Secure Communication Over Fading Channels with Statistical Qos Constraints

Total Page:16

File Type:pdf, Size:1020Kb

Secure Communication Over Fading Channels with Statistical Qos Constraints University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Department of Electrical & Computer Engineering, Department Electrical and Computer Engineering of 2010 Secure Communication over Fading Channels with Statistical QoS Constraints Deli Qiao University of Nebraska-Lincoln, [email protected] M. Cenk Gursoy University of Nebraska-Lincoln, [email protected] Senem Velipasalar University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub Part of the Electrical and Computer Engineering Commons Qiao, Deli; Cenk Gursoy, M.; and Velipasalar, Senem, "Secure Communication over Fading Channels with Statistical QoS Constraints" (2010). Faculty Publications from the Department of Electrical and Computer Engineering. 128. https://digitalcommons.unl.edu/electricalengineeringfacpub/128 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. IEEE International Symposium on Information Theory, Proceedings (ISIT), 2010 Digital Object Identifier: 10.1109/ISIT.2010.5513448 ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010 Secure Communication over Fading Channels with Statistical QoS Constraints Deli Qiao, Mustafa Cenk Gursoy, and Senem Velipasalar Department of Electrical Engineering University of Nebraska-Lincoln, Lincoln, NE 68588 Email: [email protected], [email protected], [email protected] Abstract— 1 In this paper, secure transmission of information delay constraints. In this paper, we consider statistical QoS over an ergodic fading channel is studied in the presence of constraints in the form of limitations on the buffer length, and statistical quality of service (QoS) constraints.We employ effective incorporate the concept of effective capacity [4], which can be capacity to measure the secure throughput of the system, i.e., effective secure throughput. We assume that the channel side seen as the maximum constant arrival rate that a given time- information (CSI) of the main and the eavesdropper channels varying service process can support while satisfying statistical is available at the transmitter side. Under this assumption, we QoS guarantees. The analysis and application of effective investigate the optimal power control policies that maximize the capacity in various settings have attracted much interest re- effective secure throughput. In particular, it is noted that oppor- cently (see e.g., [5]–[7] and references therein). We define the tunistic transmission is no longer optimal and the transmitter should not wait to send the data at a high rate until the main effective secure throughput as the maximum constant arrival channel is much better than the eavesdropper channel. Moreover, rate that can be supported while keeping the eavesdropper it is shown that the benefits of adapting the power with respect to ignorant of these messages in the presence of QoS constraints. the CSI of both the eavesdropper and main channels rather than We assume that the channel side information (CSI) of the the CSI of only the main channel diminish as QoS constraints main and eavesdropper channels is available at the transmitter become more stringent. side. Under this assumption, we derive the optimal power I. INTRODUCTION control policies that maximize the effective secure throughput. We analyze two types of control policies by adapting the Security is an important consideration in wireless systems power with respect to both the main and eavesdropper channel due to the broadcast nature of wireless transmissions. In the conditions and also with respect to only the main channel pioneering work [1], Wyner addressed the security problem conditions. Through this analysis, we find that, due to the from an information-theoretic point of view and considered a introduction of the QoS constraints, the transmitter cannot wire-tap channel model. He proved that secure transmission reserve its power for times at which the main channel is much of confidential messages to a destination in the presence of stronger than the eavesdropper channel. Also, we find that a degraded wire-tapper can be achieved, and he established adapting the power allocation strategy with respect to both the the secrecy capacity which is defined as the highest rate of main and eavesdropper channel CSI rather than only the main reliable communication from the transmitter to the legitimate channel CSI provides little improvement when QoS constraints receiver while keeping the wire-tapper completely ignorant of become more stringent. the transmitted messages. Recently, there has been numerous The rest of the paper is organized as follows. Section II studies addressing information theoretic security. For