Uk Offshore Operators Association (Surveying and Positioning

Total Page:16

File Type:pdf, Size:1020Kb

Uk Offshore Operators Association (Surveying and Positioning U.K. OFFSHORE OPERATORS ASSOCIATION (SURVEYING AND POSITIONING COMMITTEE) GUIDANCE NOTES ON THE USE OF CO-ORDINATE SYSTEMS IN DATA MANAGEMENT ON THE UKCS (DECEMBER 1999) Version 1.0c Whilst every effort has been made to ensure the accuracy of the information contained in this publication, neither UKOOA, nor any of its members will assume liability for any use made thereof. Copyright ã 1999 UK Offshore Operators Association Prepared on behalf of the UKOOA Surveying and Positioning Committee by Richard Wylde, The SIMA Consultancy Limited with assistance from: Roger Lott, BP Amoco Exploration Geir Simensen, Shell Expro A Company Limited by Guarantee UKOOA, 30 Buckingham Gate, London, SW1E 6NN Registered No. 1119804 England _____________________________________________________________________________________________________________________Page 2 CONTENTS 1. INTRODUCTION AND BACKGROUND .......................................................................3 1.1 Introduction ..........................................................................................................3 1.2 Background..........................................................................................................3 2. WHAT HAS HAPPENED AND WHY ............................................................................4 2.1 Longitude 6°W (ED50) - the Thunderer Line .........................................................4 3. GUIDANCE FOR DATA USERS ..................................................................................6 3.1 How will we map the UKCS? ................................................................................6 3.2 Mappers and Interpreters .....................................................................................8 3.3 Data Management................................................................................................9 East of the Thunderer Line ...................................................................................9 West of the Thunderer Line ................................................................................10 Data crossing the Thunderer Line.......................................................................11 3.4 Data Loaders.....................................................................................................11 3.5 Applications usage .............................................................................................11 4. GUIDANCE FOR SOFTWARE VENDORS.................................................................13 4.1 Data Storage......................................................................................................13 4.2 Co-ordinate System Definitions ..........................................................................13 4.2 Co-ordinate System Transformations..................................................................14 4.4 Mapping…………………………………………………………………………………..15 4.5 Reporting…………………………………………………………………………………16 5. GUIDANCE FOR DATA VENDORS ...........................................................................17 5.1 Future Data........................................................................................................17 5.2 Legacy Data.......................................................................................................17 Defined data.......................................................................................................18 Measured data ...................................................................................................18 ANNEXES ...........................................................................................................................19 Annex A - DTI Gazette Notice (in full)...........................................................................1 Annex B - Post Gazette description of UKCS licence areas ..........................................1 Annex C - Co-ordinates of Blocks immediately West and adjacent to the Thunderer Line ………………………………………………………………………………………………1 Annex D - Reference Information .................................................................................1 Annex E - Incorporation of the EPSG Co-ordinate System Description in UKOOA Positioning (P) formats.................................................................................................1 Annex F - A guide to co-ordinate system geodesy ........................................................1 Annex G - Glossary......................................................................................................1 ____________________________________________________________________________________________ UKOOA Guidance Notes on use of co-ordinate systems in data management on the UKCS. November 1999 _____________________________________________________________________________________________________________________Page 3 1. INTRODUCTION AND BACKGROUND 1.1 Introduction This guidance note concerns the management of spatial data for UK Continental Shelf (UKCS) petroleum operations. In December 1999, the oil and gas licensing division of the Department of Trade and Industry (DTI) published a notice in both the London Gazette and the Edinburgh Gazette, which clarified the co-ordinate systems to which licence boundaries on the UKCS were referred. The UKOOA Surveying and Positioning (S&P) Committee recognises that some data management issues may arise out of the Gazette notice. This document has been produced to provide some guidance in handling co-ordinate integrity issues that may be encountered. In writing such "Best Practice" guidance, it is impossible to strike the correct tone for every audience. Comments and suggestions have had to assume limited knowledge in the area of geodesy on the part of the user. Therefore, within this document, there is both a glossary of terms (see annex G) and a guide to co-ordinate geodesy (see annex F) that may assist with the technical nature of some of the comments. We cannot cover all of the possible issues and thereby give explicit recommendations to everyone and so we have decided to split the issues into broad groupings. It should be noted that many of the individual comments might be relevant in other areas also. It is therefore recommended that the document be studied in its entirety. In addition, for completeness of the document, there is an element of repetition of information. 