D:\In Press\Final Issue\IJFAS 1(1)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Are We Using the Correct First Aid for Jellyfish?
Editorial Are we using the correct first aid for jellyfish? Jamie E Seymour The answer is predicated on our knowing what the correct treatment is — and we don’t n this issue of the MJA, Isbister and colleagues report that hot water immersion was no more effective than ice packs for I fi Chironex treating the pain of stings by the box jelly sh ( fleckeri).1 This finding is surprising, as jellyfish venoms are heat- labile,2 but unsurprising, given that heat treatment for some patients did not begin until 4 hours after the patient was stung. Managing jellyfish stings is generally subject to confusion, and official advice needs revising to make it clear, consistent and effec- tive. The current Australian Resuscitation Council (ARC) guidelines for treating jellyfish envenoming3 encourage this confusion by suggesting that people stung while swimming in temperate waters (south of Bundaberg) should use heat immersion to reduce pain report.10 Despite many subsequent published studies finding this (based on a randomised controlled trial of treatment for bluebottle procedure ineffective, including one randomised controlled trial,11 stings4), but those envenomed in tropical waters (north of Bunda- it is still standard practice for many medical professionals. berg) should be treated with ice. The guidelines also advise that Magnesium may be helpful in some situations, but may not be as vinegar should be used to minimise envenoming only in tropical effective as first thought, perhaps because of differences in the areas — unless it is clear that the patient has been stung by a blue- venoms involved. bottle, in which case vinegar should never be used. -
Sea Snakes You Can Easily Change the Color Theme of Your Poster by Going to the Presentation Poster
(—THIS SIDEBAR DOES NOT PRINT—) QUICK START (cont.) DESIGN GUIDE How to change the template color theme This PowerPoint 2007 template produces a 36”x48” Sea Snakes You can easily change the color theme of your poster by going to the presentation poster. You can use it to create your research DESIGN menu, click on COLORS, and choose the color theme of your choice. You can also create your own color theme. poster and save valuable time placing titles, subtitles, text, and graphics. Howard Moon We provide a series of online tutorials that will guide you through the poster design process and answer your poster production questions. To view our template tutorials, go Abstract Venom Reproduction Diet You can also manually change the color of your background by going to online to PosterPresentations.com and click on HELP DESK. VIEW > SLIDE MASTER. After you finish working on the master be sure to Sea Snakes (also known as Hydrophiinae) are reptiles that Since sea snakes come from Elapidae family, the majority of Sea snakes are ovoviviparous, except for laticauda, which is Sea snakes are carnivores that feed on fish, fish eggs, go to VIEW > NORMAL to continue working on your poster. When you are ready to print your poster, go online to inhabit in marine environments that are considered one of the the Hydrophiinae species possess venom glands. Species oviparous. Although sea snakes are air-breathing species, they mollusks, eels, etc. They usually wander around the coral reefs How to add Text PosterPresentations.com most aquatic vertebrates. These guys are found in warm such as beaked sea snake (Enhydrina schistose) can kill about mate in water. -
Marine Reptiles
Species group report card – marine reptiles Supporting the marine bioregional plan for the North Marine Region prepared under the Environment Protection and Biodiversity Conservation Act 1999 Disclaimer © Commonwealth of Australia 2012 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and enquiries concerning reproduction and rights should be addressed to Department of Sustainability, Environment, Water, Population and Communities, Public Affairs, GPO Box 787 Canberra ACT 2601 or email [email protected] Images: A gorgonian wtih polyps extended – Geoscience Australia, Hawksbill Turtle – Paradise Ink, Crested Tern fishing – R.Freeman, Hard corals – A.Heyward and M.Rees, Morning Light – I.Kiessling, Soft corals – A.Heyward and M.Rees, Snubfin Dolphin – D.Thiele, Shrimp, scampi and brittlestars – A.Heyward and M.Rees, Freshwater sawfish – R.Pillans, CSIRO Marine and Atmospheric Research, Yellowstripe Snapper – Robert Thorn and DSEWPaC ii | Supporting the marine bioregional plan for the North Marine Region | Species group report card – marine reptiles CONTENTS Species group report card – marine reptiles ..........................................................................1 1. Marine reptiles of the North Marine Region .............................................................................3 2. Vulnerabilities and pressures ................................................................................................ -
Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish
