The Janusfjellet Subgroup (Bathonian to Hauterivian) on Central Spitsbergen: a Revised Lithostratigraphy

Total Page:16

File Type:pdf, Size:1020Kb

The Janusfjellet Subgroup (Bathonian to Hauterivian) on Central Spitsbergen: a Revised Lithostratigraphy The Janusfjellet Subgroup (Bathonian to Hauterivian) on central Spitsbergen: a revised lithostratigraphy H. DYPVIK, J. NAGY, T. A. EIKELAND, K. BACKER-OWE, A. ANDRESEN, P. HAREMO, T. BJAZRKE, H. JOHANSEN, and A. ELVERHBI Dypvik, H.,Nagy, J., Eikeland, T. A., Backer-Owe, K., Andresen, A,, Haremo, P., Bjrerke, T.,Johansen, H. & Elverhl, A.: The Janusfjellet Subgroup (Bathonian to Hauterivian) on central Spitsbergen: a revised lithostratigraphy. Polar Research 9(1), 21-43. The Janusfjellet Subgroup is a marine shelf to prodeltaic succession dominated by shales with subordinate siltstones and sandstones. The subgroup comprises a lower Agardhfjellet (Upper Bathonian - Berriasian) and an upper Rurikfjellet (Berriasian - Hauterivian) formation. Based on field work in central Spitsbergen the following subdivisions of the formations are proposed (units listed in ascending order). The Agardhfjellet Formation (up to 290 m thick) contains four members: Oppdalen - a fining upwards succession from conglomerates to shales; Lardyfjellet - black paper shales; Oppdalsita - grey shales with siltstones and sandstones; and SlottsmQya - grey shales and black paper shales. Within the Oppdalen Member three beds are recognised: Brentskardhaugen - phosphoritic conglomerate; Marhogda - glauconitic sandstones; and Dronbreen - siltstones and shales. The Rurikfjellet Formation (thickness up to 226 m) is composed of two members: Wimanfjellet - grey and partly silty shale sequence, containing the Myklegardfjellet Bed (of plastic clays) at its base; and Ullaberget - silty and sandy shales with siltstones and sandstones. H. Dypvik, J. Nagy, T.A. Eikeland, K. Backer-Owe, A. Andresen, and A. Elverh@i, Department of Geology, University of Oslo, P.O. Box 1047 Blindern, N-0316 Oslo 3, Norway; P. Haremo, Norsk Hydro AIS, P.O. Box 200, N-1321 Stabekk, Norway; T. Bjerke, Storgata 47, 3290 Stauern; H. Johansen, Norsk Polarinstitutt, Rolfstangveien 12. Snar@ya, P.O. Box 158, N-1330 Oslo lufthavn, Norway. In light of the latest stratigraphical information graphical correlation, to increase the resolution generated by recent structural, sedimentological potential of the structural geology and to act as an and paleontological investigations (Andresen et improved framework in ongoing sedimentological al. unpubl.; Dypvik et al. 1988; Nagy et al. discussions (Figs. 1 and 2). The study is con- 1990; Dypvik et al. in press), a revision of the centrated around the region between Sassen- Jurassic/Cretaceous stratigraphy of central Spits- fjorden, Kjellstr0mdalen and Agardhbukta. bergen appears to be required. The revised strati- designated here as central Spitsbergen. graphical subdivision proposed below aims to The Bathonian to Hauterivian time-span in facilitate detailed geological mapping and strati- Spitsbergen is represented by an approximately 400 m thick sedimentary succession composed New or revised definitions of stratigraphic units in Norway mainly of shales with subordinate siltstones and (including the Norwegian polar areas) are to be registered sandstones deposited in shelf environments and confirmed by the ‘Norwegian Committee on Stratigraphy’ (Dypvik 1985). This succession is the Janusfjellet (NSK). A subcommission, the ‘Committee on the Stratigraphy of Svalbard’ (SKS), has recently (1990) been established to unit (Fig. l), which was ranked originally as sub- develop a formal stratigraphic nomenclature for the bedrock group (Parker 1967) but changed subsequently to stratigraphy of the mainland of Svalbard. Until