instance, briefly describes the system model and the necessary prelim- the impact of fading has been investigated in [2], where it has inaries on statistical QoS constraints and effective capacity. been shown that a non-zero secrecy capacity can be achieved In Section III, we present our results on power adaptation even when the eavesdropper channel is better than the main policies. Finally, Section IV concludes the paper. channel on average. The secrecy capacity region of the fading broadcast channel with confidential messages and associated II. SYSTEM MODEL AND PRELIMINARIES optimal power control policies have been identified in [3], where it is shown that the transmitter allocates more power A. System Model as the strength of the main channel increases with respect to The system model is shown in Fig. 1. It is assumed that the that of the eavesdropper channel. transmitter generates data sequences which are divided into In addition to security issues, providing acceptable perfor- frames of duration T . These data frames are initially stored mance and quality is vital to many applications. For instance, in the buffer before they are transmitted over the wireless voice over IP (VoIP) and interactive-video (e.g,. videocon- channel. The channel input-output relationships are given by ferencing) systems are required to satisfy certain buffer or Y1[i]=h1[i]X[i]+Z1[i] (1) 1This work was supported by the National Science Foundation under Grants Y i h i X i Z i CNS–0834753, and CCF–0917265. 2[ ]= 2[ ] [ ]+ 2[ ] (2) 978-1-4244-7892-7/10/$26.00 ©2010 IEEE 2503 ISIT 2010 ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010 can support in order to guarantee a statistical QoS requirement specified by the QoS exponent θ. If we define Q as the stationary queue length, then θ is the decay rate of the tail of the distribution of the queue length Q: log P (Q ≥ q) lim = −θ. (3) q→∞ q Therefore, for large qmax, we have the following approxima- tion for the buffer violation probability: P (Q ≥ qmax) ≈ e−θqmax . Hence, while larger θ corresponds to more strict QoS constraints, smaller θ implies looser QoS guarantees. Similarly, if D denotes the steady-state delay experienced in −θδdmax the buffer, then P (D ≥ dmax) ≈ e for large dmax, where δ is determined by the arrival and service processes [6]. Fig. 1. The general system model. The effective capacity is given by −θ Λ( ) 1 −θS[t] C(θ)=− = − lim loge E{e } bits/s, (4) θ t→∞ θt i X i t where is the frame index, [ ] is the channel input in the where the expectation is with respect to S[t]= s[i], i Y i Y i i=1 th frame, and 1[ ] and 2[ ] represent the channel outputs at which is the time-accumulated service process. {s[i],i = i receivers 1 and 2 in frame , respectively. We assume that 1, 2,...} denotes the discrete-time stationary and ergodic {h i } j , the sequences of fading coefficients j[ ] for =12 stochastic service process. We define the effective capacity are jointly stationary and ergodic discrete-time processes, and obtained when the service rate is confined by the secrecy we denote the magnitude-square of the fading coefficients capacity as the effective secure throughput. by zj[i]=|hj[i]|2. Considering that receiver 1 is the main user and receiver 2 is the eavesdropper, we in the rest of In this paper, in order to simplify the analysis while consid- the paper express z1 and z2 as zM and zE, respectively, ering general fading distributions, we assume that the fading for more clarity. The channel input is subject to an average coefficients stay constant over the frame duration T and vary energy constraint E{|X[i]|2}≤P/B¯ , where B denotes the independently for each frame and each user. In this scenario, bandwidth available in the system. Assuming that there are s[i]=TR[i], where R[i] is the instantaneous service rate for B complex symbols per second, we can easily see that the confidential messages in the ith frame duration [iT, (i +1)T ]. symbol energy constraint of P/B¯ implies that the channel Then, (4) can be written as P¯ input has a power constraint of . Above in the channel input- 1 −θTR[i] C(θ)=− loge Ez{e } bits/s, (5) output relationships, the noise component Zj[i] is a zero-mean, θT circularly symmetric, complex Gaussian random variable with where R[i] in general depends on the fading magnitudes z = variance E{|Zj[i]|2} = Nj for j =1, 2. The additive Gaussian (zM ,zE). (5) is obtained using the fact that instantaneous rates {Z i } noise samples j[ ] are assumed to form an independent and {R[i]} vary independently over different frames. The effective identically distributed (i.i.d.) sequence. secure throughput normalized by bandwidth B is We denote the average transmitted signal to noise ratio with P¯ C θ respect to receiver 1 as SNR = . We also denote P [i] ( ) N1B C(θ)= bits/s/Hz.
