Plant Press, Vol. 19, No. 4

Total Page:16

File Type:pdf, Size:1020Kb

Plant Press, Vol. 19, No. 4 Department of Botany & the U.S. National Herbarium The Plant Press New Series - Vol. 19 - No. 4 October-December 2016 Botany Profile We Are All Lichens By Manuela Dal Forno o you remember the question in biomes revealed the existence of diverse not always been a highly visible field Introductory Biology 101, “What communities of bacteria in addition to the and people are not generally aware Dare lichens?” According to tradi- two dominant partners (Gonzáles et al. that lichens are a significant part of the tional concepts, a lichen is the resulting 2005 FEMS Microbiol. Ecol. 54: 401–415; ecosystem. structure (known as a thallus) from the Cardinale et al. 2006 FEMS Microbiol. symbiosis between a fungal partner (the Ecol. 57: 484–495, Cardinale et al. 2008 n September, a recent paper about mycobiont) and an algal-like partner (the FEMS Microbiol. Ecol. 66: 63–71). Most “plant blindness” (Balding & Wil- photobiont), either a green alga and/or of these studies have focused on bacte- Iliams 2016 Conserv. Biol.) and a cyanobacterium (“blue-green alga”). rial diversity and their potential roles in follow-up commentary article (Das- Lichens play important roles in the the lichenization process (Grube et al. gupta 2016 https://news.mongabay. environments they live in, participating 2009 ISME J. 3: 1105–1115; Hodkinson com/2016/09/can-plant-blindness-be- in nutrient and water cycles and particu- & Lutzoni 2009 Symbiosis 49: 163–180; cured/) was circulated among cowork- larly nitrogen fixation, forming biologi- Bates et al. 2011 Appl. Environ. Microbiol. ers in the Smithsonian’s Department cal soil crusts, and serving for animals 77: 1309–1314; Hodkinson et al. 2012 of Botany. Lichens, along with other in many ways, such as camouflage, Environ. Microbiol. 14: 147–161; Cernava lesser-known organisms living on our shelter, nests, and food, among many et al. 2015 Front. Microbiol. 6: 620; Grube diverse planet, suffer from the same phe- other ecological functions lichens have. et al. 2015 ISME J. 9: 412–424; Erlacher nomenon of blindness, and I have done Humans use lichens as traditional sources et al. 2015 Front. Microbiol. 6: 53). Others what I could to combat “lichen blind- for medicine and in the pharmaceutical have also explored some specific ques- ness” throughout my career. Lichens are and perfume industry. They also play an tions, such as bacterial community shifts not plants, but historically and currently, outstanding role as biological indicators related to lichen parasitism (Grube et al. they have been studied under the crypto- of environmental health. 2012 FEMS Microbiol. Ecol. 82: 472–481; gamic umbrella offered through botany You probably learned this as gradu- Wedin et al. 2015 Environ. Microbiol. 18: departments around the world. If animals ate or undergraduate student, or if you 1428–1439). In general, these studies have are the most charismatic component of were lucky, while taking biology in high shown that lichen-associated microor- global biodiversity noticed by people, school. However, times have changed ganisms are not randomly distributed in very distantly followed by plants, then and the definition of lichens also needs lichens, but instead reflect the systematic lichens are indisputably at the lowest a bit of an update. We now know that affinities of the lichen partners and/or the levels of what the public sees. lichens harbor a diverse and complex associated habitat conditions. It is hypoth- How can we raise awareness for community of bacteria, archaea (single- esized that, just as the human microbiome lichens? Well, there are several ongoing cell organisms), and fungi, as stable com- has important functional roles in human efforts around the world to combat this ponents of the symbiosis. These micro- health, the lichen microbiome may be lichen blindness. The Field Museum organisms together make up the lichen involved in processes such as nutrient in Chicago, for example, is currently microbiome. And more recently, Toby supply, resistance against biotic and abi- hosting an exhibit called “Lichens: The Spribille and colleagues (Science 353: otic factors, and production of hormones Coolest Things You’ve Never Heard 488–492. 