this work has formation. The present contribution revises the been completed, SKS will not accept individual applications. stratigraphy of the Janusfjellet unit, and the main Authors are requrested not to submit formal definitions of stratigraphic units in Svalbard during this time without first items of this revision are: redefining the Janusfjel- consulting SKS (c/o Norwegian Polar Research Institute, P.O. let unit as subgroup; elevating the rank of its two Box 158, N-1330 Oslo Lufthavn). subunits (the Agardhfjellet and Rurikfjellet) from The present article was submitted prior to the establishment member to formation; providing a new and of SKS and has therefore been treated as an exception. The detailed subdivision of these formations. stratigraphy presented has not yet been confirmed by NSK and will be considered along with other proposed stratigraphic The basis of the present stratigraphical study is subdivisions. extensive field work carried out at Bohemanflya, 22 H.Dypvik et al. Fig. I. The Janusfjellet Subgroup at Wimanfjellet, seen from Isfjorden (WI-Wilhelm~yaFormation, JA-Janusfjellet Subgroup). Festningen, Janusfjellet, Wimanfjellet, Knor- FJELLE? ringfjellet, numerous sections in the Advent- FM. FESTNINGEN MEMBER dalen-Reindalen area, Lardyfjellet in Kjell- ULLABERGET strcbmdalen and sections at Agardhbukta (Figs. 3 and 4). The preliminary results of these in- vestigations have partially been published else- where (Dypvik et al. 1988; Nagy et al. 1990), and the present paper is devoted to the more general features of stratigraphical relevance. A proposed sedimentological model based on the new data from the subgroup will be presented in a separate 1 SLOTTSMBYA MEMBER paper (Dypvik et al. in press). z P tia General stratigraphy of the P Janusfjellet Subgroup c W The Middle Jurassic to Lower Cretaceous suc- d LARDYFJE~LET MEMBER d cession in Spitsbergen forms a single major strati- W v 3 graphic unit, the Adventdalen Group originally 0 OPPDALEN proposed by Parker (1967), which contains a L MARHBGDA BED fluviodeltaic and three marine formations. The MEMBER : BRENTSKARDHAUGEN BED Fig. 3. Geological map of Spitsbergen showing position of Fig. 2. Revised stratigraphical scheme of the Janusfjellet Suh- localities discussed in text. Central Spitsbergen, hoxcd in. is group for central and eastern Spitsbergen. enlarged in Fig. 4. The Janusfellet Subgroup (Bathonian to Hauterivian) on central Spitsbergen 23 @ Syltoppen @ Bohemanflya @ Billefjorden @ Sassenfjorden @ lsfjorden @ Festningen @ Van Keulenfjorden @ Ullaberget @ Kvalvagen @ Jurakammen @ Wedel Jarlsberg L.= @ Torell Land @ Hornsund @ Serrkapp Land @ Keilhaufjellet /19O 11 5O I180 24 H. Dypuik et al. Janusfjellet @) Aasgaardfjellet I 1 GLACIERS 0 @ Marhragda @ Bergmraya @ Oppdalen @ Knorringfjellet @ OppdalsAta I_=] JURASSIC @ Marmierfjellet @ VrAbreen - CRETACEOUS Roulettegga Lardyfjellet - @ @- l;T,?j TRIASSIC @ Arctowskifjellet @ Glitrefjellet @ Juvdalskampen @ ~~ottsmraya II I CARBONIFEROUS Ll PERMIAN @ Brentskardhaugen @ Lundstrramdalen @ Drranbreen @ Agardhfjellet \ FAULTS @ Fleksurfjellet @ Myklegardfjellet @ Fonnhetta @ Klementievfjellet @ Tronfjellet @ Rurikfjellet Fig. 4. Geological map of Central Spitsbergen. Position of localities discussed in text indicated. group unconformably overlies the large hiatus 1940). The unit was formally termed the Janus- which comprises much of the Middle Jurassic, fjellet Subgroup by Parker (1967), and this usage while the top of the group corresponds to an was shared by Flood et al. (1971). Later on the extensive Late Cretaceous hiatus. The lower, unit was currently ranked as formation. The sub- shaley part of this succession has long been recog- group rests on shallow shelf to marginal marine nized as a major single