The Printed Circuit Designer's Guide To... Signal Integrity by Example

Total Page:16

File Type:pdf, Size:1020Kb

The Printed Circuit Designer's Guide To... Signal Integrity by Example PEER REVIEWERS This book has been reviewed for technical accuracy by the following experts from the PCB industry. Happy Holden Consulting Technical Editor, I-Connect007 Happy Holden is the retired director of electronics and innovations for Gentex Corporation. Happy is the former chief technical officer for the world’s largest PCB fabricator, Hon Hai Precision Industries (Foxconn). Prior to Foxconn, Holden was the senior PCB technologist for Mentor Graphics and advanced technology manager at Nan Ya/ Westwood Associates and Merix. Happy previously worked at Hewlett-Packard for over 28 years as director of PCB R&D and manufacturing engineering manager. He has been involved in advanced PCB technologies for over 47 years. Eric Bogatin Eric Bogatin is currently the dean of the Teledyne LeCroy Signal Integrity Academy. Additionally, he is an adjunct professor at the University of Colorado- Boulder in the ECEE department, where he teaches a graduate class in signal integrity and is also the editor of Signal Integrity Journal. Bogatin received his BS in physics from MIT, and MS and PhD in physics from the University of Arizona in Tucson. Eric has held senior engineering and management positions at Bell Labs, Raychem, Sun Microsystems, Ansoft and Interconnect Devices. Bogatin has written six technical books in the field, and presented classes and lectures on signal integrity worldwide. MEET THE AUTHOR Fadi Deek Signal/Power Integrity Specialist Corporate Application Engineer In 2005, Fadi received his B.S. degree in computer and communications from the American University of Science and Technology (AUST) in Beirut, Lebanon. That same year, he joined Fidus Systems as a design engineer. He designed circuit boards at Fidus for three years. In 2010, Deek received his M.S. in electrical engineering from the University of Arkansas in Fayetteville. He soon joined Mentor Graphics as a corporate marketing engineer. In 2013, Deek became a corporate application engineer supporting the HyperLynx® tool suite. In parallel, he is also pursuing his Ph.D. at the University of Colorado in Boulder under the supervision of Dr. Eric Bogatin. The Printed Circuit Designer’s Guide to...™ Signal Integrity by Example Fadi Deek Mentor Graphics Corp., a Siemens Business © 2017 BR Publishing, Inc. All rights reserved. BR Publishing, Inc. dba: I-Connect007 PO Box 1908 Rohnert Park, CA 94927 U.S.A. ISBN: 978-0-9982885-2-9 Visit I-007eBooks.com for more books in this series. The Printed Circuit Designer’s Guide to...™ Signal Integrity by Example CONTENTS Introduction .......................................... 1 Chapter 1 Impedance ............................................ 4 Chapter 2 Reflections and Terminations .......................18 Chapter 3 Crosstalk ............................................. 28 Chapter 4 Differential Pairs .................................... 40 Summary and Conclusion ........................... 52 Glossary .............................................. 53 References ........................................... 55 INTRODUCTION In our current high-speed regime, interconnects are no longer transparent. Interconnects screw up the pristine performance of the signals coming off the chips. If you do not consider these problems and design them out of your product from the beginning, there’s a good chance your product will not work. This is what signal integrity is really about: how the electromagnetic fields of the signals interact with the boundary conditions of the dielectrics and conductors. Or, in the circuit's view, how the voltages and currents of the signals interact with and are distorted by the transmission lines and discontinuities of the interconnects. The general process we use to eliminate signal integrity problems is to first be aware of the problems we might encounter, and then follow the best design principles to design them out. Since every product is really customized, with its own set of tradeoffs between performance, cost, risk and schedule, ultimately, we have to optimize each design individually. This is most effectively done by applying analysis techniques such as rules of thumb, approximations and numerical simulations. We use these tools to explore design space as “virtual prototypes” trying different approaches and evaluating the “bang for the buck” to make engineering tradeoffs. 