1.2 Background Increasing UKCS activity to the west of Britain has led the UKOOA Surveying and Positioning Committee and the UK Government geodetic advisors (Hydrographic Office and Ordnance Survey) to express concern that the current definition of a geographic co-ordinate system for offshore concession boundaries, based on “European Datum”, is imprecise. Although adequate for describing position in the North Sea, in areas to the west of Britain it has the potential to lead to serious difficulties in inter company and possibly international unitisation of cross border oil and gas fields. With DTI's backing, a working group was formed to recommend a technically acceptable definition and procedures for removing the ambiguity. The working group consulted widely on this issue, seeking and obtained support from Oil Companies, both operators and non- operators, seismic and positioning contractors, the Legal, Exploration and S&P Committees of UKOOA as well as the UKOOA Management Group. The working group's recommendations were submitted to the DTI Licensing Division, and the instrument chosen for their introduction was by publication of their content in both the London Gazette and the Edinburgh Gazette. Two workshops were run jointly with the DTI to examine the data management issues that may result from the Gazettal notice and provide a basis for these guidance notes. Data managers from both Oil and Service companies were represented, as were seismic data acquisition companies, consulting companies, data vendors and software vendors. The Gazette notice, as issued by the DTI early December 1999, is printed in full in annex A. ____________________________________________________________________________________________ UKOOA Guidance Notes on use of co-ordinate systems in data management on the UKCS. November 1999 _____________________________________________________________________________________________________________________Page 4 2. WHAT HAS HAPPENED AND WHY Co-ordinates describing a position on the earth are only unambiguous if the co-ordinate system to which they are referenced is identified. Geographical co-ordinate system components are geodetic datum and ellipsoid. Projected co-ordinate systems are Geographical Co-ordinate Systems with a projection transformation applied. See annex F for an overview of co-ordinate systems and annex G for a glossary of terms. Petroleum licence boundary co-ordinates have previously been referenced to “European Datum”. This term is not a precise one. Several versions of European Datum (ED) exist. Generally, in UKCS petroleum operations ED has been assumed to be the first (1950) iteration of European Datum (ED50). This was originally published to unify the co-ordinate systems used in mainland Western Europe and its extrapolation offshore becomes increasingly ambiguous as distance from the reference points used in its calculation increases. In the North Sea these ambiguities are of scientific curiosity only and not significant to petroleum operations. However, to the West of Shetland and even further west, differences arising from different technical assumptions quickly become very large. Potentially,
Recommended publications
  • UCGE Reports Ionosphere Weighted Global Positioning System Carrier
    UCGE Reports Number 20155 Ionosphere Weighted Global Positioning System Carrier Phase Ambiguity Resolution (URL: http://www.geomatics.ucalgary.ca/links/GradTheses.html) Department of Geomatics Engineering By George Chia Liu December 2001 Calgary, Alberta, Canada THE UNIVERSITY OF CALGARY IONOSPHERE WEIGHTED GLOBAL POSITIONING SYSTEM CARRIER PHASE AMBIGUITY RESOLUTION by GEORGE CHIA LIU A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF GEOMATICS ENGINEERING CALGARY, ALBERTA OCTOBER, 2001 c GEORGE CHIA LIU 2001 Abstract Integer Ambiguity constraint is essential in precise GPS positioning. The perfor- mance and reliability of the ambiguity resolution process are being hampered by the current culmination (Y2000) of the eleven-year solar cycle. The traditional approach to mitigate the high ionospheric effect has been either to reduce the inter-station separation or to form ionosphere-free observables. Neither is satisfactory: the first restricts the operating range, and the second no longer possesses the ”integerness” of the ambiguities. A third generalized approach is introduced herein, whereby the zero ionosphere weight constraint, or pseudo-observables, with an appropriate weight is added to the Kalman Filter algorithm. The weight can be tightly fixed yielding the model equivalence of an independent L1/L2 dual-band model. At the other extreme, an infinite floated weight gives the equivalence of an ionosphere-free model, yet perserves the ambiguity integerness. A stochastically tuned, or weighted, model provides a compromise between the two ex- tremes. The reliability of ambiguity estimates relies on many factors, including an accurate functional model, a realistic stochastic model, and a subsequent efficient integer search algorithm.