unit variously designated sandstones and shales of the Wilhelmoya Forma- as Aucellensichten (Nathorst 1897; Hoe1 & Orvin tion. It is overlaid by fluviodeltaic sandstones of 1937) or Aucellen shale (Hagerman 1925; Orvin the Helvetiafjellet Formation. The Janusfjellet Subgroup (Bathonian to Hauteriuian) on central Spitsbergen 25 The Janusfjellet Subgroup is composed of the Maher (1989) discusses a storm-related origin for Agardhfjellet Formation of Late Bathonian to the Brentskardhaugen Bed. Directly on top of Berriasian age, and the Rurikfjellet Formation of this conglomerate, the oolitic sediments of the Berriasian to Hauterivian age. These two units Marh~gdaBed follow in an upward fining de- are separated by a thin interval (usually <2 m) of velopment. yellowish weathering clays. The lower part of the Agardhfjellet Formation is dominated by somewhat silty and sandy sedi- ments, grading upwards into black (often papery) Agardhfjellet Formation and grey shales forming the main part of the unit. This unit was originally defined as formation (Par- The age of this formation is Late Bathonian to ker 1967), but became changed in rank to member Berriasian as deduced from the literature includ- in several papers (Major & Nagy 1972; Bir- ing Pchelina (1965a, b); L~faldli& Nagy (1983); kenmajer et al. 1982; LGfaldli & Nagy 1983). Parker (1967); Erschova (1983); Kopik & Wierz- Detailed studies in central Spitsbergen demon- bowski (1988) Wierzbowski (1989); Nagy et al. strated that the unit has a varied lithology, which (1990). The thickness of the Agardhfjellet For- together with its large thickness warrants its rank- mation varies between 165 m at Keilhaufjellet to ing as formation. 255-290 m in the Van Keulenfjorden and Festnin- The lower part of the Janusfjellet Subgroup is gen areas. The dark shales of the Agardhfjellet made up of the few decimeter to some meter thick Formation contain some siltstone and sandstone Brentskardhaugen Bed, containing pebbles of beds, but generally represent deposition in oxy- phosphate, chert, rock fragments, etc. (Back- gen-deficient shelf environments characterized by strom & Nagy 1985). The position of the Brent- sedimentation of fine-grained material such as skardhaugen Bed with regard to higher category
Recommended publications
  • Cryptoclidid Plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert
    Journal of Vertebrate Paleontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz To cite this article: Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz (2020): Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert, Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2020.1764573 To link to this article: https://doi.org/10.1080/02724634.2020.1764573 View supplementary material Published online: 17 Jul 2020. Submit your article to this journal Article views: 153 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1764573 (14 pages) © by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2020.1764573 ARTICLE CRYPTOCLIDID PLESIOSAURS (SAUROPTERYGIA, PLESIOSAURIA) FROM THE UPPER JURASSIC OF THE ATACAMA DESERT RODRIGO A. OTERO,*,1,2,3 JHONATAN ALARCÓN-MUÑOZ,1 SERGIO SOTO-ACUÑA,1 JENNYFER ROJAS,3 OSVALDO ROJAS,3 and HÉCTOR ORTÍZ4 1Red Paleontológica Universidad de Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile, [email protected]; 2Consultora Paleosuchus Ltda., Huelén 165, Oficina C, Providencia, Santiago, Chile; 3Museo de Historia Natural y Cultural del Desierto de Atacama. Interior Parque El Loa s/n, Calama, Región de Antofagasta, Chile; 4Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario, Concepción, Región del Bío Bío, Chile ABSTRACT—This study presents the first plesiosaurs recovered from the Jurassic of the Atacama Desert that are informative at the genus level.