1 But we can’t follow this process blindly and just run simulation after simulation. The most effective engineers are those who have a firm grasp of the essential principles of signal integrity. The farther up the learning curve, the more effectively we can apply the best design principles and explore tradeoffs. That’s what this first book in the series is all about: exploring the essential principles by example. The examples are based on an essential principles signal integrity boot camp developed by Mentor, a Siemens business. In this book, we introduce examples of five out of the six different problems that can arise in leading-edge products and some of the design solutions. More information about the essential principles, their fundamental basis, and how we apply them, can be found in a book by Eric Bogatin, Signal and Power Integrity—Simplified, published in 2010 by Prentice Hall. It’s important to keep in mind that when using simulations to explore design space, we must always practice safe simulation. This means never performing a measurement or simulation without first anticipating what you expect to see. If it is not as you expect, there is always a reason that is worth exploring. In each example, we’ll apply the essential principles to illustrate the problem, the root cause, the solutions, and what we expect to see. Then we will use simulations to build virtual prototypes and explore design space to illustrate the problems and solutions. The four examples in this book include: 1. Designing controlled impedance transmission lines 2. Engineering proper terminations to minimize reflection noise 3. Reducing crosstalk 4. Optimizing differential pair design and termination We hope the information in this book helps you to better manage signal integrity issues in your next PCB design. 2 3 CHAPTER 1 Impedance Characteristic Impedance vs. Instantaneous Impedance A transmission line, or a trace on a printed circuit board with its associated return path, is electrically defined by two properties: its characteristic impedance, or Z , and its time delay, TD. As a signal propagates0 down the signal and return path, it will continuously encounter an instantaneous impedance. This means the signal will apply a voltage and drive a current through each infinitesimal section of the transmission line as shown in Figure 1-1. The impedance the signal sees is the instantaneous impedance. In a uniform transmission line, the instantaneous impedance is the same each step along the transmission line. That single impedance value is the characteristic impedance of the transmission line. This means that a non-uniform transmission line does not have just one impedance that characterizes it. v 10.0 nH C1 Signal path R2 Vin i 100.0 pF 0.0 ohms Return path ∆x Figure 1-1: Signal traversing a transmission line. So, what elements of the transmission line can affect its impedance? To answer the question, a stripline configuration will be used. For the analysis covered in this section, an advanced high-speed analysis tool was used to model several types of transmission lines, wires, cables 4 and connectors. One of the options available is a stripline modeler shown in Figure 1-2. Figure 1-2: Stripline modeler. How does each term affect theZ and the TD? The two dielectric height parameters will affect the capacitance per length of the trace by the following rough approximation,0 where is the material permittivity, is the width of the conductor and is the C = εw/H ε height or the separation between each conductor. By decreasing any of w H the heights H1 or H2, the capacitance will increase. The connection between the characteristic impedance and the capacitance per length is Z . Any increase in the capacitance per length will decrease Z . 0=√(L/C) Also, the width of the0 trace, if increased, will decrease Z since it will increase the capacitance per length. 0 Another factor that will affect the capacitance per length is the dielectric constant. From the capacitance approximation, any increase in ε will increase the capacitance per length. 5 The length of the conductor will not affectZ since, as mentioned before, the instantaneous impedance is constant in a uniform transmission line. 0 Other parameters will have some effect on the impedance, but it will be minimal. As an experiment, Table 1-1 shows the impact on characteristic impedance from a 10% change in each parameter. The initial nominal values of the parameters produced a 49.6-ohm impedance. To capture the new impedance, only one parameter was changed at a time and then reset to its initial value. Only H1 was varied, since the impact of H2 would be identical. We would expect that the things that affect capacitance per length the most would have the biggest impact. An item like dissipation factor should have no impact on the characteristic impedance at all. As can be seen from Table 1-1, the dielectric constant and line width had the biggest impact whereas the loss tangent had no impact at all. Parameter Initial value for Z=49.6 10% increase New Z % change in Z T 1.35 1.485 49 1.2 W 5 5.5 47.6 4 H1 7 7.5 50.7 2.2 Er 4.3 4.73 47.2 4.8 Lt 0.02 0.022 49.6 0 Table 1-1: Comparison of parameter effect onZ due to 10% increase. 0 When it comes to the time delay, TD, the characteristic impedance will have no impact. Only the length of the transmission line and the dielectric constant are expected to have an effect. The velocity of the signal can be calculated using where c is the speed of light in air. This formula shows that the velocity and the dielectric constant are inversely v=c/√(ε_r) proportional.
