Chlorophenoxy Herbicides (Excluding 2,4-D and MCPA) in Drinking-Water
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2,4-Dichlorophenoxyacetic Acid
2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators. -
I. Signal Words and Warning Signs
1 I. SIGNAL WORDS AND WARNING SIGNS Signal words are required on nearly all pesticide products registered and labeled for sale in the United States. The signal word gives a pesticide user a way to quickly assess the relative hazard level associated with using a product. There are three signal words in use today: CAUTION, WARNING and DANGER. note: The value “Oral LD50” (Low Dose 50) is a measurement of amount of pesticide (mg/kg) that kills 50 out of 100 laboratory animals that are force fed the pesticide under study. 2 These three signal words are associated with toxicity categories established by the U.S. Environmental Protection Agency (EPA). These four categories can be roughly described as: o Toxicity category I is Highly toxic and Severely irritating, o Toxicity category II is Moderately toxic and Moderately irritating, o Toxicity category III is Slightly toxic and Slightly irritating, o Toxicity category IV is practically non-toxic and not an irritant. LD50/LC50: A common measure of acute toxicity is the lethal dose (LD50) or lethal concentration (LC50) that causes death (resulting from a single or limited exposure) in 50 percent of the treated animals. LD50 is generally expressed as the dose in milligrams (mg) of chemical per kilogram (kg) of body weight. LC50 is often expressed as mg of chemical per volume (e.g., liter (L)) of medium (i.e., air or water) the organism is exposed to. Chemicals are considered highly toxic when the LD50/LC50 is small and practically non-toxic when the value is large. However, the LD50/LC50 does not reflect any effects from long-term exposure (i.e., cancer, birth defects or reproductive toxicity) that may occur at levels below those that cause death. -
Herbicide Mode of Action Table High Resistance Risk
Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®), -
Exposure to Herbicides in House Dust and Risk of Childhood Acute Lymphoblastic Leukemia
Journal of Exposure Science and Environmental Epidemiology (2013) 23, 363–370 & 2013 Nature America, Inc. All rights reserved 1559-0631/13 www.nature.com/jes ORIGINAL ARTICLE Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia Catherine Metayer1, Joanne S. Colt2, Patricia A. Buffler1, Helen D. Reed3, Steve Selvin1, Vonda Crouse4 and Mary H. Ward2 We examine the association between exposure to herbicides and childhood acute lymphoblastic leukemia (ALL). Dust samples were collected from homes of 269 ALL cases and 333 healthy controls (o8 years of age at diagnosis/reference date and residing in same home since diagnosis/reference date) in California, using a high-volume surface sampler or household vacuum bags. Amounts of agricultural or professional herbicides (alachlor, metolachlor, bromoxynil, bromoxynil octanoate, pebulate, butylate, prometryn, simazine, ethalfluralin, and pendimethalin) and residential herbicides (cyanazine, trifluralin, 2-methyl-4- chlorophenoxyacetic acid (MCPA), mecoprop, 2,4-dichlorophenoxyacetic acid (2,4-D), chlorthal, and dicamba) were measured. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. Models included the herbicide of interest, age, sex, race/ethnicity, household income, year and season of dust sampling, neighborhood type, and residence type. The risk of childhood ALL was associated with dust levels of chlorthal; compared to homes with no detections, ORs for the first, second, and third tertiles were 1.49 (95% CI: 0.82–2.72), 1.49 (95% CI: 0.83–2.67), and 1.57 (95% CI: 0.90–2.73), respectively (P-value for linear trend ¼ 0.05). The magnitude of this association appeared to be higher in the presence of alachlor. -
INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401 -
Appendix a Analysis of Products with Two Or More Active Ingredients
APPENDIX A ANALYSIS OF PRODUCTS WITH TWO OR MORE ACTIVE INGREDIENTS The Agency does not routinely include, in its risk assessments, an evaluation of mixtures of active ingredients, either those mixtures of multiple active ingredients in product formulations or those in the applicator’s tank. In the case of the product formulations of active ingredients (that is, a registered product containing more than one active ingredient), each active ingredient is subject to an individual risk assessment for regulatory decision regarding the active ingredient on a particular use site. If effects data are available for a formulated product containing more than one active ingredient, they may be used qualitatively or quantitatively1 2. There are no product LD50 values, with associated 95% Confidence Intervals (CIs) available for glyphosate. As discussed in USEPA (2000) a quantitative component-based evaluation of mixture toxicity requires data of appropriate quality for each component of a mixture. In this mixture evaluation an LD50 with associated 95% CI is needed for the formulated product. The same quality of data is also required for each component of the mixture. Given that the formulated products for glyphosate do not have LD50 data available it is not possible to undertake a quantitative or qualitative analysis for potential interactive effects. However, because the active ingredients are not expected to have similar mechanisms of action, metabolites, or toxicokinetic behavior, it is reasonable to conclude that an assumption of dose-addition would be inappropriate. Consequently, an assessment based on the toxicity of glyphosate is the only reasonable approach that employs the available data to address the potential acute risks of the formulated products. -