2016) found that additional (Grube et al. 2015 ISME J. 9: 412–424). Of” (https://www.fieldmuseum.org/ fungal partners may also play important To lichenologists, these are key at-the-field/exhibitions/lichens-coolest- roles for the association aside from the discoveries since they wave a flag for things-youve-never-heard), and has a mycobiont. lichenology as a whole, and we do need Ford Bronco door completely covered The earliest studies of lichen micro- this “advertisement,” as lichenology has by lichens collected in Puerto Rico Continued on page 13 Travel Pedro Acevedo traveled throughout the University of Rhode Island Narragan- and to update the collection in the her- Oaxaca and Chiapas, Mexico (9/10 – 9/24) sett Bay campus as the representative of barium; 216 vouchers were collected in with Herison Medeiros and Marcelo Smithsonian’s Dive Safety Officers. 63 families and 183 taxa, 15 ranked State Pace to collect all fertile flowering plant Monica Carlsen traveled to Savannah, rare in Virginia and one taxa, Polygonella specimens. Georgia (7/31 – 8/4) to present a paper at polygama (Vent.) Engelm. & A. Gray var. Gabriel Arellano traveled to Ledong, the Botany 2016 meeting; and to Honolulu polygama, known only from one popula- China (7/8 - 7/20) to give a talk at an ana- and Hilo, Hawaii (8/25 – 9/12) to collect tion in Virginia. lytical workshop organized by the Smith- Heliconia and Zingiberaceae specimens. W. John Kress traveled to Honolulu, sonian Center for Tropical Forest Science Manuela Dal Forno traveled to Hawaii (8/31 – 9/11) to attend the Interna- - Forest Global Earth Observatory and the Helsinki, Finland (8/1 – 8/9) to present a tional Union for Conservation of Nature Chinese Forest Biodiversity Network at poster at the 8th International Association (IUCN) World Conservation Congress and Jianfengling National Forest Park; and to for Lichenology (IAL) Symposium at the to collect Heliconia specimens. Barro Colorado Island, Panama (8/13 – University of Helsinki and to participate Gary Krupnick traveled to Honolulu, 9/2) to conduct fieldwork to test a mor- in an excursion to Pallas-Yllästunturi Hawaii (8/31 – 9/11) to present a Pavilion tality protocol that will be implemented National Park. Event on orchid conservation at the Inter- in some tropical sites as part of the Next Bort Edwards traveled to Savannah, national Union for Conservation of Nature Generation Experiments – Tropics project. Georgia (7/31 – 8/4) to attend the Botany (IUCN) World Conservation Congress; Mike Bordelon traveled to Ithaca, 2016 meeting; and to Berkeley, California and to San Francisco, California (9/11 – New York (7/18 – 7/21) to attend the (8/31 – 9/8) to collect material for the 9/14) to attend a round-table discussion annual meeting of the Association of Edu- Global Genome Initiative and to conduct about conservation and natural history cation and Research Greenhouse Curators. his own research into radiations of western museums at the California Academy of Barrett Brooks traveled to Nar- North American clades. Sciences. ragansett, Rhode Island (9/19 – 9/25) to Ashley Egan traveled to Savannah, Marcelo Pace traveled to Mexico City, attend the annual meeting of the American Georgia (7/30 – 8/4) with Gouri Mahad- Mexico (9/4 – 9/9) to give an invited talk Association of Underwater Scientists at war and Mohammad Vatanparast at the XX National Botanical Congress of to present a paper at the Botany 