    [Show full text]
  • Tertiary Fold-And-Thrust Belt of Spitsbergen Svalbard
    Winfried K. Dallmann • Arild Andersen • Steffen G. Bergh • Harmond D. Maher Jr. • Yoshihide Ohta Tertiary fold-and-thrust belt of Spitsbergen Svalbard ' ~dl... ,, !!~"\\ MEDDELELSER NR.128 9,.~,f OSLO 1993 k ·pOlARll'l'>'\ MEDDELELSER NR. 128 WINFRIED K. DALLMANN, ARILD ANDRESEN, STEFFEN G. BERGH, HARMON D. MAHER Jr. & YOSHIHIDE OHTA Tertiary f old-and-thrust belt of Spitsbergen Svalbard COMPILATION MAP, SUMMARY AND BIBLIOGRAPHY NORSK POLARINSTITUTT OSLO 1993 Andresen, Arild: Univ. Oslo, Institutt for geologi, Pb. 1047 Blindern, N-0316 Oslo Bergh, Steffen G.: Univ. Tromsø, Institutt for biologi og geologi, N-9037 Tromsø Dallmann, Winfried K.: Norsk Polarinstitutt, Pb. 5072 Majorstua, N-0301 Oslo Maher, Harmon D., Jr.: Univ. Nebraska, Dept. of Geography and Geology, Omaha, USA-Nebraska 68182-0199 Ohta, Yoshihide: Norsk Polarinstitutt, Pb. 5072 Majorstua, N-0301 Oslo ISBN 82-7666-065-7 Printed December 1993 Cover photo by W. K. Dallmann: Folded Triassic sandstones and shales within the interior part of the Tertiary fold-and-thrust belt at Curie­ Sklodowskafjellet, Wedel Jarlsberg Land, Svalbard. CONTENTS: Introduction 5 Map data and explanatory remarks 6 Sources, compilation and accuracy of the geological base map 7 Explanation of map elements 7 Stratigraphy 7 Structure 8 Outline of the Tertiary fold-and-thrust belt of Spitsbergen 10 Tectonic setting 10 Dimensions and directions 11 Structural subdivision and characteristics 13 Interior part of foldbelt 13 Western Basement High 15 Forlandsundet Graben 16 Central Tertiary Basin 16 Billefjorden Fault Zone 17 Lomfjorden Fault Zone 17 Structural descriptions (including explanation of cross sections) 17 Sørkapp-Hornsund area 17 Interior Wedel Jarlsberg Land/Torell Land - Bellsund 19 Western and Central Nordenskiold Land 21 Oscar li Land 22 Brøggerhalvøya 24 Billefjorden - Eastern Nordenskiold Land 24 Agardhbukta - Negribreen 25 Bibliography 29 Maps and map descriptions 29 Proceedings of symposia etc.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • A Contribution to the Knowledge of Bryophytes in Polar Areas Subjected
    Ǘ Digitally signed by Piotr Ǘ Otrba Date: 2018.12.31 18:02:17 Z Acta Societatis Botanicorum Poloniae DOI: 10.5586/asbp.3603 ORIGINAL RESEARCH PAPER Publication history Received: 2018-08-10 Accepted: 2018-11-26 A contribution to the knowledge of Published: 2018-12-31 bryophytes in polar areas subjected to Handling editor Michał Ronikier, W. Szafer rapid deglaciation: a case study from Institute of Botany, Polish Academy of Sciences, Poland southeastern Spitsbergen Authors’ contributions AS: designed and coordinated the study, determined the 1 2 3 moss specimens, wrote the Adam Stebel *, Ryszard Ochyra , Nadezhda A. Konstantinova , manuscript; RO: designed Wiesław Ziaja 4, Krzysztof Ostafin 4, Wojciech Maciejowski 5 the study, determined the 1 Department of Pharmaceutical Botany, Faculty of Pharmacy with Division of Laboratory moss specimens, wrote the Medicine, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland manuscript, contributed 2 Department of Bryology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, the distribution maps; NAK: 31-512 Cracow, Poland determined the liverwort 3 Kola Science Center, Russian Academy of Sciences, 184256, Kirovsk, Murmansk District, Russia specimens, wrote the 4 Institute of Geography and Spatial Management, Jagiellonian University, Gronostajowa 7, manuscript; WZ: collected the 30-387 Cracow, Poland specimens, developed the 5 Institute of the Middle and Far East, Jagiellonian University, Gronostajowa 3, 30-387 Cracow, tables, wrote the manuscript; Poland KO: collected the specimens, developed the tables, * Corresponding author. Email: [email protected] contributed the study area map; WM: conceived and coordinated the study, collected the specimens, developed the Abstract tables, wrote the manuscript, e paper provides a list of 54 species of bryophytes (48 mosses and six liverworts) contributed the study area map collected from Spitsbergen, the largest island of the Arctic Svalbard archipelago Funding (Norwegian Arctic), in 2016.