Quaternary Ammonium Compounds
Phenoxy Alkanoic Acids in Milk Using Modified QuEChERS Method Version 1 (last update: 10.04.14) Compound details The group of Phenoxy herbicides is subdivided in Phenoxyacetic herbicides (e.g. 4-CPA, 2,4-D, MCPA, 2,4,5-T) Phenoxybutyric herbicides (e.g. 2,4-DB, MCPB) Phenoxypropionic herbicides (e.g. dichlorprop, fenoprop, mecoprop) Aryloxyphenoxypropionic herbicides (e.g. diclofop, fluazifop, haloxyfop, quizalofop) altogether 49 different compounds [4]. As representatives of the group the following four herbicides were validated for milk. 2,4-D Haloxyfop O N O F OH Cl O OH Cl O F F O Cl Dichlorprop Fluazifop O N O F OH Cl O OH O F F O Cl Residue definition (commodity group AO): 2,4-D (sum of 2,4-D and its esters expressed as 2,4-D) Dichlorprop: sum of dichlorprop (including dichlorprop-P) and its conjugates, expressed as dichlorprop Fluazifop-P-butyl (fluazifop acid (free and conjugate)) Haloxyfop including Haloxyfop-R: Haloxyfop-R and conjugates of haloxyfop-R expressed as haloxyfop-R EU Reference Laboratory for Pesticides Requiring Single Residue Methods Page 1 CVUA Stuttgart, Schaflandstr. 3/2, 70736 Fellbach, Germany [email protected] Extraction method: Analysis is performed applying QuEChERS extraction: Weigh 10 g milk, add 10 mL acetoni- trile, shake 15 min. (GenoGrinder), add citrat-salt mix, shake 1 min. (GenoGrinder), centri- fuge --> raw extract, As expected, the acidic phenoxy alkanoic acids show reduced recoveries when a PSA clean- up is performed: Mean recovery in % (0.1ppm) Compound after PSA-cleanup 2.4-D 47 2.4-DP (Dichlorprop) -
How Herbicides Work: Biology to Application (Agdex 606-2)
How Herbicides Work Biology to Application Linda Hall Agriculture Research Division Alberta Agriculture and Rural Development Hugh Beckie Thomas M. Wolf Saskatoon Research Centre Saskatoon Research Centre Agriculture and Agri-Food Canada Agriculture and Agri-Food Canada Disclaimer While every effort has been made to ensure accuracy, Alberta Agriculture and Rural Development does not accept responsibility for errors or ommissions. It remains the responsibility of the readers to follow product information contained on the product label or package insert. The publisher, editor and all contributors to this publication cannot be held responsible for publication errors or any consequence resulting from the use of this publication. Published by: Alberta Agriculture and Rural Development Information Management 7000 - 113 Street Edmonton, Alberta Canada T6H 5T6 Editors: Chris Kaulbars and Gerard Vaillancourt Graphic Designer: John Gillmore Electronic Composition: Sherrill Strauss and J.A. Serafinchon Photographs: Beth Hoar – Alberta Agriculture and Rural Development David Wall – Agriculture and Agri-Food Canada Tom Wolf – Agriculture and Agri-Food Canada Dow AgroSciences Copyright © 1999. All rights reserved by Her Majesty the Queen in the right of Alberta. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical photocopying, recording, or otherwise without written permission from Information Management, Alberta Agriculture and Rural Development. Tables/chemical -
Herbicide Strategies for Managing Glyphosate-Resistant and Susceptible Kochia (Bassia Scoparia) in Spring Wheat
Canadian Journal of Plant Science Herbicide strategies for managing glyphosate-resistant and susceptible kochia (Bassia scoparia) in spring wheat Journal: Canadian Journal of Plant Science Manuscript ID CJPS-2020-0303.R1 Manuscript Type:ForArticle Review Only Date Submitted by the 17-Jan-2021 Author: Complete List of Authors: Torbiak, Alysha; Hamman Ag Research Inc. Blackshaw, Robert; Agriculture and Agri-Food Canada Brandt, Randall; Development Centre, Agriculture and Agri-Food Canada Hamman, Bill; Hamman Ag Research Inc. Geddes, Charles; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada glyphosate resistance, herbicide resistance, herbicide stewardship, Keywords: <i>Bassia scoparia</i>, <i>Kochia scoparia</i> Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue?: © The Author(s) or their Institution(s) Page 1 of 34 Canadian Journal of Plant Science Herbicide strategies for managing glyphosate-resistant and susceptible kochia (Bassia scoparia) in spring wheat Alysha T. Torbiak, Robert E. Blackshaw, Randall N. Brandt, Bill Hamman, and Charles M. Geddes* Charles M. Geddes, Randall N. Brandt, and Robert E. Blackshaw. Agriculture and Agri- Food Canada, LethbridgeFor Research Review and Development Centre,Only 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada. Alysha T. Torbiak, and Bill Hamman. Hamman Ag Research Inc. 347 Squamish Court West, Lethbridge, AB T1K 7R8, Canada. *Corresponding author: Charles M. Geddes (email: [email protected]) ORCID iD: Charles M. Geddes https://orcid.org/0000-0001-8088-224X 1 © The Author(s) or their Institution(s) Canadian Journal of Plant Science Page 2 of 34 Abstract Kochia [Bassia scoparia (L.) A.J. Scott] is a summer-annual tumbleweed that is tolerant of heat, drought and salinity, and capable of causing large yield losses in spring wheat (Triticum aestivum L). -