Recommended publications
  • Modeling System Signal Integrity Uncertainty Considerations
    WHITE PAPER Intel® FPGA Modeling System Signal Integrity Uncertainty Considerations Authors Abstract Ravindra Gali This white paper describes signal integrity (SI) mechanisms that cause system-level High-Speed I/O Applications timing uncertainty and how these mechanisms are modeled in the Intel® Quartus® Engineering, Intel® Corporation Prime software Timing Analyzer to achieve timing closure for external memory interface designs. Zhi Wong By using the Intel Quartus Prime software to achieve timing closure for external High-Speed I/O Applications memory interfaces, a designer does not need to allocate a separate SI timing Engineering, Intel Corporation budget to account for simultaneous switching output (SSO), simultaneous Navid Azizi switching input (SSI), intersymbol interference (ISI), and board-level crosstalk for Software Engineeringr flip-chip device families such as Stratix® IV and Arria® II FPGAs for typical user Intel Corporation implementation of external memory interfaces following good board design practices. John Oh High-Speed I/O Applications Introduction Engineering, Intel Corporation The widening performance gap between FPGAs, microprocessors, and memory Arun VR devices, along with the growth of memory-intensive applications, are driving the Memory I/O Applications Engineering, need for faster memory technologies. This push to higher bandwidths has been Intel Corporation accompanied by an increase in the signal count and the signaling rates of FPGAs and memory devices. In order to attain faster bandwidths, device makers continue to reduce the supply voltage. Initially, industry-standard DIMMs operated at 5 V. However, due to improvements in DRAM storage density, the operating voltage was decreased to 3.3 V (SDR), then to 2.5V (DDR), 1.8 V (DDR2), 1.5 V (DDR3), and 1.35 V (DDR3) to allow the memory to run faster and consume less power.
    [Show full text]
  • High Speed Signal Integrity Analysis and Differential Signaling
    High Speed Signal Integrity Analysis and Differential Signaling Project Report of EE201C: Modeling of VLSI Circuits and Systems Tongtong Yu, UID: 904025158 Zhiyuan Shen, UID: 803987916 Abstract— This course project is designated for independent electric mechanism of semiconductor circuit doesn’t change study of various topics relating to VLSI modeling. In our very much, so the concentration is on the interconnects and project, the first part is an extension of the class presentation packaging. where we introduced the basic idea of signal integrity. Here we address the philosophy behind frequency domain and time The impact of to the system can be classified to signal domain. Then, we give two examples of interconnects, a critical integrity, which refers to the contamination of signal’s in- issue related to signal integrity. The second part is about tegrity due to parasitic effects of interconnects and packaging, differential signaling used in high speed application. After compared with ideal case. This may result in unsatisfactory analyzing general principles, we simulate two parallel-trace performance. For example, we design the systems for 10Gbps; transmission line, which has practical meaning in real design case. Maybe this project is not fancy, but we believe all the however, due to this effect, it can only achieve 5Gbps. Also, fundamentals provided here and those reference list in the end this may produce inaccurate logic state and even logical are the best material for everyone who wants to go further in failure. This impact can be classified in two ways this area. 1) Delay, distortion and cross-talk directly happening on We would like to express our deepest gratitude to Prof.
    [Show full text]
  • Signal Integrity Analysis and Simulation Tools Include IBIS Models
    High Frequency Products From September 2004 High Frequency Electronics Copyright ® 2004 Summit Technical Media, LLC HIGH-SPEED MODELS Signal Integrity Analysis and Simulation Tools Include IBIS Models By John Olah and Sanjeev Gupta, Agilent EEsof EDA, and Carlos Chavez-Dagostino, Altera Corporation ignal integrity is a several hybrid-domain simulation techniques, This issue’s cover highlights major concern for where the simulator is conversant in both the introduction of Agilent Sengineers working time and frequency domain and can combine Technologies’ ADS2004A, on high data rate designs. models suitable for either domain. This article which now includes Effects such as crosstalk, describes the types of models that need to be greatly enhanced capa- coupling and delays in taken together for high-speed signal integrity bilities for signal integrity transmission lines have a analysis, and illustrates their use in a simula- modeling in both time big impact on signal tion of a high-speed memory circuit. and frequency domains integrity. High-speed dig- ital board designers can Requirements for High-Speed now use design tools that combine time- Signal Integrity Simulations domain IC-specific I/O Buffer Information In broad terms, there are three important Specification (IBIS) models with accurate simulation requirements for analog high- transmission line models to get a better speed signal integrity characterization: understanding of the signal distortion due to coupling and delays. 1. A hybrid-domain simulator that handles time-domain and frequency-domain models Introduction 2. Accurate transmission line structures (best In terms of analog simulators, historically, described in the frequency-domain) there have been two main camps; time- 3.