    [Show full text]
  • State Plane Coordinate System
    Wisconsin Coordinate Reference Systems Second Edition Published 2009 by the State Cartographer’s Office Wisconsin Coordinate Reference Systems Second Edition Wisconsin State Cartographer’s Offi ce — Madison, WI Copyright © 2015 Board of Regents of the University of Wisconsin System About the State Cartographer’s Offi ce Operating from the University of Wisconsin-Madison campus since 1974, the State Cartographer’s Offi ce (SCO) provides direct assistance to the state’s professional mapping, surveying, and GIS/ LIS communities through print and Web publications, presentations, and educational workshops. Our staff work closely with regional and national professional organizations on a wide range of initia- tives that promote and support geospatial information technologies and standards. Additionally, we serve as liaisons between the many private and public organizations that produce geospatial data in Wisconsin. State Cartographer’s Offi ce 384 Science Hall 550 North Park St. Madison, WI 53706 E-mail: [email protected] Phone: (608) 262-3065 Web: www.sco.wisc.edu Disclaimer The contents of the Wisconsin Coordinate Reference Systems (2nd edition) handbook are made available by the Wisconsin State Cartographer’s offi ce at the University of Wisconsin-Madison (Uni- versity) for the convenience of the reader. This handbook is provided on an “as is” basis without any warranties of any kind. While every possible effort has been made to ensure the accuracy of information contained in this handbook, the University assumes no responsibilities for any damages or other liability whatsoever (including any consequential damages) resulting from your selection or use of the contents provided in this handbook. Revisions Wisconsin Coordinate Reference Systems (2nd edition) is a digital publication, and as such, we occasionally make minor revisions to this document.
    [Show full text]
  • Geomatics Guidance Note 3
    Geomatics Guidance Note 3 Contract area description Revision history Version Date Amendments 5.1 December 2014 Revised to improve clarity. Heading changed to ‘Geomatics’. 4 April 2006 References to EPSG updated. 3 April 2002 Revised to conform to ISO19111 terminology. 2 November 1997 1 November 1995 First issued. 1. Introduction Contract Areas and Licence Block Boundaries have often been inadequately described by both licensing authorities and licence operators. Overlaps of and unlicensed slivers between adjacent licences may then occur. This has caused problems between operators and between licence authorities and operators at both the acquisition and the development phases of projects. This Guidance Note sets out a procedure for describing boundaries which, if followed for new contract areas world-wide, will alleviate the problems. This Guidance Note is intended to be useful to three specific groups: 1. Exploration managers and lawyers in hydrocarbon exploration companies who negotiate for licence acreage but who may have limited geodetic awareness 2. Geomatics professionals in hydrocarbon exploration and development companies, for whom the guidelines may serve as a useful summary of accepted best practice 3. Licensing authorities. The guidance is intended to apply to both onshore and offshore areas. This Guidance Note does not attempt to cover every aspect of licence boundary definition. In the interests of producing a concise document that may be as easily understood by the layman as well as the specialist, definitions which are adequate for most licences have been covered. Complex licence boundaries especially those following river features need specialist advice from both the survey and the legal professions and are beyond the scope of this Guidance Note.