    [Show full text]
  • Palaeoecology and Palaeoenvironments of the Middle Jurassic to Lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 1 https://dx.doi.org/10.17850/njg99-1-02 Palaeoecology and palaeoenvironments of the Middle Jurassic to lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard Maayke J. Koevoets1, Øyvind Hammer1 & Crispin T.S. Little2 1Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway. 2School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom. E-mail corresponding author (Maayke J. Koevoets): [email protected] We describe the invertebrate assemblages in the Middle Jurassic to lowermost Cretaceous of the Agardhfjellet Formation present in the DH2 rock-core material of Central Spitsbergen (Svalbard). Previous studies of the Agardhfjellet Formation do not accurately reflect the distribution of invertebrates throughout the unit as they were limited to sampling discontinuous intervals at outcrop. The rock-core material shows the benthic bivalve fauna to reflect dysoxic, but not anoxic environments for the Oxfordian–Lower Kimmeridgian interval with sporadic monospecific assemblages of epifaunal bivalves, and more favourable conditions in the Volgian, with major increases in abundance and diversity of Hartwellia sp. assemblages. Overall, the new information from cores shows that abundance, diversity and stratigraphic continuity of the fossil record in the Upper Jurassic of Spitsbergen are considerably higher than indicated in outcrop studies. The inferred life positions and feeding habits of the benthic fauna refine our understanding of the depositional environments of the Agardhfjellet Formation. The pattern of occurrence of the bivalve genera is correlated with published studies of Arctic localities in East Greenland and northern Siberia and shows similarities in palaeoecology with the former but not the latter.
    [Show full text]
  • The Giant Pliosaurid That Wasn't—Revising the Marine Reptiles From
    The giant pliosaurid that wasn’t—revising the marine reptiles from the Kimmeridgian, Upper Jurassic, of Krzyżanowice, Poland DANIEL MADZIA, TOMASZ SZCZYGIELSKI, and ANDRZEJ S. WOLNIEWICZ Madzia, D., Szczygielski, T., and Wolniewicz, A.S. 2021. The giant pliosaurid that wasn’t—revising the marine reptiles from the Kimmeridgian, Upper Jurassic, of Krzyżanowice, Poland. Acta Palaeontologica Polonica 66 (1): 99–129. Marine reptiles from the Upper Jurassic of Central Europe are rare and often fragmentary, which hinders their precise taxonomic identification and their placement in a palaeobiogeographic context. Recent fieldwork in the Kimmeridgian of Krzyżanowice, Poland, a locality known from turtle remains originally discovered in the 1960s, has reportedly provided additional fossils thought to indicate the presence of a more diverse marine reptile assemblage, including giant pliosaurids, plesiosauroids, and thalattosuchians. Based on its taxonomic composition, the marine tetrapod fauna from Krzyżanowice was argued to represent part of the “Matyja-Wierzbowski Line”—a newly proposed palaeobiogeographic belt comprising faunal components transitional between those of the Boreal and Mediterranean marine provinces. Here, we provide a de- tailed re-description of the marine reptile material from Krzyżanowice and reassess its taxonomy. The turtle remains are proposed to represent a “plesiochelyid” thalassochelydian (Craspedochelys? sp.) and the plesiosauroid vertebral centrum likely belongs to a cryptoclidid. However, qualitative assessment and quantitative analysis of the jaws originally referred to the colossal pliosaurid Pliosaurus clearly demonstrate a metriorhynchid thalattosuchian affinity. Furthermore, these me- triorhynchid jaws were likely found at a different, currently indeterminate, locality. A tooth crown previously identified as belonging to the thalattosuchian Machimosaurus is here considered to represent an indeterminate vertebrate.