Recommended publications
  • Unicode Request for Cyrillic Modifier Letters Superscript Modifiers
    Unicode request for Cyrillic modifier letters L2/21-107 Kirk Miller, [email protected] 2021 June 07 This is a request for spacing superscript and subscript Cyrillic characters. It has been favorably reviewed by Sebastian Kempgen (University of Bamberg) and others at the Commission for Computer Supported Processing of Medieval Slavonic Manuscripts and Early Printed Books. Cyrillic-based phonetic transcription uses superscript modifier letters in a manner analogous to the IPA. This convention is widespread, found in both academic publication and standard dictionaries. Transcription of pronunciations into Cyrillic is the norm for monolingual dictionaries, and Cyrillic rather than IPA is often found in linguistic descriptions as well, as seen in the illustrations below for Slavic dialectology, Yugur (Yellow Uyghur) and Evenki. The Great Russian Encyclopedia states that Cyrillic notation is more common in Russian studies than is IPA (‘Transkripcija’, Bol’šaja rossijskaja ènciplopedija, Russian Ministry of Culture, 2005–2019). Unicode currently encodes only three modifier Cyrillic letters: U+A69C ⟨ꚜ⟩ and U+A69D ⟨ꚝ⟩, intended for descriptions of Baltic languages in Latin script but ubiquitous for Slavic languages in Cyrillic script, and U+1D78 ⟨ᵸ⟩, used for nasalized vowels, for example in descriptions of Chechen. The requested spacing modifier letters cannot be substituted by the encoded combining diacritics because (a) some authors contrast them, and (b) they themselves need to be able to take combining diacritics, including diacritics that go under the modifier letter, as in ⟨ᶟ̭̈⟩BA . (See next section and e.g. Figure 18. ) In addition, some linguists make a distinction between spacing superscript letters, used for phonetic detail as in the IPA tradition, and spacing subscript letters, used to denote phonological concepts such as archiphonemes.
    [Show full text]
  • +1. Introduction 2. Cyrillic Letter Rumanian Yn
    MAIN.HTM 10/13/2006 06:42 PM +1. INTRODUCTION These are comments to "Additional Cyrillic Characters In Unicode: A Preliminary Proposal". I'm examining each section of that document, as well as adding some extra notes (marked "+" in titles). Below I use standard Russian Cyrillic characters; please be sure that you have appropriate fonts installed. If everything is OK, the following two lines must look similarly (encoding CP-1251): (sample Cyrillic letters) АабВЕеЗКкМНОопРрСсТуХхЧЬ (Latin letters and digits) Aa6BEe3KkMHOonPpCcTyXx4b 2. CYRILLIC LETTER RUMANIAN YN In the late Cyrillic semi-uncial Rumanian/Moldavian editions, the shape of YN was very similar to inverted PSI, see the following sample from the Ноул Тестамент (New Testament) of 1818, Neamt/Нямец, folio 542 v.: file:///Users/everson/Documents/Eudora%20Folder/Attachments%20Folder/Addons/MAIN.HTM Page 1 of 28 MAIN.HTM 10/13/2006 06:42 PM Here you can see YN and PSI in both upper- and lowercase forms. Note that the upper part of YN is not a sharp arrowhead, but something horizontally cut even with kind of serif (in the uppercase form). Thus, the shape of the letter in modern-style fonts (like Times or Arial) may look somewhat similar to Cyrillic "Л"/"л" with the central vertical stem looking like in lowercase "ф" drawn from the middle of upper horizontal line downwards, with regular serif at the bottom (horizontal, not slanted): Compare also with the proposed shape of PSI (Section 36). 3. CYRILLIC LETTER IOTIFIED A file:///Users/everson/Documents/Eudora%20Folder/Attachments%20Folder/Addons/MAIN.HTM Page 2 of 28 MAIN.HTM 10/13/2006 06:42 PM I support the idea that "IA" must be separated from "Я".