2016 Mexico. The Plant Press meeting; and through eastern Pennsylva- Paul Peterson traveled to London, nia (9/1 – 9/6) and throughout Virginia, England (7/17 – 7/22) to give a presenta- New Series - Vol. 19 - No. 4 North Carolina, and South Carolina (9/15 tion at the meeting, “Growing the Grass Chair of Botany – 9/30) to collect Phaseolus polystachios Classification: Celebration of Derek Clay- Laurence J. Dorr (Fabaceae) in conjunction with collabo- ton’s 90th birthday and discussion about ([email protected]) ration with the Germplasm Resources the future of GrassBase.” Information Network (GRIN) of the U.S. Eric Schuettplez traveled to Savan- EDITORIAL STAFF Department of Agriculture. nah, Georgia (7/30 – 8/3) to present a Editor Sally Eichhorn traveled to Paris paper at the Botany 2016 meeting, and to Gary Krupnick France (9/17 – 9/24) to attend the Inter- attend the business meeting of the Ameri- ([email protected]) national Association for Plant Taxonomy can Fern Society and the NSF GoFlag council meeting as the managing secretary. project collaborators meeting. Copy Editors Vicki Funk and Morgan Gostel Laurence Skog traveled to Savannah, Robin Everly, Bernadette Gibbons, and Rose Gulledge traveled throughout Madagascar (9/22 Georgia (7/30 – 8/4) to attend the Botany – 10/22) to conduct field work for the 2016 meeting. News Contacts Global Genome Initiative project. Sy Sohmer traveled to Edinburgh, MaryAnn Apicelli, Rusty Russell, Alice Amanda Grusz and Erin Sigel trav- Scotland (7/11 – 7/15) to give a paper on Tangerini, and Elizabeth Zimmer eled to Savannah, Georgia (7/31 – 8/4) to Psychotria (Rubiaceae) of Papua New th The Plant Press is a quarterly publication pro- present papers in the “Seed Free Plants Guinea at the 10 International Flora vided free of charge. To receive notification of at the Genomic Scale” colloquium at the Malesiana Symposium, “Classify, Cul- when new pdf issues are posted to the web, please subscribe to the listserve by sending a message Botany 2016 meeting. tivate, Conserve,” at the Royal Botanic to [email protected] containing only the Gabe Johnson traveled to Savannah, Garden Edinburgh. following in the body of the text: SUBSCRIBE PLANTPRESS-NEWS Firstname Lastname.
Recommended publications
  • The Wound Healing Potential of Aspilia Africana (Pers.) CD Adams
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2019, Article ID 7957860, 12 pages https://doi.org/10.1155/2019/7957860 Review Article The Wound Healing Potential of Aspilia africana (Pers.) C. D. Adams (Asteraceae) Richard Komakech,1,2,3 Motlalepula Gilbert Matsabisa,4 and Youngmin Kang 1,2 University of Science & Technology (UST), Korea Institute of Oriental Medicine (KIOM) Campus, Korean Medicine Life Science Major, Daejeon , Republic of Korea Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Geonjae-ro, Naju-si, Jeollanam-do , Republic of Korea Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box , Kampala, Uganda University of the Free State, Nelson Mandela Drive, Bloemfontein , South Africa Correspondence should be addressed to Youngmin Kang; [email protected] Received 20 August 2018; Accepted 23 December 2018; Published 21 January 2019 Guest Editor: Abidemi J. Akindele Copyright © 2019 Richard Komakech et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Wounds remain one of the major causes of death worldwide. Over the years medicinal plants and natural compounds have played an integral role in wound treatment. Aspilia africana (Pers.) C. D. Adams which is classifed among substances with low toxicity has been used for generations in African traditional medicine to treat wounds, including stopping bleeding even from severed arteries. Tis review examined the potential of the extracts and phytochemicals from A. africana, a common herbaceous fowering plant which is native to Africa in wound healing.