diversity Review Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish Michael J. Kingsford * , Jodie A. Schlaefer and Scott J. Morrissey Marine Biology and Aquaculture, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; [email protected] (J.A.S.); [email protected] (S.J.M.) * Correspondence: [email protected] Abstract: Understanding the hierarchy of populations from the scale of metapopulations to mesopop- ulations and member local populations is fundamental to understanding the population dynamics of any species. Jellyfish by definition are planktonic and it would be assumed that connectivity would be high among local populations, and that populations would minimally vary in both ecological and genetic clade-level differences over broad spatial scales (i.e., hundreds to thousands of km). Although data exists on the connectivity of scyphozoan jellyfish, there are few data on cubozoans. Cubozoans are capable swimmers and have more complex and sophisticated visual abilities than scyphozoans. We predict, therefore, that cubozoans have the potential to have finer spatial scale differences in population structure than their relatives, the scyphozoans. Here we review the data available on the population structures of scyphozoans and what is known about cubozoans. The evidence from realized connectivity and estimates of potential connectivity for scyphozoans indicates the following. Some jellyfish taxa have a large metapopulation and very large stocks (>1000 s of km), while others have clade-level differences on the scale of tens of km. Data on distributions, genetics of medusa and Citation: Kingsford, M.J.; Schlaefer, polyps, statolith shape, elemental chemistry of statoliths and biophysical modelling of connectivity J.A.; Morrissey, S.J. -
Marine Turtle Newsletter No. 117, 2007 - Page ISSN 0839-7708 Editors: Managing Editor
Issue Number 117 July 2007 Logo for the Twenty-Eighth Symposium on Sea Turtle Biology and Conservation (pp. 14-16). IN THIS ISSUE: Articles: Marine Turtles in Mozambique: Towards an Effective Conservation and Management Program..................A.Costa et al. Predation on the Zoanthid Palythoa caribaeorum by a Hawksbill Turtle in Southeastern Brazil.......S.N.Stampar et al. Rat Eradication as Part of a Hawksbill Conservation Program in Paraíba State, Brazil........................D.Zeppelini et al. Morphodynamics of an Olive Ridley Nesting Beach in the Baja Peninsula...V.M. Gómez-Muñoz & L. Godínez-Orta Notes: First Records of Olive Ridley Turtles in Seychelles...............................................................S. Remie & J.A. Mortimer Sexual Harassment By A Male Green Turtle..................................................................................................B.W. Bowen Incidental Capture of a Leatherback Along the Coast of Ceara, Brazil............................................E.H.S.M. Lima et al. Book Review IUCN-MTSG Quarterly Report Announcements News & Legal Briefs Recent Publications Marine Turtle Newsletter No. 117, 2007 - Page 1 ISSN 0839-7708 Editors: Managing Editor: Lisa M. Campbell Matthew H. Godfrey Michael S. Coyne Nicholas School of the Environment NC Sea Turtle Project A321 LSRC, Box 90328 and Earth Sciences, Duke University NC Wildlife Resources Commission Nicholas School of the Environment 135 Duke Marine Lab Road 1507 Ann St. and Earth Sciences, Duke University Beaufort, NC 28516 USA Beaufort, NC 28516 USA Durham, NC 27708-0328 USA E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] Fax: +1 252-504-7648 Fax: +1 919 684-8741 Founding Editor: Nicholas Mrosovsky University of Toronto, Canada Editorial Board: Brendan J. Godley & Annette C. -
Marine Reptiles Arne R
Virginia Commonwealth University VCU Scholars Compass Study of Biological Complexity Publications Center for the Study of Biological Complexity 2011 Marine Reptiles Arne R. Rasmessen The Royal Danish Academy of Fine Arts John D. Murphy Field Museum of Natural History Medy Ompi Sam Ratulangi University J. Whitfield iG bbons University of Georgia Peter Uetz Virginia Commonwealth University, [email protected] Follow this and additional works at: http://scholarscompass.vcu.edu/csbc_pubs Part of the Life Sciences Commons Copyright: © 2011 Rasmussen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Downloaded from http://scholarscompass.vcu.edu/csbc_pubs/20 This Article is brought to you for free and open access by the Center for the Study of Biological Complexity at VCU Scholars Compass. It has been accepted for inclusion in Study of Biological Complexity Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Review Marine Reptiles Arne Redsted Rasmussen1, John C. Murphy2, Medy Ompi3, J. Whitfield Gibbons4, Peter Uetz5* 1 School of Conservation, The Royal Danish Academy of Fine Arts, Copenhagen, Denmark, 2 Division of Amphibians and Reptiles, Field Museum of Natural History, Chicago, Illinois, United States of America, 3 Marine Biology Laboratory, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia, 4 Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina, United States of America, 5 Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America Of the more than 12,000 species and subspecies of extant Caribbean, although some species occasionally travel as far north reptiles, about 100 have re-entered the ocean. -