    [Show full text]
  • 10 Ways ADS Overcomes Signal and Power Integrity Challenges
    Keysight Technologies 10 Ways ADS Overcomes Signal and Power Integrity Challenges Technical Overview 02 | Keysight | 8 Ways ADS Overcomes Signal and Power Integrity Challenges - Technical Overview Keysight EEsof EDA’s Advanced Design System (ADS) software is the world’s leading electronic design automation solution for RF, microwave, and high-speed digital applications. ADS features a host of new, technologies designed to improve productivity, including two electromagnetic (EM) software solutions specifically created to help signal and power integrity engineers improve high-speed link performance in PCB designs. What follows is a listing of 8 ways in which ASD can help you, the engineer, overcome your signal and power integrity challenges. 1. ADS provides speed and accuracy for your SI EM characterization ........................Page 2 2. ADS simplifies the use of S-parameter files for your parts .......................................Page 4 3. ADS provides access to industry-leading channel simulator technology ...................................................................................................Page 6 4. ADS stays ahead of technology waves (such as PAM-4) ..........................................Page 9 5. ADS accelerates DDR4 simulation methodologies ....................................................Page 12 6. ADS puts power in the hands of designers (PI analyses) ..........................................Page 15 7. ADS enables flat PDN impedance responses ............................................................Page
    [Show full text]
  • System & Printed Circuit Board Design (PCB) Electrical Expertise
    System & Printed Circuit Board Design (PCB) Electrical Expertise IBM Card Planning Contact us > Work to develop PCB card definitions within a system including For more information about card design, or email us at: their interconnection, major component placement, and [email protected] cross-section definitions ensuring each fits within the chassis’ constraints. The IBM Card Planning team works with system architects and other engineering skills to create a cost-sensitive plan for system electronic implementation within a specific system’s chassis. These experts create a detailed placement and wiring plan of all cards in a system to enable efficient card design execution. This planning also includes connector interface pin counts and assignments, card sizing and mounting locations, main component locations, high speed bus routing paths, and power shapes and planes. This team plays an essential role in determining the high-level design of the system and turning the idea into a real product. IBM experts are available to contribute their exceptional skills to your electrical system development needs. System Card planning includes: — Creation of detailed component placement and signal wiring plans to enable efficient execution of the card development phases — Determine connector interface pin counts to enable early connector selection — Collaborate cross-functionally to define card sizes and mounting locations — Establish main component locations to achieve maximum net lengths Copyright © IBM Corporation 2021 IBM Systems. 1 New Orchard Rd.
    [Show full text]
  • A Treatment of Differential Signaling and Its Design Requirements
    A TREATMENT OF DIFFERENTIAL SIGNALING AND ITS DESIGN REQUIREMENTS PREPARED BY SPEEDING EDGE, May 29, 2008 Revised September 9, 2008, Rev 10 AUTHOR: LEE W. RITCHEY COPYRIGHT, Speeding Edge, April 29, 2008 For use only by clients of Speeding Edge. WWW.SPEEDINGEDGE.COM P.O. BOX 2194 GLEN ELLEN, CA 95442 Differential Signaling and Its Design Requirements, Revision 10 Page #1 Copyright Speeding Edge, September 2008 TABLE OF CONTENTS TOPIC PAGE # Introduction………………………………………………………………………………………………..………………3 What is a differential pair and how does it work?.............................................................................................3 Why use differential pairs?..................................................................................................................................4 When are differential pairs needed?...................................................................................................................5 Where are differential pairs commonly used?...................................................................................................5 Why haven’t differential pairs been used for all digital signals?.....................................................................5 How is length matching tolerance determined?................................................................................................6 Are there any undesirable side effects of length mismatching, even when within tolerance?.……………7 Choosing terminator resistor values…………………………………………………………………........................7
    [Show full text]
  • Signal and Power Integrity – a Curtain Raiser by S
    Signal and Power Integrity – A Curtain Raiser By S. L. N. Murthy, ASM Technologies Ltd. Abstract: Technological advances in silicon In a digital system, signals are validated at fabrication has feature sizes of transistors as the receiver taking the input voltage small as 17nm and expected to reach 7nm by thresholds of VIL and VIH as reference – Fig 1. 2017. This enables packaging more Distortion of signal during its transmission functionality on a single device. Smaller through the interconnect may violate the transistor geometries mean faster rise time threshold levels resulting in erroneous data devices. For optimized power dissipation, recognition. these devices need to operate at lower voltage. Faster devices and low operating voltages are the genesis of signal integrity and power integrity issues in digital circuits. This paper presents an overview of these aspects of digital system design. Key words: Signal integrity (SI), Power integrity (PI), Reflections, Crosstalk, EMI, EMC, EYE diagram, PCB, controlled impedance. Introduction Signal integrity is a critical aspect of current day high-speed digital design. It is a design Fig 2. Signal Distortion. challenge to system and PCB/package designers. Most of these problems are Integration of more functions in a package electromagnetic in nature and hence are on the silicon increases the dissipation. In contributing factors for EMI/EMC aspects. In order to reduce the overall package power this paper we will look at the generic aspects dissipation, it has become necessary to of signal and power integrity. operate at lower voltages. This reduction in operating voltage reduces the logical It is important to understand key signal threshold values making signal integrity a integrity issues and how we can analyse and critical aspect to be addressed in today’s solve these issues right at the beginning of digital system designs.