    [Show full text]
  • "Polar Action" of Antoni Bolesław Dobrowolski in the Interwar Period
    POLISH POLAR RESEARCH 19 1-2 31-36 1998 Joanna POPIOŁEK Museum of the Earth Polish Academy of Sciences Al. Na Skarpie 27 00-488 Warszawa, POLAND "Polar Action" of Antoni Bolesław Dobrowolski in the interwar period ABSTRACT: A. B. Dobrowolski, a member of the Belgian expedition in Belgica to West Antarctica (1897-1899), after his return home became a strong supporter of Polish scientific activity in the Polar countries. His patronage - called by him the "Polar Action", was especially well marked during organization of three Polish expeditions to the Svalbard archipelago: to Bear Island during the 2nd Polar Year, 1932-33, and to Spitsbergen in 1934 and 1938. Apart from his scientific achievements in Antarctica, Dobrowolski was also widely known as an author of popular-scientific books on history of discovery and exploration in the Arctic and the Antarctic. Key words: A. B. Dobrowolski, Polish Polar activity. Introduction Apart from scientific studies and pedagogical work, one of the passions of Antoni Bolesław Dobrowolski when he had returned home from the Belgica Expedition to West Antarctica (1897-1899), was the organization of scientific research in Poland. This was first made possible when, in recognition of his great scientific achievement - the monography "Natural history of ice", he was nomi­ nated deputy-director (in 1924), then director, of the State Meteorological Survey. Considering himself responsible in Poland not only for the meteorology, but also for the geophysics at large, he devoted much time to strengthening the State Meteorological Survey. He had founded the Marine Observatory in Gdynia, the Aerological Observatory at Legionowo near Warsaw, and the Magnetic Obser­ vatory at Świder near Warsaw.
    [Show full text]
  • Glossary of Stratigraphic Names
    Downloaded from http://mem.lyellcollection.org/ by guest on September 23, 2021 Glossary of stratigraphic names This index attempts to list in alphabetical order all proper strati- completed here in square brackets where it differs. Constituent graphic names from Svalbard literature. It cannot be complete, units are listed generally from the top down. although most names encountered during work on this book have As explained in Sections 18.3 and 19.3.2 correlated units in the an entry. Each entry begins with the name and its stratigraphic rank Hammerfest Basin have been included. abbreviated. The name occurs and may be defined in the translation of the Aavatsmarkbreen Fm (Harland et al. 1993) Comfortlessbreen Russian Publication of Gramberg et al. (1990, Dallmann & Mork Gp; V2, Edi; 9 13. 1991 (eds)). This is a valuable source of further information which * Aberdeenflya Fm (SKS 1996, after Rye Larsen ) McVitiepynten supplements this work. Gramberg et al. is indeed especially valu- Sbgp; Pg; 9 20. able because the Russian entries are interpreted by the authors' *t Adriabukta Fro. (Birkenmajer & Turnau 1962) Billefjorden Gp; colleagues. However, the presently recommended equivalents of Meranfjellet, Julhogda, Haitanna mbrs; Cl,Tou-Vis; 10, 17. many named units are different from that work. :~t Adventdalen Gp (Parker 1967) Janusfjellet Subgp; Carolinefjel- * Names have been recommended for use by the Stratigrafisk let, Helvetiafjellet, Rurikfjellet, Agardhfjellet, Kong Karls Komite for Svalbard (SKS) of Norsk Stratigrafisk Komite (NSK). Land, Kongsoya fms; J2-K~; 4 5, 19; it has been suggested to At the time of collation of this book the SKS had provisionally include Kolmule, Kolje, Knurr, Hekkingen and Fuglen fms of agreed only on post-Devonian stratigraphic nomenclature, hence Hammerfest Basin.