    [Show full text]
  • Development of 3D Datum Transformation Model Between Wgs 84 and Clarke 1880 for Cross Rivers State, Nigeria
    British Journal of Environmental Sciences Vol.7, No.2, pp. 70-86, May 2019 Published by European Centre for Research Training and Development UK (www.eajournals.org) DEVELOPMENT OF 3D DATUM TRANSFORMATION MODEL BETWEEN WGS 84 AND CLARKE 1880 FOR CROSS RIVERS STATE, NIGERIA Aniekan Eyoh1, Onuwa Okwuashi 2 and Akwaowo Ekpa3 Department of Geoinformatics & Surveying, Faculty of Environmental Studies, University of Uyo, Nigeria 1, 2 & 3 ABSTRACT: The need to have unified 3D datum transformation parameters for Nigeria for converting coordinates from Minna to WGS84 datum and vice-versa in order to overcome the ambiguity, inconsistency and non-conformity of existing traditional reference frames within national and international mapping system is long overdue. This study therefore develops the optimal transformation parameters between Clarke 1880 and WGS84 datums and vice-versa for Cross River State in Nigeria using the Molodensky-Badekas model. One hundred (100) first order 3D geodetic controls common in the Clarke 1880 and WGS84 datums were used for the study. Least squares solutions of the model was solved using MATLAB programming software. The datum shift parameters derived in the study were ΔX=99.388653795075243m ± 2.453509278, ΔY = 15.027733957346365m ± 2.450564809, ΔZ = -60.390012806020579m ± 2.450556881,α=-0.000000601338389±0.000004394,β=0.000021566705811 ± 0.00004133728, γ = 0.000034795781381 ± 0.00007348844, S(ppm) = 0.9999325233 ± 0.00003047930445. The results of the computation showed roughly good estimates of the datum shift parameters (dX, dY, dZ, K, RX , RY , RZ, K ) and standard deviation of the parameters. The computed residuals of the XYZ parameters were relatively good. The result of the test computation of the shift parameters using the entire 107 points were however not significantly different from those obtained with the 100 points, as the results showed good agreement between them.
    [Show full text]
  • PRINCIPLES and PRACTICES of GEOMATICS BE 3200 COURSE SYLLABUS Fall 2015
    PRINCIPLES AND PRACTICES OF GEOMATICS BE 3200 COURSE SYLLABUS Fall 2015 Meeting times: Lecture class meets promptly at 10:10-11:00 AM Mon/Wed in438 Brackett Hall and lab meets promptly at 12:30-3:20 PM Wed at designated sites Course Basics Geomatics encompass the disciplines of surveying, mapping, remote sensing, and geographic information systems. It’s a relatively new term used to describe the science and technology of dealing with earth measurement data that includes collection, sorting, management, planning and design, storage, and presentation of the data. In this class, geomatics is defined as being an integrated approach to the measurement, analysis, management, storage, and presentation of the descriptions and locations of spatial data. Goal: Designed as a "first course" in the principles of geomeasurement including leveling for earthwork, linear and area measurements (traversing), mapping, and GPS/GIS. Description: Basic surveying measurements and computations for engineering project control, mapping, and construction layout. Leveling, earthwork, area, and topographic measurements using levels, total stations, and GPS. Application of Mapping via GIS. 2 CT2: This course is a CT seminar in which you will not only study the course material but also develop your critical thinking skills. Prerequisite: MTHSC 106: Calculus of One Variable I. Textbook: Kavanagh, B. F. Surveying: Principles and Applications. Prentice Hall. 2010. Lab Notes: Purchase Lab notes at Campus Copy Shop [REQUIRED]. Materials: Textbook, Lab Notes (must be brought to lab), Field Book, 3H/4H Pencil, Small Scale, and Scientific Calculator. Attendance: Regular and punctual attendance at all classes and field work is the responsibility of each student.
    [Show full text]
  • Part V: the Global Positioning System ______
    PART V: THE GLOBAL POSITIONING SYSTEM ______________________________________________________________________________ 5.1 Background The Global Positioning System (GPS) is a satellite based, passive, three dimensional navigational system operated and maintained by the Department of Defense (DOD) having the primary purpose of supporting tactical and strategic military operations. Like many systems initially designed for military purposes, GPS has been found to be an indispensable tool for many civilian applications, not the least of which are surveying and mapping uses. There are currently three general modes that GPS users have adopted: absolute, differential and relative. Absolute GPS can best be described by a single user occupying a single point with a single receiver. Typically a lower grade receiver using only the coarse acquisition code generated by the satellites is used and errors can approach the 100m range. While absolute GPS will not support typical MDOT survey requirements it may be very useful in reconnaissance work. Differential GPS or DGPS employs a base receiver transmitting differential corrections to a roving receiver. It, too, only makes use of the coarse acquisition code. Accuracies are typically in the sub- meter range. DGPS may be of use in certain mapping applications such as topographic or hydrographic surveys. DGPS should not be confused with Real Time Kinematic or RTK GPS surveying. Relative GPS surveying employs multiple receivers simultaneously observing multiple points and makes use of carrier phase measurements. Relative positioning is less concerned with the absolute positions of the occupied points than with the relative vector (dX, dY, dZ) between them. 5.2 GPS Segments The Global Positioning System is made of three segments: the Space Segment, the Control Segment and the User Segment.