    [Show full text]
  • SPICE and IBIS Modeling Kits the Basis for Signal Integrity Analyses
    SPICE and IBIS Modeling Kits The Basis for Signal Integrity Analyses RolandH. G. Cuny DevelopmentSupport SiemensNixdorf InformationsystemsAG Paderbom,Germany Abstract - Reliable high speed board design requires a developedat the University of Berkeley in 1972 and freely thorough analog analyzation of interconnect traces. distributed. During a very short time SPICE became the Consequentlya broad spectrumof signal integrity simulation preferredanalog simulation tool at universities as well as at tools hasbeen developed and is readily availableon the market semiconductorcompanies. Today a large variety of tool to satisfy customersneeds. All softwaretools require a large vendorsoffers many different SPICE derivativesfor hardware amount of dam that describe electrical behavior of the platforms like personal computers, workstations and integratedcomponents involved at the interconnecttraces. In supercomputers.It is well known that the SPICE simulator this paperfor the first time two setsof data for signal integrity alwaysneeds models of the componentsthat are involved. The analyses, SPICE and IBIS modeling kits, are outlined, set of data that is particuhuly necessaryfor signal integrity discussedand comparedto eachother. The information of the analyseswill be described. kits providesthe user with all datato perform buffer modeling, therefore enabling signal integrity analysis and synthesison The SPICE modelingkit needsto include a descriptionof all printedcircuit boards. types of input-, output- and bi-directional buffers as well as ESD protection structures, clamping diodes and the IC package. Internal logic circuitry does not need to be INTRODUCTION consideredsince it doesnot havesignificant impact on the I/O- It is well known that the designof high-speedprinted circuit characteristicsof the circuit. A table that equates the boardsis getting tougherand more complicateddue to higher appropriatebuffer to the correct pin and signal name is integrationdensities [I].
    [Show full text]
  • Xjcomms Product Sheet
    XJComms www.xjtag.com Overview Key Benefits XJComms is a differential serial communications test card that allows you to extend the coverage that you can achieve using an XJIO Board. • Confirmation of signal integrity for common interface standards You can test RS485 and RS422 interfaces, common to many designs, as well • Increases UUT test coverage with as CAN, LIN and FlexRay which are all regularly used in the automotive sector. additional interface connectivity • Easy integration into XJEase • Multiple boards can be used in the Digital Interface Test Control same project The 20-way IDC header allows you to Signals can be driven to or from the UUT Features control and monitor each of the protocol to verify that both digital and protocol transceivers. It is pin-compatible with the signals are correctly connected. Tests XJIO Board but can also be directly are implemented using standard XJEase • Differential communications test card connected to an accessible JTAG scripts that are supplied with the card. RS485/RS422, CAN, LIN, FlexRay enabled I/O connector on the UUT. Demonstration XJEase scripts available. • CAN Bus RS485/RS422 Bus The CAN (Control Area Network) serial The RS485 standard specifies differential bus was originally developed for use in data transmission over a terminated automobiles, but CAN has found its twisted pair. RS485 is popular for way into other applications within inexpensive local networks, multidrop modern vehicles, such as Body, Safety communication links and long haul data and Powertrain. It is also used in Avionics transfer. The use of a balanced line for cabin systems and instrument control means RS485 has excellent noise panels (Airbus A380).