    [Show full text]
  • Ukrainian ASCII-Cyrillic
    This is the ASCII-Cyrillic Home Page, PDF rendition. N.B. The bitmaps probably look best at 100% size! ASCII-Cyrillic and its converter email-ru.tex (beta version) A new faithful ASCII representation for Russian called ASCII-Cyrillic is presented here, one which permits accurate typing and reading of Russian where no Russian keyboard or font is available -- as often occurs outside of Russia. ASCII-Cyrillic serves the Russian and Ukrainian languages in parallel. This brief introduction is initially for Russian; but, further along, come the modifications needed to adapt to the Ukrainian alphabet. Here is a fragment of Russian email. As far as the email system was concerned, the email message was roughly a sequence of "octets" or "bytes" (each 8 zeros or ones); where each octet corresponds to a character according to some 8-bit encoding. As originally typed and sent, it is probably readable (using a 8-bit Russian screen font) on most computers in any country where a Cyrillic alphabet is indigenous --- but rarely beyond. (The GIF image you see here is widely readable, but at least 10 times as bulky, and somewhat hazy too.) The portability of 8-bit Cyrillic text is hampered by the frequent need to re-encode for another computer operating system. When the targeted encoding does not contain all the characters used, reencoding can become not just inconvenient but downright problematic. The utility "email-ru.tex" converts this 8-bit text to and from ASCII-Cyrillic, the new 7-bit ASCII transcription of Russian. This scheme was designed to be both typeable and readable on every computer worldwide: Na obratnom puti !Gardine obq'asnila mne, kak delath peresadku na metro.
    [Show full text]
  • 'Kuzwa Ngomzim.Ba." N Go. M A;. Lblula. N Ga. Goduka. Ngi Kgalabile, Ukuti
    250 DREAMS, ETC. 'kuzwa ngomzim.ba." N go. m a;. body." I conquered him. I went lblula. N ga. goduka. ngi kgalabIle, home having ascended a rock of ukuti, Ce 0, kanti ngi vinjelwe safety, saying, " 0, forsooth I have amauga." been hindered by fantasies." N ga ti ngi pinda ukwenza njalo, I did so again, aml the things a kwa. be ku sa Yama uku ng' esa.­ no longer continued to frighten bisa. Itwa ya kwa pela, kwa ya me. And at last they ceased kwa ti nya, ku ze ku be namhln altogether, and have not returned nje, a ku se ko. Abaningi ba to the present day. Many are vinjelwa i loko; lapo be ti ba ya hindered by such things; when kqala nje ukukuleka, ba bone lezo they mE-rely begin to pray, they 'zilwane ezi. za 'ku ba dlbla, ba vu­ see these beasts which come to ke masinyane, ba goduke, a nga be devour them, and they at once e sa tsho umuntu ukuti, "Ngi ya shtrt aJld go up, and no one thinks 'kupinda ngi ye kuleyo 'ndawo;" of going to the same pla.ce again; a se ti, "Ngomso kuhle ngi. ye but a man says, "To-mon"ow it ngalapa, ngi bone uma ku ya 'kuba will be well for me to go to such a njalo na." Xu be njalo; a hlale place, and see if the same thing e se sa.ba omunye. Xu njalo kwa.­ will happen flgain." It does hap­ banye. Kepa kwabaningi ku pen again j and he is afraid ever amango.