    [Show full text]
  • Reference Systems for Surveying and Mapping Lecture Notes
    Delft University of Technology Reference Systems for Surveying and Mapping Lecture notes Hans van der Marel ii The front cover shows the NAP (Amsterdam Ordnance Datum) ”datum point” at the Stopera, Amsterdam (picture M.M.Minderhoud, Wikipedia/Michiel1972). H. van der Marel Lecture notes on Reference Systems for Surveying and Mapping: CTB3310 Surveying and Mapping CTB3425 Monitoring and Stability of Dikes and Embankments CIE4606 Geodesy and Remote Sensing CIE4614 Land Surveying and Civil Infrastructure February 2020 Publisher: Faculty of Civil Engineering and Geosciences Delft University of Technology P.O. Box 5048 Stevinweg 1 2628 CN Delft The Netherlands Copyright ©2014­2020 by H. van der Marel The content in these lecture notes, except for material credited to third parties, is licensed under a Creative Commons Attributions­NonCommercial­SharedAlike 4.0 International License (CC BY­NC­SA). Third party material is shared under its own license and attribution. The text has been type set using the MikTex 2.9 implementation of LATEX. Graphs and diagrams were produced, if not mentioned otherwise, with Matlab and Inkscape. Preface This reader on reference systems for surveying and mapping has been initially compiled for the course Surveying and Mapping (CTB3310) in the 3rd year of the BSc­program for Civil Engineering. The reader is aimed at students at the end of their BSc program or at the start of their MSc program, and is used in several courses at Delft University of Technology. With the advent of the Global Positioning System (GPS) technology in mobile (smart) phones and other navigational devices almost anyone, anywhere on Earth, and at any time, can determine a three–dimensional position accurate to a few meters.
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • World Geodetic System 1984
    World Geodetic System 1984 Responsible Organization: National Geospatial-Intelligence Agency Abbreviated Frame Name: WGS 84 Associated TRS: WGS 84 Coverage of Frame: Global Type of Frame: 3-Dimensional Last Version: WGS 84 (G1674) Reference Epoch: 2005.0 Brief Description: WGS 84 is an Earth-centered, Earth-fixed terrestrial reference system and geodetic datum. WGS 84 is based on a consistent set of constants and model parameters that describe the Earth's size, shape, and gravity and geomagnetic fields. WGS 84 is the standard U.S. Department of Defense definition of a global reference system for geospatial information and is the reference system for the Global Positioning System (GPS). It is compatible with the International Terrestrial Reference System (ITRS). Definition of Frame • Origin: Earth’s center of mass being defined for the whole Earth including oceans and atmosphere • Axes: o Z-Axis = The direction of the IERS Reference Pole (IRP). This direction corresponds to the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch 1984.0) with an uncertainty of 0.005″ o X-Axis = Intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-axis. The IRM is coincident with the BIH Zero Meridian (epoch 1984.0) with an uncertainty of 0.005″ o Y-Axis = Completes a right-handed, Earth-Centered Earth-Fixed (ECEF) orthogonal coordinate system • Scale: Its scale is that of the local Earth frame, in the meaning of a relativistic theory of gravitation. Aligns with ITRS • Orientation: Given by the Bureau International de l’Heure (BIH) orientation of 1984.0 • Time Evolution: Its time evolution in orientation will create no residual global rotation with regards to the crust Coordinate System: Cartesian Coordinates (X, Y, Z).