    [Show full text]
  • IASC Workshop on the Dynamics and Mass Budget of Arctic Glaciers
    IASCIASC Workshop Workshop onon the the dynamics dynamics and and mass mass budgetbudget of of Arctic Arctic glaciers glaciers AbstractsAbstracts andand Programme Programme IASCIASC Workshop, Workshop, 25-27 25-27 January January 2016 2016 BenasqueBenasque (Spain) (Spain) IASC Network on Arctic Glaciology IASC Workshop on the dynamics and mass budget of Arctic glaciers Abstracts and program IASC Workshop & Network on Arctic Glaciology annual meeting, 25-27 January 2016, Benasque (Spain) Organised by C.H. Tijm-Reijmer, F. Navarro and M. Sharp Local organizing committee: F. Navarro (Chair), E. de Andrés (Secretary), C. Recio-Blitz, J. Lapazaran, J. Otero Network on Arctic Glaciology Cover photo: Nordenskiöldbreen 2011. Photo by A. Waxegard. ISBN: 978-90-393-6605-9 Contents Preface ............................................. 4 Program ............................................ 5 Posters ............................................. 9 Participants ......................................... 10 Minutes of the Open Forum meeting ....................... 12 Abstracts ........................................... 15 Observed changes in the runoff regime of the West Greenland ice sheet from a 40-year discharge time series ........................ 15 A.P. Ahlstrøm, D. Petersen Flow velocity abnormal and altitude variation of Austre Lovénbreen in Sval- bard: a comparison of observation and simulation . 15 S. Ai, Z. Wang, M. Yan An attempt to distinguish glacier facies on Vestfonna (Nordaustlandet), Svalbard based on SAR and GPR data ........................ 16 B. Barzycka, M. Blaszczyk, M. Grabiec, J.A. Jania Greenlands outlet-glacier sensitivity to submarine melting . 16 J. Beckmann Potential of Pléiades stereo images for measurement of snow accumula- tion in Drangajökull Ice Cap (NW Iceland) ...................... 17 J.M.C. Belart, E. Berthier, E. Magnuússon, L. Anderson, A.H. Jarosch, T. Thorsteins- son, F. Pálsson Area, elevation and mass changes of the two southernmost ice caps of the Canadian Arctic Archipelago between 1952 and 2014 .
    [Show full text]
  • Plan for Forvaltning Av Svalbardrein
    Rapport 1/2009 Plan for forvaltning av svalbardrein En beskrivelse av miljømål og status for reinen på Svalbard, og en veileder for forvaltningen og forskningen april 2009 Adresse Telefon 79 02 43 00 Internett Sysselmannen på Svalbard, Telefaks 79 02 11 66 www.sysselmannen.no Pb. 633, 9171 Longyearbyen E-post [email protected] www.miljostatus.no/svalbard Tilgjengelighet ISBN: ISBN 978-82-91850-32-0 (PDF) Internett: www.sysselmannen.no Opplag: Ingen trykte eksemplarer Utgiver Rapport nr: 1/2009 Sysselmannen på Svalbard, miljøvernavdelinga Årstall: 2009 prosjektutførelse: Sysselmannen Sider: 45 Forfatter Naturvernrådgiver Tor Punsvik Deltakende institusjoner Sysselmannen på Svalbard, Norsk Polarinstitutt (NP), Direktoratet for naturforvaltning (DN), Norsk Institutt for naturforskning (Tromsø & Trondheim), Universitetet i Tromsø, Longyearbyen Jeger- og Fiskerforening. Tittel Title Plan for forvaltning av svalbardrein, Management plan for the Svalbard reindeer, kunnskaps- og forvaltningsstatus, april 2009. status of knowledge and management, April 2009. Referanse Sysselmannen på Svalbard 2009. Plan for forvaltning av svalbardrein, kunnskaps- og forvaltningsstatus, april 2009, Rapport 1/2009. 45 s. Tilgjengelig på Internett: www.sysselmannen.no. Sammendrag Svalbardreinen er en viktig del av svalbardnaturen og et svært interessant objekt for forskning, jakt og opplevelse. Forvaltningsplanen presenterer operative miljømål, samt nødvendige tiltak og virkemidler for å nå disse. Planen synliggjør Sysselmannens ambisjoner, ansvar, oppgaver
    [Show full text]
  • Sedimentation of the Kimmeridge Clay Formation in the Cleveland Basin (Yorkshire, UK)