    [Show full text]
  • Karenni (Kayah)
    1 fg,uh jkGgbkJgzkdujfgkJg lrkGg;kHgpJh jkGgbkJgomkuhodfgrdflkJ sf jkGgjfgrygjfgrdfh fgdJlKg fg,uh lrkGgeGglkdfcGhnHpJh [t jkGgjfgrygeJgjkfhjuhskyvdJhvfh;kJ bdf rK ktjkfhjkJgrdfsky ;ygjkGg[dJiGpJh dJhsxtg jtgefg rK lkFbfgsky ;Hh [t skGgjfgvHgaHh [t ;Hh lkFbfgsky rK jtgefg dJhsxtg ;ygjkGg[dJiGpJh ktjkfhjkJgrdfsky rK bdf bdf rK ktjkfhjkJgrdfsky ;ygjkGg[dJiGpJh dJhsxtg jtgefg rK lkFbfgsky ;Hh [t skGgjfgvHgaHh [t ;Hh lkFbfgsky rK jtgefg dJhsxtg ;ygjkGg[dJiGpJh ktjkfhjkJgrdfsky rK bdf ;yg,kHha;df,kHha;uh skylkJ lrkGgeGglkdfcGhnH jfgkJg fgpJh fgpJh jfgkJg lrkGgeGglkdfcGhnH skylkJ ;yg,kHha;df,kHha;uh ;yg,kHha;df,kHha;uh skylkJ lrkGgeGglkdfcGhnH jfgkJg fgpJh fgpJh jfgkJg lrkGgeGglkdfcGhnH skylkJ ;yg,kHha;df,kHha;uh jkGgjfgrygjfgrdfhskylkJ fgdJlKgpJh jfgkJg jfgkJg fgdJlKgpJh jkGgjfgrygjfgrdfhskylkJ - jkGgjfgrygjfgrdfhskylkJ fgdJlKgpJh jfgkJg jfgkJg fgdJlKgpJh jkGgjfgrygjfgrdfhskylkJ - 1 jkGgrfhbf[dfh [t ug;tjfgkJg 16 ;kJlkHiGpJh Godfglku jkGgrygjkGgadfh lkmuhjtgztg fgpJh - odJhakJ vmyzKndfg;kGh fgdJlKg jkGgltjfgryg JgzkJgwyg (FEMA) – www.ready.gov fgbJgrygafgakJ zGzkJgsyg fgl;KbkHg[Hg – www.redcross.org jkGgldJjkGgadfh fg[Hgfg,kfhpJh jkGgbkJgzkdu vfh;kJ – www.disasterdistress.samhsa.gov/ ayg[fh afgdfh [t skGg iGpJhjkfhjkJgrdf fga;Gh jtglrkGglrkGgsxtg fg aygcyjtg bdfodJg eGgcGhsky kK sf jkGgldJjkGgadfh rK fg ;ug jkGgbkJgzkdu kJbfg. vdfiG[uh Gzxt nuh [t jkGgldJjkGgadfh fg[Hgfg,kfhpJh jkGgbkJgzkdu vfh;kJ rK nuh bfjuh bfg 1-800-846-8517 sxtgkK rK cHg[dfh jkGgrygjkGgadfh. amyh jkGgbkJgzkdu sf ;kJjfgaGgsky fgpJhsxtglkfhsy/ ;kJlkugoJglkJ 'ku pJh jkGgbkJgzkdu sxtgbfg lkGg jfgrygjfgrdfh ugskJg[Fg lkfh lrG/ fgdJlKg kJbfg ey jkGgiGygcJhjfgrKiG [t fgbkJgldJbkJgcGhzdkf afgdfhjkGgugcduglrdfh. iGomkuhlrkGg bkfjugbfg jkfhbkFjkfhjkGg 2 sxtga;K akFrkJ nFgomuhodfgvdJkK fgvGh jkGgbkJgfgskJ nHsxtgjfgkJg lrGkK/ ayg[fh fgdJlKg jtgztg aygomkuhodfgkK kJbfg. idfnH bkyg. jkGgndJnJg HhjkfhbkHjkfhjkGg. bkfjugbfg 9-1-1 jkGgjfgrKiGeGgcGhsdfgzK sf jkGgvHgjkGgakdJ (kJatgrJ nH. Fg iGzkdfrdflkfhjug. iGskJlkfhjug. Jugbfg fgdJlKg imygoJg ugakxtzkdflkfhjug) fg aygbkJgnHsxtgbfg.