    [Show full text]
  • Fort Benning Training Areas
    FINAL REPORT Impacts of Military Training and Land Management on Threatened and Endangered Species in the Southeastern Fall Line Sandhills Communities SERDP Project SI-1302 MAY 2009 Dr. Rebecca R. Sharitz Dr. Donald W. Imm Ms. Kathryn R. Madden Dr. Beverly S. Collins Savannah River Ecology Laboratory, University of Georgia This document has been approved for public release. This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. i Table of Contents Acronyms and Abbreviations …………………………………………………… iv List of Figures……………………………………………………………………...v List of Tables……………………………………………………………………...vii Acknowledgments……………………………………………………………….viii 1. Executive Summary………..………………………………………………… 1 2. Objectives……………………………………………………………………. 5 3. Background………………………………………………....………………... 6 4. Materials and Methods……..………………………………………………… 8 4.1. Characterize sandhills and related xeric woodlands and discriminate from adjacent forests………………………………………………… 8 4.2. Spatial analyses and mapping of sandhills and related xeric woodland communities and comparison with spatial information on forest management and military activities………………………… 9 4.3. Effects of forest understory control practices used to maintain RCW habitat on sandhills plant communities………………………... 9 4.4. Habitat characterization of selected TES plant species……………… 10 4.5. Development of habitat models for TES plants and identification of potential additional suitable habitat……………………………….. 11 4.6.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioi
    UNIVERSITY OF CALIFORNIA RIVERSIDE Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioideae: New Data From the Balsamocitrinae A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Plant Biology by Toni J Siebert Wooldridge December 2016 Thesis committee: Dr. Norman C. Ellstrand, Chairperson Dr. Timothy J. Close Dr. Robert R. Krueger The Thesis of Toni J Siebert Wooldridge is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS I am indebted to many people who have been an integral part of my research and supportive throughout my graduate studies: A huge thank you to Dr. Norman Ellstrand as my major professor and graduate advisor, and to my supervisor, Dr. Tracy Kahn, who helped influence my decision to go back to graduate school while allowing me to continue my full-time employment with the UC Riverside Citrus Variety Collection. Norm and Tracy, my UCR parents, provided such amazing enthusiasm, guidance and friendship while I was working, going to school and caring for my growing family. Their support was critical and I could not have done this without them. My committee members, Dr. Timothy Close and Dr. Robert Krueger for their valuable advice, feedback and suggestions. Robert Krueger for mentoring me over the past twelve years. He was the first person I met at UCR and his willingness to help expand my knowledge base on Citrus varieties has been a generous gift. He is also an amazing friend. Tim Williams for teaching me everything I know about breeding Citrus and without whom I'd have never discovered my love for the art.
    [Show full text]
  • Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2016 Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi Hanna M. Miller University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biodiversity Commons, and the Botany Commons Recommended Citation Miller, Hanna M., "Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi" (2016). Honors Theses. 389. https://aquila.usm.edu/honors_theses/389 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi by Hanna Miller A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science in the Department of Biological Sciences May 2016 ii Approved by _________________________________ Mac H. Alford, Ph.D., Thesis Adviser Professor of Biological Sciences _________________________________ Shiao Y. Wang, Ph.D., Chair Department of Biological Sciences _________________________________ Ellen Weinauer, Ph.D., Dean Honors College iii Abstract The North American Coastal Plain contains some of the highest plant diversity in the temperate world. However, most of the region has remained unstudied, resulting in a lack of knowledge about the unique plant communities present there.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Palynological Properties of the Genus Haplophyllum (Rutaceae) in Jordan
    Int.J.Curr.Microbiol.App.Sci (2015) 4(9): 281-287 ISSN: 2319-7706 Volume 4 Number 9 (2015) pp. 281-287 http://www.ijcmas.com Original Research Article Palynological Properties of the Genus Haplophyllum (Rutaceae) in Jordan Dawud Al-Eisawi* and Mariam Al-Khatib Department of Biology, Faculty of Science, the University of Jordan, Amman, Jordan *Corresponding author A B S T R A C T Pollen morphological characteristics of four Haplophyllum species occurring in Jordan; H. blanchei, H. buxbaumii, H. poorei and H. K e y w o r d s tuberculatum, have been investigated by both light and scanning electron Haplophyllum, microscopy (SEM). Data about symmetry, polarity, shape, size, apertures Rutaceae, and surface sculpturing are recorded. H. blanchei and H. tuberculatum Pollen-grains, pollen grains subprolate shape, while H. buxbaumii have prolate to Jordan spheroidal shape and H. poorei have spheroidal shape. Pollen grains of all species have radial symmetry, with tricolpate aperatures, isopolar, with striate perforated sculpture. Introduction The genus Haplophyllum has 68 species Khader, 1997), the genus Allium (Omar, (Townsend, 1986), with a maximum species 2006) and the genus Tulipa (Al-Hodali, diversity in Turkey, Iran and Central Asia 2011) and others. (Salvo et al., 2011). The Haplophyllum genus is represented by five taxa in Jordan; Palynological characters were adopted by H. blanchei, H. buxbaumii, H. poorei, H. many scientists including pollen tuberculatum and H. fruticulosum (Al- morphology for the family Rutaceae. The Eisawi, 1982, 2013), but recent revision of pollen morphology of the subfamily this genus in Jordan (Al-Khatib, 2013) Aurantioideae (Rutaceae) was studied.