    [Show full text]
  • Geodetic Control
    FGDC-STD-014.4-2008 Geographic Information Framework Data Content Standard Part 4: Geodetic Control May 2008 Federal Geographic Data Committee Established by Office of Management and Budget Circular A-16, the Federal Geographic Data Committee (FGDC) promotes the coordinated development, use, sharing, and dissemination of geographic data. The FGDC is composed of representatives from the Departments of Agriculture, Commerce, Defense, Education, Energy, Health and Human Services, Homeland Security, Housing and Urban Development, the Interior, Justice, Labor, State, and Transportation, the Treasury, and Veteran Affairs; the Environmental Protection Agency; the Federal Communications Commission; the General Services Administration; the Library of Congress; the National Aeronautics and Space Administration; the National Archives and Records Administration; the National Science Foundation; the Nuclear Regulatory Commission; the Office of Personnel Management; the Small Business Administration; the Smithsonian Institution; the Social Security Administration; the Tennessee Valley Authority; and the U.S. Agency for International Development. Additional Federal agencies participate on FGDC subcommittees and working groups. The Department of the Interior chairs the committee. FGDC subcommittees work on issues related to data categories coordinated under the circular. Subcommittees establish and implement standards for data content, quality, and transfer; encourage the exchange of information and the transfer of data; and organize the collection of
    [Show full text]
  • Terms for Coordinates Azimuth Angle Measured from North Clockwise
    Terms for Coordinates Azimuth Angle measured from north clockwise. North is 0 degrees, east is 90 degrees etc. Three common forms of azimuth exist: true azimuth, magnetic azimuth, and grid azimuth. Angular Coordinates Latitude, Longitude, and Height can specify a location. This is called an angular frame. To obtain angular coordinates in a spherical earth system, only the radius is needed. This is needed only for the height. For an ellipsoidal earth the parameters of the ellipsoid must be specified to convert height and latitude. (To obtain geographic, or mean sea level, height the geoid is needed. Cartesian Coordinates Standard x-y-z coordinates. Three axes perpendicular to each other meet at the origin, or center of the coordinate system. The coordinates of a point are the projection of the location on these axes. Circle, Great A great circle is a circle on the earth whose center is the center of the earth. Alternately, it is the intersection of a plane and a sphere when the center of the sphere is on the plane. Shortest distance between two points on the earth in spherical model is a great circle. Meridians are great circles. Circle, Small A small circle is a circle on the earth whose center is not the center of the earth. Alternately, it is the intersection of a plane and a sphere when the center of the sphere is not on the plane. Parallels of latitude are small circles. Coordinate Frame In general this refers to a Cartesian system of coordinates. The location of the origin and the orientation of the axes with respect to the real earth are also included.
    [Show full text]
  • JHR Final Report Template
    TRANSFORMING NAD 27 AND NAD 83 POSITIONS: MAKING LEGACY MAPPING AND SURVEYS GPS COMPATIBLE June 2015 Thomas H. Meyer Robert Baron JHR 15-327 Project 12-01 This research was sponsored by the Joint Highway Research Advisory Council (JHRAC) of the University of Connecticut and the Connecticut Department of Transportation and was performed through the Connecticut Transportation Institute of the University of Connecticut. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Connecticut or the Connecticut Department of Transportation. This report does not constitute a standard, specification, or regulation. i Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. JHR 15-327 N/A 4. Title and Subtitle 5. Report Date Transforming NAD 27 And NAD 83 Positions: Making June 2015 Legacy Mapping And Surveys GPS Compatible 6. Performing Organization Code CCTRP 12-01 7. Author(s) 8. Performing Organization Report No. Thomas H. Meyer, Robert Baron JHR 15-327 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) University of Connecticut N/A Connecticut Transportation Institute 11. Contract or Grant No. Storrs, CT 06269-5202 N/A 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Connecticut Department of Transportation Final 2800 Berlin Turnpike 14. Sponsoring Agency Code Newington, CT 06131-7546 CCTRP 12-01 15. Supplementary Notes This study was conducted under the Connecticut Cooperative Transportation Research Program (CCTRP, http://www.cti.uconn.edu/cctrp/).
    [Show full text]