    [Show full text]
  • Leesfragment
    {qogs Ali Smith {qogs Vertaald door Karina van Santen en Martine Vosmaer 2020 Prometheus Amsterdam De vertaalsters ontvingen voor deze vertaling een projectsubsidie van het Nederlands Letterenfonds (www.letterenfonds.nl). Oorspronkelijke titel Summer © 2020 Ali Smith © 2020 Nederlandse vertaling Uitgeverij Prometheus en Karina van Santen en Martine Vosmaer Omslagontwerp Sander Patelski Foto auteur Antonio Olmos www.uitgeverijprometheus.nl 02/1 978 90 446 4499 9 voor mijn zusters Maree Morrison Anne MacLeod mijn vrienden Paul Bailey Bridget Hannigan om mijn vriendin Sarah Daniel niet te vergeten en voor mijn bucolische vriendin Sarah Wood Het was een zomeravond en ze zaten in de grote kamer, met de ramen naar de tuin open, te praten over de beerput. –Virginia Woolf Heer houd mijn herinnering fris! – Charles Dickens Hoe onmetelijk het duister ook is we moeten zelf voor licht zorgen. – Stanley Kubrick Ik dacht aan die persoon, hoe hij of zij, me meenam naar een land ver hoog zonnig waar ik wist dat geluk slechts een kort moment was, een sputterende vlam in de haard die alle ellende tot as verbrandt als het kon, een zeefsel sintels zoals waar we om rouwen wanneer kisten zinken met gruwelijke nietszeggendheid in gebulder, in rook, in licht, in bijna niets. Het niet echt niets ik loof het en ik schrijf het. – Edwin Morgan O, ze is warm! – William Shakespeare 1 Iedereen zei: en? Als in nou en? Als in schouderophalen, of wat wil je dat ik eraan doe? Of het kan me echt geen reet schelen, of ei- genlijk ben ik het er wel mee eens, ik vind het best.
    [Show full text]
  • Language Specific Peculiarities Document for Halh Mongolian As Spoken in MONGOLIA
    Language Specific Peculiarities Document for Halh Mongolian as Spoken in MONGOLIA Halh Mongolian, also known as Khalkha (or Xalxa) Mongolian, is a Mongolic language spoken in Mongolia. It has approximately 3 million speakers. 1. Special handling of dialects There are several Mongolic languages or dialects which are mutually intelligible. These include Chakhar and Ordos Mongol, both spoken in the Inner Mongolia region of China. Their status as separate languages is a matter of dispute (Rybatzki 2003). Halh Mongolian is the only Mongolian dialect spoken by the ethnic Mongolian majority in Mongolia. Mongolian speakers from outside Mongolia were not included in this data collection; only Halh Mongolian was collected. 2. Deviation from native-speaker principle No deviation, only native speakers of Halh Mongolian in Mongolia were collected. 3. Special handling of spelling None. 4. Description of character set used for orthographic transcription Mongolian has historically been written in a large variety of scripts. A Latin alphabet was introduced in 1941, but is no longer current (Grenoble, 2003). Today, the classic Mongolian script is still used in Inner Mongolia, but the official standard spelling of Halh Mongolian uses Mongolian Cyrillic. This is also the script used for all educational purposes in Mongolia, and therefore the script which was used for this project. It consists of the standard Cyrillic range (Ux0410-Ux044F, Ux0401, and Ux0451) plus two extra characters, Ux04E8/Ux04E9 and Ux04AE/Ux04AF (see also the table in Section 5.1). 5. Description of Romanization scheme The table in Section 5.1 shows Appen's Mongolian Romanization scheme, which is fully reversible.
