • Progress in Japan • A few topics on clock and relativity (short) • Issue on the realization of the SI second • Relativistic effects in geodetic measurements Basic concept of Geodesy • Helmert (1843-1917) developed mathematical theories of geodesy. “Geodesy is the science of measuring and representing the Earth’s surface.” • Scientific and practical motivations Wiki Oct.
    [Show full text]