Corn Herbicides to Control Glyphsoate-Resistant Canola Volunteers
AGRONOMY SCIENCES RESEARCHRESEARCH UPDAUPDATETE Corn Herbicides to Control Glyphosate-Resistant Canola Volunteers 2013 Background Table 1. Herbicide treatments. • With the rapid adoption of glyphosate-resistant corn in Western Treatment Application Rate/Acre Canada, glyphosate-resistant canola volunteers have become a major weed concern to corn producers in the region. 1 Gly Only (Check) 1 L/acre (360g ae) • The Pest Management Regulatory Agency now allows 2 Gly + Dicamba 1 L/acre + 0.243 L/acre herbicides to be tank-mixed if they have individual registrations 3 Gly + 2,4-D 1 L/acre + 0.4 L/acre (600g/L) on the crop and have a common application timing. 4 Gly + MCPA Amine 1 L/acre + 0.45L/acre • Several herbicide options are available to control glyphosate 5 Gly + Bromoxynil 1 L/acre + 0.48 L/acre tolerant canola volunteers in corn; however, some herbicides may have undesirable effects on corn. Gly / Bromoxynil 6 1 L/acre + 0.48 L/acre (Split Application*) Objectives * Glyphosate and bromoxynil applied separately at V3 stage. • Assess crop injury and yield effects of various herbicides tank- mixed with glyphosate to control glyphosate-resistant canola • Herbicide injury scores were recorded at: volunteers in glyphosate-resistant corn. • 3-5 days after treatment • 7-10 days after treatment • Identify the most suitable post-emergence strategy for • 21-24 days after treatment managing glyphosate-resistant canola volunteers in glyphosate-resistant corn. • Other recorded observations include: • Brittle snap counts Study Description • Yield (bu/acre) & moisture (%) • Test weight (lbs/bu) • The study compared the crop response of four industry leading hybrids (Pioneer® brand and competitive) with five different Results herbicide treatments (Table 1). -
Agricultural Monitoring Program
Groundwater Protection Program 918 E Divide Ave, Bismarck ND 58501 701-328-5210 | https://deq.nd.gov Pesticides Monitored in North Dakota as a Part of the Agricultural Groundwater Monitoring Program Updated January 2021 Key: Pesticide Type Use Restrictions Controls Abbreviations Not Restricted in Broadleaf MCL – Maximum Fungicide Insects North Dakota Weeds Contaminant Level Woody HAL – Health Advisory Herbicide Restricted Use Mites Level Plants PAL – Prevention Action Insecticide Not Registered Grasses Fungi Level (25% MCL/HAL) NE – Not Established Banned in the Weeds Degradate µg/L – Micrograms per United States (General) Liter Maximum Contaminant Levels are set by United States Environmental Protection Agency for public drinking water systems. Health Advisory Levels are set by the United States Environmental Protection Agency for lifetime exposure to the chemical. Prevention Action Levels are concentrations that trigger action to prevent further contamination; the level is defined as 25% of the MCL/HAL in the North Dakota Pesticide State Management Plan. Listed trade names are not a comprehensive list. Listing of any trade names does not imply endorsement of the product. Listed pesticide uses are non-exhaustive and largely based on historical use in North Dakota. This information is not to be used in place of advice from a licensed pesticide vendor. Use restrictions are subject to change. Data from the United States Environmental Protection Agency, United States Geological Survey, North Dakota Department of Agriculture, and the National -
Thickening Glyphosate Formulations
(19) TZZ _T (11) EP 2 959 777 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 30.12.2015 Bulletin 2015/53 A01N 57/20 (2006.01) A01N 25/30 (2006.01) A01P 13/00 (2006.01) (21) Application number: 15175726.7 (22) Date of filing: 17.08.2009 (84) Designated Contracting States: (71) Applicant: Akzo Nobel N.V. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 6824 BM Arnhem (NL) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR (72) Inventor: ZHU, Shawn Stormville, NY New York 12582 (US) (30) Priority: 19.08.2008 US 90010 P 09.09.2008 EP 08163910 (74) Representative: Akzo Nobel IP Department Velperweg 76 (62) Document number(s) of the earlier application(s) in 6824 BM Arnhem (NL) accordance with Art. 76 EPC: 11191518.7 / 2 425 716 Remarks: 09781884.3 / 2 315 524 This application was filed on 07-07-2015 as a divisional application to the application mentioned under INID code 62. (54) THICKENING GLYPHOSATE FORMULATIONS (57) The present invention generally relates to a glyphosate formulation with enhanced viscosity, said formulation containing a thickening composition comprising at least one nitrogen- containing surfactant. EP 2 959 777 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 959 777 A1 Description FIELD OF THE INVENTION 5 [0001] The present invention relates to a glyphosate formulations thickened by nitrogen containing surfactants. BACKGROUND OF THE INVENTION [0002] Glyphosate is the most widely used herbicide in the world.