REPORT Germany Tel +49 (0)30 536 53 800 Fax +49 (0)30 536 53 888
Total Page:16
File Type:pdf, Size:1020Kb
Cicerostr. 24 D-10709 Berlin REPORT Germany Tel +49 (0)30 536 53 800 Fax +49 (0)30 536 53 888 www.kompetenz-wasser.de Diffuse trace contaminants with relevance for drinking water production in rural and semi-rural areas Project acronym: AQUISAFE 1 by Lenore Tedesco, Bob E. Hall, Robert C. Barr Center for Earth and Environmental Science Department of Earth Sciences Indiana University – Purdue University, Indianapolis and Andreas Matzinger, Adrien Morel-Fatio Kompetenzzentrum Wasser Berlin gGmbH Preparation of this report was financed in part through funds provided by Indianapolis, USA & Berlin, Germany 2009 © Copyright 2009 by the KompetenzZentrum Wasser Berlin gGmbH. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention or the Protection of Literacy and Artistic Works, and the International and Pan American Copyright Conventions. Important Legal Notice Disclaimer: The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. KWB disclaims liability to the full extent for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of application, or reliance on this document. KWB disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein. It is expressly pointed out that the information and results given in this publication may be out of date due to subsequent modifications. In addition, KWB disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. The disclaimer on hand neither seeks to restrict nor to exclude KWB’s liability against all relevant national statutory provisions. Wichtiger rechtlicher Hinweis Haftungsausschluss: Die in dieser Publikation bereitgestellte Information wurde zum Zeitpunkt der Erstellung im Konsens mit den bei Entwicklung und Anfertigung des Dokumentes beteiligten Personen als technisch einwandfrei befunden. KWB schließt vollumfänglich die Haftung für jegliche Personen-, Sach- oder sonstige Schäden aus, ungeachtet ob diese speziell, indirekt, nachfolgend oder kompensatorisch, mittelbar oder unmittelbar sind oder direkt oder indirekt von dieser Publikation, einer Anwendung oder dem Vertrauen in dieses Dokument herrühren. KWB übernimmt keine Garantie und macht keine Zusicherungen ausdrücklicher oder stillschweigender Art bezüglich der Richtigkeit oder Vollständigkeit jeglicher Information hierin. Es wird ausdrücklich darauf hingewiesen, dass die in der Publikation gegebenen Informationen und Ergebnisse aufgrund nachfolgender Änderungen nicht mehr aktuell sein können. Weiterhin lehnt KWB die Haftung ab und übernimmt keine Garantie, dass die in diesem Dokument enthaltenen Informationen der Erfüllung Ihrer besonderen Zwecke oder Ansprüche dienlich sind. Mit der vorliegenden Haftungsausschlussklausel wird weder bezweckt, die Haftung der KWB entgegen den einschlägigen nationalen Rechtsvorschriften einzuschränken noch sie in Fällen auszuschließen, in denen ein Ausschluss nach diesen Rechtsvorschriften nicht möglich ist. ii Colophon Title Diffuse trace contaminants with relevance for drinking water production in rural and semi-rural environments Authors Lenore Tedesco, Bob E. Hall, Robert C. Barr, Center for Earth and Environmental Science, Department of Earth Sciences, Indiana University – Purdue University, Indianapolis, USA Andreas Matzinger, Adrien Morel-Fatio Kompetenzzentrum Wasser Berlin gGmbH, Berlin, Germany Quality Assurance Kai Schroeder, Kompetenzzentrum Wasser Berlin gGmbH, Berlin, Germany Christelle Pagotto, Veolia Water, Technical Direction, Saint-Maurice, France Magali Dechesne, Veolia Environnement Recherche & Innovation (VERI), Paris, France Publication / Dissemination approved by technical committee members: Christelle Pagotto, Veolia Water, Technical Direction, Saint-Maurice, France Boris David, Veolia Water, Veolia Water, Technical Direction, Saint-Maurice, France Magali Dechesne, Veolia Environnement Recherche & Innovation (VERI), Paris, France Emmanuel Soyeux, Veolia Environnement Recherche & Innovation (VERI), Paris, France Nicolas Rampnoux, Veolia Environnement Recherche & Innovation (VERI), Paris, France Chibby Alloway, Veolia Water North America, Pleasant Hill, CA., USA Guy Randon, Veolia Eau Région Ouest, Rennes, France Lenore Tedesco, Center for Earth and Environmental Science, Department of Earth Sciences, Indiana University – Purdue University, Indianapolis, USA Norbert Litz, Umweltbundesamt, Berlin, Germany Thomas Renoult, Société d’Environnement, d’Exploitation et de Gestion de Travaux, St. Malo, France Kai Schroeder, Kompetenzzentrum Wasser Berlin gGmbH, Berlin, Germany Yann