    [Show full text]
  • Effect of Changi Ng Dft Process Si Ze on Data Rate I N Lte Upli Nk Layer
    Kufa Journal of Engineering Vol. 10, No. 3, July 2019, P.P. 100-113 Received 24 May 2018, accepted 10 January 2019 EFFECT OF CHANGI NG DFT PROCESS SI ZE ON DATA RATE I N LTE UPLI NK LAYER Duraid M. Saeed1, Zaid S. Hassoon2 and Jasim M. Hasan3 M .Sc, Najaf I nternet Department, State Company for I nternet Services, M inistry of Communication, Email: [email protected] M .Sc, M anager of Technical Affairs, I raqi Telecommunication public company, Baghdad, M inistry of Communication, Email: [email protected] M .Sc, M isan Telecommunication Department, I raqi Telecommunication public company, M inistry of Communication, Email: [email protected] http://dx.doi.org/10.30572/2018/kje/100307 ABSTRACT This paper deals with Matlab simulation of Long Term Evolution system (Lte) to show data rate of the uplink layer from user equipment toward the tower with respect to the size of Desecrate Fourier Transform process (DFT) which will be increased from 2 to the size of Inverse Desecrate Fourier Transform process (IDFT). Also it shows the way of using Cyclic Prefix technique (CP) in Lte system and its types which effect on the data rate for uplink layer. Finally the results will show the value of Lte system data rate for different types of modulation and Cyclic Prefix which will be for many types of system bandwidth individually, and it will show the minimum and maximum values of (DFT) process size with the midpoint which is the best one. KEYWORDS: Lte, Data Rate, DFT process size, Cyclic Prefix, Bandwidth.
    [Show full text]
  • Multilingualism, the Needs of the Institutions of the European Community
    COMMISSION Bruxelles le, 30 juillet 1992 DES COMMUNAUTÉS VERSION 4 EUROPÉENNES SERVICE DE TRADUCTION Informatique SdT-02 (92) D/466 M U L T I L I N G U A L I S M The needs of the Institutions of the European Community Adresse provisoire: rue de la Loi 200 - B-1049 Bruxelles, BELGIQUE Téléphone: ligne directe 295.00.94; standard 299.11.11; Telex: COMEU B21877 - Adresse télégraphique COMEUR Bruxelles - Télécopieur 295.89.33 Author: P. Alevantis, Revisor: Dorothy Senez, Document: D:\ALE\DOC\MUL9206.wp, Produced with WORDPERFECT for WINDOWS v. 5.1 Multilingualism V.4 - page 2 this page is left blanc Multilingualism V.4 - page 3 TABLE OF CONTENTS 0. INTRODUCTION 1. LANGUAGES 2. CHARACTER RÉPERTOIRE 3. ORDERING 4. CODING 5. KEYBOARDS ANNEXES 0. DEFINITIONS 1. LANGUAGES 2. CHARACTER RÉPERTOIRE 3. ADDITIONAL INFORMATION CONCERNING ORDERING 4. LIST OF KEYBOARDS REFERENCES Multilingualism V.4 - page 4 this page is left blanc Multilingualism V.4 - page 5 0. INTRODUCTION The Institutions of the European Community produce documents in all 9 official languages of the Community (French, English, German, Italian, Dutch, Danish, Greek, Spanish and Portuguese). The need to handle all these languages at the same time is a political obligation which stems from the Treaties and cannot be questionned. The creation of the European Economic Space which links the European Economic Community with the countries of the European Free Trade Association (EFTA) together with the continuing improvement in collaboration with the countries of Central and Eastern Europe oblige the European Institutions to plan for the regular production of documents in European languages other than the 9 official ones on a medium-term basis (i.e.