Marine Protected Species Identification Guide
Department of Primary Industries and Regional Development Marine protected species identification guide June 2021 Fisheries Occasional Publication No. 129, June 2021. Prepared by K. Travaille and M. Hourston Cover: Hawksbill turtle (Eretmochelys imbricata). Photo: Matthew Pember. Illustrations © R.Swainston/www.anima.net.au Bird images donated by Important disclaimer The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. Department of Primary Industries and Regional Development Gordon Stephenson House 140 William Street PERTH WA 6000 Telephone: (08) 6551 4444 Website: dpird.wa.gov.au ABN: 18 951 343 745 ISSN: 1447 - 2058 (Print) ISBN: 978-1-877098-22-2 (Print) ISSN: 2206 - 0928 (Online) ISBN: 978-1-877098-23-9 (Online) Copyright © State of Western Australia (Department of Primary Industries and Regional Development), 2021. ii Marine protected species ID guide Contents About this guide �������������������������������������������������������������������������������������������1 Protected species legislation and international agreements 3 Reporting interactions ���������������������������������������������������������������������������������4 Marine mammals �����������������������������������������������������������������������������������������5 Relative size of cetaceans �������������������������������������������������������������������������5 -
AUSTRALIAN PRODUCT INFORMATION – BOX JELLYFISH ANTIVENOM Solution for Injection
BOX JELLYFISH ANTIVENOM (AUST R 74891) Product Information AUSTRALIAN PRODUCT INFORMATION – BOX JELLYFISH ANTIVENOM Solution for Injection 1 NAME OF THE MEDICINE Box jellyfish antivenom (ovine) as active ingredient. 2 QUALITATIVE AND QUANTITATIVE COMPOSITION BOX JELLYFISH ANTIVENOM is prepared from the plasma of sheep immunised with the venom of the box jellyfish (Chironex fleckeri). Each vial contains 20,000 units of antivenom. The product also contains phenol 2.2 mg, sodium chloride 8 mg, water for injections to 1 mL in an aqueous solution. Each vial contains ≤ 100 mg per mL of plasma protein of ovine origin. The product volume is potency dependant thus it varies from batch to batch. Please refer to the product volume printed on the carton. 3 PHARMACEUTICAL FORM BOX JELLYFISH ANTIVENOM is a solution for injection (20000U). It is a clear to opalescent, straw coloured, viscous solution in a clear glass vial. 4 CLINICAL PARTICULARS 4.1 THERAPEUTIC INDICATIONS For the treatment of patients who exhibit manifestations of systemic envenoming or who have extensive local involvement causing extreme pain which does not respond to routine analgesic therapy. 4.2 DOSE AND METHOD OF ADMINISTRATION Not everyone who is stung by a box jellyfish needs antivenom. In cases of severe systemic envenoming, cardiopulmonary resuscitation and other appropriate first aid measures recommended by local guidelines must be instituted when necessary before giving antivenom. Antivenom should be administered as soon as possible after resuscitation has commenced. Ideally this will be in an intensive care facility. The contents of one vial (20,000 units) should be administered slowly by intravenous infusion after dilution with an intravenous solution such as Hartmann’s solution or 0.9% w/v Sodium Chloride. -
The IUCN Red List of Threatened Speciestm
Species 2014 Annual ReportSpecies the Species of 2014 Survival Commission and the Global Species Programme Species ISSUE 56 2014 Annual Report of the Species Survival Commission and the Global Species Programme • 2014 Spotlight on High-level Interventions IUCN SSC • IUCN Red List at 50 • Specialist Group Reports Ethiopian Wolf (Canis simensis), Endangered. © Martin Harvey Muhammad Yazid Muhammad © Amazing Species: Bleeding Toad The Bleeding Toad, Leptophryne cruentata, is listed as Critically Endangered on The IUCN Red List of Threatened SpeciesTM. It is endemic to West Java, Indonesia, specifically around Mount Gede, Mount Pangaro and south of Sukabumi. The Bleeding Toad’s scientific name, cruentata, is from the Latin word meaning “bleeding” because of the frog’s overall reddish-purple appearance and blood-red and yellow marbling on its back. Geographical range The population declined drastically after the eruption of Mount Galunggung in 1987. It is Knowledge believed that other declining factors may be habitat alteration, loss, and fragmentation. Experts Although the lethal chytrid fungus, responsible for devastating declines (and possible Get Involved extinctions) in amphibian populations globally, has not been recorded in this area, the sudden decline in a creekside population is reminiscent of declines in similar amphibian species due to the presence of this pathogen. Only one individual Bleeding Toad was sighted from 1990 to 2003. Part of the range of Bleeding Toad is located in Gunung Gede Pangrango National Park. Future conservation actions should include population surveys and possible captive breeding plans. The production of the IUCN Red List of Threatened Species™ is made possible through the IUCN Red List Partnership. -