    [Show full text]
  • Mothers, Markets and Medicine Hanna Lindh
    Mothers, markets and medicine The role of traditional herbal medicine in primary women and child health care in the Dar es Salaam region, Tanzania Hanna Lindh Degree project in biology, Bachelor of science, 2015 Examensarbete i biologi 15 hp till kandidatexamen, 2015 Biology Education Centre, Uppsala University Supervisors: Sarina Veldman and Hugo de Boer 1 Abstract Traditional medicine is still the most common primary healthcare used in Tanzania, especially among women. The ethnobotanical studies performed in Tanzania have not explored women’s traditional medicine, with the result that we do not know that much about it, including if women’s usage of medicinal plants create a threat against the medicinal flora’s biodiversity or not. Field studies consisting of interviews and collections of medicinal plants were carried out in the Dar es Salaam region in Tanzania before identifying the collected specimens by DNA barcoding, literature and morphology in Uppsala, Sweden. The 33 informants belonged to 15 different ethnic groups and 79% of them had migrated to Dar es Salaam. A total of 249 plant species were mentioned for women’s healthcare and 140 for children’s healthcare. The medicinal plants frequently reported as used for women’s health and childcare during structured interviews and free-listing exercises were Senna occidentalis/ Cassia abbreviata, Zanthoxylum sp., Clausena anisata, Acalypha ornata and Ximenia sp. The most salient uses of medicinal plants by women were during pregnancy, childbirth, menstruation, to induce abortion, and for cleansing infants and treating convulsions in children. Most of the fresh specimens were collected from disturbance vegetation. The informants having most interview answers in common were the market vendors, healers and herbalists and they were the only informants that mentioned species listed as vulnerable on the IUCN Red List of Threatened Species.
    [Show full text]
  • Annual Report 2017
    3 CONTACT DETAILS Dean Prof Danie Vermeulen +27 51 401 2322 [email protected] MARKETING MANAGER ISSUED BY Ms Elfrieda Lötter Faculty of Natural and Agricultural Sciences +27 51 401 2531 University of the Free State [email protected] EDITORIAL COMPILATION PHYSICAL ADDRESS Ms Elfrieda Lötter Room 9A, Biology Building, Main Campus, Bloemfontein LANGUAGE REVISION Dr Cindé Greyling and Elize Gouws POSTAL ADDRESS University of the Free State REVISION OF BIBLIOGRAPHICAL DATA PO Box 339 Dr Cindé Greyling Bloemfontein DESIGN, LAYOUT South Africa )LUHÀ\3XEOLFDWLRQV 3W\ /WG 9300 PRINTING Email: [email protected] SA Printgroup )DFXOW\ZHEVLWHZZZXIVDF]DQDWDJUL 4 NATURAL AND AGRICULTURAL SCIENCES REPORT 2017 CONTENT PREFACE Message from the Dean 7 AGRICULTURAL SCIENCES Agricultural Economics 12 Animal, Wildlife and Grassland Sciences 18 Plant Sciences 26 Soil, Crop and Climate Sciences 42 BUILDING SCIENCES Architecture 50 Quantity Surveying and Construction Management 56 8UEDQDQG5HJLRQDO3ODQQLQJ NATURAL SCIENCES Chemistry 66 Computer Sciences and Informatics 80 Consumer Sciences 88 Genetics 92 Geography 100 Geology 106 Mathematical Statistics and Actuarial Science 112 Mathematics and Applied Mathematics 116 Mathematics 120 0LFURELDO%LRFKHPLFDODQG)RRG%LRWHFKQRORJ\ Physics 136 Zoology and Entomology 154 5 Academic Centres Disaster Management Training and Education Centre of Africa - DiMTEC 164 Centre for Environmental Management - CEM 170 Centre for Microscopy 180 6XVWDLQDEOH$JULFXOWXUH5XUDO'HYHORSPHQWDQG([WHQVLRQ Paradys Experimental Farm 188 Engineering Sciences 192 Institute for Groundwater Studies 194 ACADEMIC SUPPORT UNITS Electronics Division 202 Instrumentation 206 STATISTICAL DATA Statistics 208 LIST OF ACRONYMS List of Acronyms 209 6 NATURAL AND AGRICULTURAL SCIENCES REPORT 2017 0(66$*( from the '($1 ANNUAL REPORT 2016 will be remembered as one of the worst ±ZKHUHHDFKELQFRXOGFRQWDLQDXQLTXHSURGXFWDQG years for tertiary education in South Africa due once a product is there, it remains.