    [Show full text]
  • Enabling Programmable Connectivity Solutions
    A Lattice Semiconductor White Paper October 2014 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com WP001 Introduction A new generation of compact, low power and low cost SERializer/DESerializer (SERDES) enhanced field programmable gate arrays (FPGAs) are increasingly being used with application specific integrated circuits (ASICs) and application specific standard products (ASSPs) by equipment designers to rapidly build flexible systems that meet tight cost, power and form factor constraints of many emerging high volume applications. These SERDES-enhanced FPGAs break the rule that FPGAs must be high density, power hungry and expensive having been optimized for low cost, small form factor and low power consumption, making them ideal for delivering programmable connectivity solutions to complement ASICs and ASSPs. To take advantage of SERDES-enhanced FPGAs’ unique capabilities, designers must understand a bit about how they work, as well as some of their thermal, electrical and signal integrity requirements. The material presented here is intended to familiarize you with this new breed of devices, the benefits they offer and introduce the design practices needed to successfully use them. Using FPGA family with embedded SERDES, it can introduce several important issues which can affect the performance of the SERDES- based device, and practical solutions which you can apply to your design. Most of the issues covered here will apply to the 3.25 Gbps SERDES transceiver cores found in many SERDES-enhanced FPGAs currently on the market, but it will also discuss some of the unique features Lattice has added to the ECP5TM platform to its improve performance and design flexibility.
    [Show full text]
  • Signal Integrity Analysis in Pcb for High Speed Digital Circuit Design
    International Journal of Pure and Applied Mathematics Volume 119 No. 15 2018, 3321-3328 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ Special Issue http://www.acadpubl.eu/hub/ SIGNAL INTEGRITY ANALYSIS IN PCB FOR HIGH SPEED DIGITAL CIRCUIT DESIGN T.S. Srinivasan*, J. Uma, V. Prabhu Department of Electronics and Instrumentation, M. Kumarasamy College of Engineering, Karur-639113, Tamil nadu *Corresponding author: E-Mail: [email protected] ABSTRACT Now-a-days all the electronic components getting miniature in size and also with faster operation. To implement this revolution, it has been changing the IC fabrication process with newer technology. For miniature purpose, many devices fabricated on the single silicon wafer. Even today’s most of the communication devices operating with high frequency and low power. Interconnection problem increasing when integrating multiple devices in the single silicon wafer. This interconnect creates issues like reflection, crosstalk, attenuation, skew, impedance mismatch and propagation delay. These are all the major factors limiting the performance of high-speed designs. This paper taken this issue and it has given some solution to overcome the signal degradation problem associated in complex fabrication process. It mainly deals with identify, investigate and suppress such critical net problems (signal Integrity problem) associated in the high speed DDRX (Double data rate Extended) memory modelling. KEYWORD: Signal Integrity, Power Integrity, Eye Diagram 3321 International Journal of Pure and Applied Mathematics Special Issue 1. INTRODUCTION impedance (ZL) need to be match with each The signal integrity issue is the major other. challenge in today’s high-speed digital circuits design and printed circuit board (PCB).
    [Show full text]
  • How Far and How Fast Can You Go with Rs-485?
    Keywords: RS485, RS422, RS-485, RS-422, Interface, Protocol, Line Drivers, Differential Line Drivers APPLICATION NOTE 3884 HOW FAR AND HOW FAST CAN YOU GO WITH RS-485? Abstract: Designers of industrial datacom systems often ask, What data rates can be reliably achieved over what distance, and how? The design trade-off has always been less distance at a higher rate, or greater distance at a lower rate. So, the crucial question is: How far can you reliably transmit and receive data at a specified data rate? The original publishing of this application note used the MAX3469 to demonstrate RS- 485 performance, and that data is still valid. However, Maxim has raised the performance of RS-485 to 100Mbps with the introduction of products such as the MAX22500E. This application note shows how to go farther and faster. Introduction The various serial-datacom protocols range from RS-232 (EIA/TIA-232) to Gigabit Ethernet, and beyond. Though each protocol suits a particular application, in all cases you must consider cost and performance of the physical (PHY) layer. This article focuses on the RS-485 (EIA/TIA-485) protocol and the applications best suited to that standard. It also shows the ways that you can optimize data rates as a function of cabling, system design, and component selection. Throughout this application note, we will use the “RS” nomenclature to refer to the respective ANSI EIA/TIA standards. Protocol Definitions What is RS-485? How does it compare to other serial protocols, and for what applications are they best suited? The following overview compares the characteristics and capabilities of the RS-485 PHY with those [1] of RS-232 and RS-422.
    [Show full text]