Moreau-Le Golvan, Kompetenzzentrum Wasser Berlin gGmbH, Berlin, Germany Deliverable number Aquisafe 1 D 1.1 iii Abstract The Aquisafe project aims at mitigation of diffuse pollution from agricultural sources to protect surface water resources. The first project phase (2007-2009) focused on the review of available information and preliminary tests regarding (i) most relevant contaminants, (ii) system-analytical tools to assess sources and pathways of diffuse agricultural pollution, (iii) the potential of mitigation zones, such as wetlands or riparian buffers, to reduce diffuse agricultural pollution of surface waters and (iv) experimental setups to simulate mitigation zones under controlled conditions. The present report deals with (i), providing information on trace substances, which enter surface water predominantly via diffuse sources in rural or semi-rural environments. In particular, it provides a priority list of relevant substances to aid planning of monitoring programs at waterworks, which abstract surface water from rural watersheds, for which information on substance use is sparse. As this ranking is limited to substances for which broad data sets are available from literature, it is compared to actual screening programs in predominantly rural catchments in Brittany (France) and Indiana (USA). The literature review identified pesticides as the dominant known diffuse contaminant group in rural and semi-rural settings (section 2.1). This is confirmed for the agriculturally dominated Ic Catchment in France and Upper White River Watershed in the USA, where pesticides were found to dominate the diffuse source compounds (section 3). Seven agricultural pesticides were detected in the Ic Catchment with AMPA and atrazine being the most common compounds, detected in 54 % and 41 % of all the samples, respectively. In the White River Basin 26 of the 38 detected compounds were pesticides making them the largest group of chemicals detected. Based on literature values on pesticide detection in surface waters in Germany, France and the USA, a priority list was established in section 2.2 of this report (see Table on page vi). Only seven substances were among the 20 most relevant pesticides, both in the USA and in Europe. Accordingly, US and European substances are distinguished in the priority list. Most frequently detected substances were atrazine, metolachlor and simazine for the USA, AMPA (metabolite of glyphosate), diuron and atrazine for France and diuron, atrazine and isoproturon for Germany. The importance of atrazine in Europe is interesting, since it was already banned at the time of the monitoring, indicating the high persistency of atrazine in groundwater. In some cases in Germany, concentrations in surface waters were found to follow typical seasonal application patterns, indicating illegal use (pers. Comm.. M. Bach). Although the list of substances in the USA and in Europe differ, there is an agreement to the fact that many of the pesticides applied in agriculture find their way into surface waters. The concentrations found are often beyond 0.1 µg/L. For the EU this level already corresponds to the drinking water limit. Thus, if surface water is used for drinking water production pesticides seem to be of high relevance. In finished drinking water, frequently-used Isoproturon and Bentazon were most frequently detected in Germany and France. The importance for drinking water production is emphasized by frequent detections above 0.1 µg/L in finished drinking water in nine waterworks in the US. Regarding drinking water regulation, the thresholds in the USA are substance-specific and generally more than one magnitude higher than 0.1 µg/L. As a result threshold exceedance was mainly found for Atrazine. In terms of treatability in water works, the priority list includes the efficiency of classical treatment (flocculation, filtration, ozonation) and of powdered activated iv carbon (PAC), which is often added in emergency situations. Particularly problematic are triazines (such as atrazine), phenoxy-type substances (such as 2,4-D and Mecoprop) and Anilides/Anilines (such as Metolachlor and Acetochlor). The pesticides found in the screenings are in good agreement with the priority list of most problematic pesticides for the US and Europe. AMPA and atrazine, the substances detected most frequently in the Ic catchment, as well as 2,4-D and dichlorprop, which were found in high concentrations > 0.1 µg/L in one sample are all included in the Europe top 20 of the priority list. Other substances on the list may not have been found because they