Biology, Ecology and Ecophysiology of the Box Jellyfish Biology, Ecology and Ecophysiology of the Box Jellyfishcarybdea Marsupialis (Cnidaria: Cubozoa)
Biology, ecology and ecophysiology of the box M. J. ACEVEDO jellyfish Carybdea marsupialis (Cnidaria: Cubozoa) Carybdea marsupialis MELISSA J. ACEVEDO DUDLEY PhD Thesis September 2016 Biology, ecology and ecophysiology of the box jellyfish Biology, ecology and ecophysiology of the box jellyfishCarybdea marsupialis (Cnidaria: Cubozoa) Biologia, ecologia i ecofisiologia de la cubomedusa Carybdea marsupialis (Cnidaria: Cubozoa) Melissa Judith Acevedo Dudley Memòria presentada per optar al grau de Doctor per la Universitat Politècnica de Catalunya (UPC), Programa de Doctorat en Ciències del Mar (RD 99/2011). Tesi realitzada a l’Institut de Ciències del Mar (CSIC). Director: Dr. Albert Calbet (ICM-CSIC) Co-directora: Dra. Verónica Fuentes (ICM-CSIC) Tutor/Ponent: Dr. Xavier Gironella (UPC) Barcelona – Setembre 2016 The author has been financed by a FI-DGR pre-doctoral fellowship (AGAUR, Generalitat de Catalunya). The research presented in this thesis has been carried out in the framework of the LIFE CUBOMED project (LIFE08 NAT/ES/0064). The design in the cover is a modification of an original drawing by Ernesto Azzurro. “There is always an open book for all eyes: nature” Jean Jacques Rousseau “The growth of human populations is exerting an unbearable pressure on natural systems that, obviously, are on the edge of collapse […] the principles we invented to regulate our activities (economy, with its infinite growth) are in conflict with natural principles (ecology, with the finiteness of natural systems) […] Jellyfish are just a symptom of this -
Sea Snakes by Guy Belleranti
Name: ______________________________ Sea Snakes by Guy Belleranti Did you know that some snakes live in the ocean? These snakes are called sea snakes. There are approximately 60 species of sea snakes. Their muscular bodies have flattened, paddle-like tails that help them swim in the warm coastal waters of the Indian and Pacific oceans. Like all snakes, sea snakes have forked tongues and scales. Also, like snakes that live on land, they shed their skin and breathe air. The way they breathe is different from snakes that live on land, however. Sea snakes breathe through lungs and their skin! This allows them to stay underwater for a long time. How long? An hour, two hours, or sometimes even more, depending on the species. Their nostrils are at the top of their snouts. This helps them to breathe more easily when they're at the surface. Sea snakes also have valves in their nostrils that shut water out when they swim. While all sea snakes are very venomous, most sea snakes have short fangs and mild temperaments unless provoked. Even then, many only give a “dry” bite and do not inject venom. However, the two species of beaked sea snakes are aggressive. Fishermen have been bitten, and even killed, by beaked sea snakes tangled in their nets. Sea snakes are carnivores. They hunt along sandy bottoms, under rocks, in coral reefs, and in brackish mangrove swamps for fish, fish eggs, mollusks, and crustaceans. Most sea snakes give birth to live young who then swim away. The majority of sea snakes stay in the sea and are very clumsy on land. -
Food Habits and Distribution of the Lake Taal Sea Snake
Asian Herpetological Research 2014, 5(4): 255–262 ORIGINAL ARTICLE DOI: 10.3724/SP.J.1245.2014.00255 Food Habits and Distribution of the Lake Taal Sea Snake (Hydrophis semperi Garman 1881) and the Sympatric Little File Snake (Acrochordus granulatus Schneider 1799) in Lake Taal, Philippines Vhon Oliver S. GARCIA1*, Rey Donne S. PAPA1, 2, 3, Jonathan Carlo A. BRIONES1, 3, Norman MENDOZA4, Noboru OKUDA5 and Arvin C. DIESMOS6 1 The Graduate School, University of Santo Tomas, Manila, Philippines 2 Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines 3 Department of Biological Sciences, University of Santo Tomas, Manila, Philippines 4 Department of Science and Technology, Philippine Nuclear Research Institute, Philippines 5 Center for Ecological Research, Kyoto University, Japan 6 Herpetology Section, Zoology Division, National Museum of the Philippines, Philippines Abstract Our knowledge about the food habits of sea snakes and how it is associated with their distribution has seen much development through its description across a number of species available through published literature except for the key threatened species such as Hydrophis semperi. This paper aims to describe the food habits of H. semperi through gut content and stable isotope analyses. We also compared data with the Little File Snake, Acrochordus granulatus, sympatric with H. semperi. Recorded captures of H. semperi suggest that the sea snake tends to occur in the littoral zones and the shallower portions of the limnetic zone. Gut content analysis of H. semperi have shown that gobies and eels are primary prey items. Halfbeaks (Family Hemiramphidae) were recorded as one of the Lake Taal Sea Snake’s prey items which is considered as a new prey record for sea snakes.