    [Show full text]
  • Phytochemical Screening and Antibacterial Activity of Aspilia Africana on Some Gastrointestinal Tract Pathogens
    GSC Biological and Pharmaceutical Sciences, 2019, 07(01), 037–043 Available online at GSC Online Press Directory GSC Biological and Pharmaceutical Sciences e‐ISSN: 2581‐3250, CODEN (USA): GBPSC2 Journal homepage: https://www.gsconlinepress.com/journals/gscbps (RESEARCH ARTICLE) Phytochemical screening and antibacterial activity of Aspilia africana on some gastrointestinal tract pathogens Abdulsalami Halimat 1, *, Mudi Suleiman Yusuf 2, Aliyu Bala Sidi 3 and Takalmawa Hamisu Umar 4 1Department of Plant Biology, Federal University of Technology Minna, Niger State, Nigeria. 2Department of Pure and Industrial Chemistry, Bayero University, Kano, Nigeria. 3Department of Plant Biology, Bayero University, Kano, Nigeria. 4Department of Medical Microbiology and Parasitology, Bayero University, Kano, Nigeria. Publication history: Received on 25 March 2019; revised on 15 April 2019; accepted on 16 April 2019 Article DOI: https://doi.org/10.30574/gscbps.2019.7.1.0048 Abstract The main aim of this study was to determine the phytochemical constituents and antibacterial activities of the leaf extracts of A. africana. The powdered leaf of A. africana was extracted using 70% methanol and partitioned into n‐ hexane, chloroform, ethyl acetate and aqueous methanol fractions. The extract and fractions were phytochemically screened and agar well dilution technique was used to evaluate the antibacterial activity against some gastrointestinal tract pathogens (Escherichia coli, Staphylococcus aureus, Shigella dysentriae, Salmonella typhi, Salmonella paratyphi A, Salmonella paratyphi B and Salmonella paratyphi C). The phytochemical analysis of A. africana showed the presence of alkaloids, terpenoids, tannins, flavonoids, anthraquinones and saponins in the methanol extract but varied across the fractions. The methanol extract and fractions inhibited the growth of gastrointestinal tract pathogens but their effectiveness varied with the concentrations.
    [Show full text]
  • Phylogeny of the Genus Lotus (Leguminosae, Loteae): Evidence from Nrits Sequences and Morphology
    813 Phylogeny of the genus Lotus (Leguminosae, Loteae): evidence from nrITS sequences and morphology G.V. Degtjareva, T.E. Kramina, D.D. Sokoloff, T.H. Samigullin, C.M. Valiejo-Roman, and A.S. Antonov Abstract: Lotus (120–130 species) is the largest genus of the tribe Loteae. The taxonomy of Lotus is complicated, and a comprehensive taxonomic revision of the genus is needed. We have conducted phylogenetic analyses of Lotus based on nrITS data alone and combined with data on 46 morphological characters. Eighty-one ingroup nrITS accessions represent- ing 71 Lotus species are studied; among them 47 accessions representing 40 species are new. Representatives of all other genera of the tribe Loteae are included in the outgroup (for three genera, nrITS sequences are published for the first time). Forty-two of 71 ingroup species were not included in previous morphological phylogenetic studies. The most important conclusions of the present study are (1) addition of morphological data to the nrITS matrix produces a better resolved phy- logeny of Lotus; (2) previous findings that Dorycnium and Tetragonolobus cannot be separated from Lotus at the generic level are well supported; (3) Lotus creticus should be placed in section Pedrosia rather than in section Lotea; (4) a broad treatment of section Ononidium is unnatural and the section should possibly not be recognized at all; (5) section Heineke- nia is paraphyletic; (6) section Lotus should include Lotus conimbricensis; then the section is monophyletic; (7) a basic chromosome number of x = 6 is an important synapomorphy for the expanded section Lotus; (8) the segregation of Lotus schimperi and allies into section Chamaelotus is well supported; (9) there is an apparent functional correlation be- tween stylodium and keel evolution in Lotus.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]