    [Show full text]
  • Cyrillic # Version Number
    ############################################################### # # TLD: xn--j1aef # Script: Cyrillic # Version Number: 1.0 # Effective Date: July 1st, 2011 # Registry: Verisign, Inc. # Address: 12061 Bluemont Way, Reston VA 20190, USA # Telephone: +1 (703) 925-6999 # Email: [email protected] # URL: http://www.verisigninc.com # ############################################################### ############################################################### # # Codepoints allowed from the Cyrillic script. # ############################################################### U+0430 # CYRILLIC SMALL LETTER A U+0431 # CYRILLIC SMALL LETTER BE U+0432 # CYRILLIC SMALL LETTER VE U+0433 # CYRILLIC SMALL LETTER GE U+0434 # CYRILLIC SMALL LETTER DE U+0435 # CYRILLIC SMALL LETTER IE U+0436 # CYRILLIC SMALL LETTER ZHE U+0437 # CYRILLIC SMALL LETTER ZE U+0438 # CYRILLIC SMALL LETTER II U+0439 # CYRILLIC SMALL LETTER SHORT II U+043A # CYRILLIC SMALL LETTER KA U+043B # CYRILLIC SMALL LETTER EL U+043C # CYRILLIC SMALL LETTER EM U+043D # CYRILLIC SMALL LETTER EN U+043E # CYRILLIC SMALL LETTER O U+043F # CYRILLIC SMALL LETTER PE U+0440 # CYRILLIC SMALL LETTER ER U+0441 # CYRILLIC SMALL LETTER ES U+0442 # CYRILLIC SMALL LETTER TE U+0443 # CYRILLIC SMALL LETTER U U+0444 # CYRILLIC SMALL LETTER EF U+0445 # CYRILLIC SMALL LETTER KHA U+0446 # CYRILLIC SMALL LETTER TSE U+0447 # CYRILLIC SMALL LETTER CHE U+0448 # CYRILLIC SMALL LETTER SHA U+0449 # CYRILLIC SMALL LETTER SHCHA U+044A # CYRILLIC SMALL LETTER HARD SIGN U+044B # CYRILLIC SMALL LETTER YERI U+044C # CYRILLIC
    [Show full text]
  • ASCII-Cyrillic and Its Converter Email-Ru.Tex
    ASCII-Cyrillic and its converter email-ru.tex by Laurent Siebenmann A new faithful ASCII representation for Russian called ASCII-Cyrillic is presented here, one which permits accurate typing and reading of Russian where no Russian keyboard or font is available -- as often occurs outside of Russia. ASCII-Cyrillic serves the Russian and Ukrainian languages in parallel. This article initially discusses Russian; but, further along, come the modifications needed to adapt to the Ukrainian alphabet. TeX is mother to ASCII-Cyrillic inasmuch as its converter "email-ru.tex" is a program in TeX language which is interpreted by TeX. On the other hand, ASCII-Cyrillic is designed to be useful beyond TeX. Indeed a current project is to make it available on Internet so that the vast public ignorant of TeX can exploit it. This provisional Internet bias has led to the use of HTML for this article, bitmaps and all. Contents Overview Crash course on Russian ASCII-Cyrillic Ukrainian ASCII-Cyrillic Vital statistics for ASCII-Cyrillic Below is a photo of a fragment of Russian email sent from France to Russia. Ideally, it would be typed as 8-bit text using a Russian keyboard and screen font, and then assigned a suitable MIME type identifying the font encoding. To the email system, the message contents would be a sequence of "octets" or "bytes" (each 8 zeros or ones), where each octet corresponds to a character according to the font encoding. The ASCII-Cyrillic and its converter email-ru.tex 175 receiving email system and email reader are expected to recognize the encoding and provide for Cyrillic display and printing.
    [Show full text]
  • Download PDF File
    Short Communication Real and extended volumes in simultaneous transformations T. Kasuya, K. Ichikawa, M. Fuji, and H. K. D. H. Bhadeshia T he relationship between real and extended volumes is expanded to an indefinite number of simultaneous transformation processes. T he assumption used in the present study is that the growth and nucleation of each product phase occurs randomly throughout the transforming region. T he real volume of each phase is given in the form of an integral, using the extended volumes. Once the extended volumes of diVerent product phases are related, the real volume of each product phase can be analytically or numerically calculated, and analytical solutions for cases where the extended volumes are related linearly or parabolically are given. MST /4226 Dr Kasuya, Mr Ichikawa, and Mr Fuji are in the Welding and Joining Research Center, Nippon Steel Corp., 20-1 Shintomi, Futtsu-City, Chiba, 293–8511 Japan. Dr Bhadeshia is in the Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK. Manuscript received 4 October 1998; in final form 24 November 1998. ` 1999 IoM Communications L td. two equations Introduction V +V dV = 1− 1 2 dV e .........(3) A model for a single transformation begins with the 1 A V B 1 calculation of the nucleation and growth rates using 1–6 V +V classical theory, but an estimation of the volume fraction dV = 1− 1 2 dV e .........(4) requires impingement between particles to be taken into 2 A V B 2 account. This is generally achieved using the extended volume concept of Kolmogorov, Johnson and Mehl, and which in general must be solved numerically although an Avrami (details are given in Ref.
    [Show full text]