    minerals Article Sedimentation of the Kimmeridge Clay Formation in the Cleveland Basin (Yorkshire, UK) Elizabeth Atar 1,2,* , Andrew C. Aplin 1, Violaine Lamoureux-Var 3, Christian März 4 and Thomas Wagner 5 1 Department of Earth Sciences, Durham University, South Road, Durham DH1 3LE, UK; [email protected] 2 BP, Chertsey Rd, Sunbury-on-Thames, Middlesex TW16 7LN, UK 3 IFP Energies nouvelles, 1 et 4 Avenue de Bois-Préau, 92500 Rueil-Malmaison, France; [email protected] 4 School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; [email protected] 5 Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS, UK; [email protected] * Correspondence: [email protected] Received: 27 September 2020; Accepted: 29 October 2020; Published: 2 November 2020 Abstract: Fine-grained sedimentary successions contain the most detailed record of past environmental conditions. High-resolution analyses of these successions yield important insights into sedimentary composition and depositional processes and are, therefore, required to contextualise and interpret geochemical data which are commonly used as palaeoclimate proxies. The Kimmeridge Clay Formation (KCF) is a 500 m-thick mudstone succession deposited throughout the North Sea in the Late Jurassic and records environmental conditions through this time. Here, we present petrographic analyses (on 36 thin sections) on a 50 m section of a KCF core from the Cleveland Basin (Yorkshire, UK) to investigate controls on sedimentation in this region during the Tithonian, Late Jurassic. Facies descriptions demonstrate that deposition took place in a hydrodynamically variable environment in which the sediment origins, sediment dispersal mechanisms, and redox conditions fluctuated on the scale of thousands of years.
    [Show full text]
  • Palaeogene Deposits and the Platform Structure of Svalbard
    NORSK POLARINSTITUTT SKRIFTER NR. 159 v JU. JA. LIVSIC Palaeogene deposits and the platform structure of Svalbard NORSK POLARINSTITUTT OSLO 1974 DET KONGEUGE DEPARTEMENT FOR INDUSTRI OG IlANDVERK NORSK POLARINSTITUTT Rolfstangveien 12, Snareya, 1330 Oslo Lufthavn, Norway SALG AV B0KER SALE OF BOOKS Bekene selges gjennom bokhandlere, eller The books are sold through bookshops, or bestilles direkte fra : may be ordered directly from: UNlVERSITETSFORLAGET Postboks 307 16 Pall Mall P.O.Box 142 Blindem, Oslo 3 London SW 1 Boston, Mass. 02113 Norway England USA Publikasjonsliste, som ogsa omfatter land­ List of publications, including maps and og sjekart, kan sendes pa anmodning. charts, wiZ be sent on request. NORSK POLARINSTITUTT SKRIFTER NR.159 JU. JA. LIVSIC Palaeogene deposits and the platform structure of Svalbard NORSK POLARINSTITUTT OSLO 1974 Manuscript received March 1971 Published April 1974 Contents Abstract ........................ 5 The eastern marginal fault zone 25 The Sassendalen monocline ...... 25 AHHOTaU;HH (Russian abstract) 5 The east Svalbard horst-like uplift 25 The Olgastretet trough .. .. .. .. 26 Introduction 7 The Kong Karls Land uplift .... 26 Stratigraphy ..................... 10 The main stages of formation of the A. Interpretation of sections ac- platform structure of the archipelago 26 cording to areas ............ 11 The Central Basin ........... 11 The Forlandsundet area ..... 13 The importance of Palaeogene depo- The Kongsfjorden area ....... 14 sits for oil and gas prospecting in The Renardodden area ...... 14 Svalbard .. .. .. .. .. .. .. 30 B. Correlation of sections ....... 15 Bituminosity and reservoir rock C. Svalbard Palaeogene deposits properties in Palaeogene deposits 30 as part of the Palaeogene depo- Hydrogeological criteria testifying sits of the Polar Basin ...... 15 to gas and oil content of the rocks 34 Tectonic criteria of oil and gas con- Mineral composition and conditions of tent .
    [Show full text]