Sea Snakes You Can Easily Change the Color Theme of Your Poster by Going to the Presentation Poster
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
First Record of Laticauda Semifasciata (Reptilia: Squamata: Elapidae: Laticaudinae) from Korea
Anim. Syst. Evol. Divers. Vol. 32, No. 2: 148-152, April 2016 http://dx.doi.org/10.5635/ASED.2016.32.2.148 Short communication First Record of Laticauda semifasciata (Reptilia: Squamata: Elapidae: Laticaudinae) from Korea Jaejin Park1, Il-Hun Kim1,2, Kyo-Sung Koo1, Daesik Park3,* 1Department of Biology, Kangwon National University, Chuncheon 24341, Korea 2National Marine Biodiversity Institute of Korea, Seocheon 33661, Korea 3Division of Science Education, Kangwon National University, Chuncheon 24341, Korea ABSTRACT The Chinese sea snake Laticauda semifasciata (Reinwardt in Schlegel, 1837) is newly reported from Korean waters based on three specimens collected from Jeju Island, Korea, in August, September, and November 2015. This is the first time that the genus Laticauda and subfamily Laticaudinae has been reported from Korean waters. The subfamily Laticaudinae has ventrals that are four to five times wider than the adjacent dorsals, which are unlike the ventrals that are similar or up to two times wider than adjacent dorsals in the subfamily Hydrophiinae. Laticauda semifasciata is distinct from other species because it has three prefrontals and its rostrals are horizontally divided into two. As the result of this report, four species (L. semifasciata, Hydrophis (Pelamis) platurus, Hydrophis cyanocinctus, and H. melanocephalus) of sea snakes have been reported in Korean waters. Keywords: sea snake, Hydrophiinae, Laticaudinae, Chinese sea snake, Laticauda semifasciata INTRODUCTION semifasciata (Reinwardt in Schlegel, 1837) of the genus Laticauda and subfamily Laticaudinae for the first time in Globally, 70 sea snakes (aquatic elapids) of 8 genera in the Korean waters based on the specimens collected in Jeju Is- two subfamilies Hydrophiinae and Laticaudinae have been land in 2015. -
Marine Reptiles
Species group report card – marine reptiles Supporting the marine bioregional plan for the North Marine Region prepared under the Environment Protection and Biodiversity Conservation Act 1999 Disclaimer © Commonwealth of Australia 2012 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and enquiries concerning reproduction and rights should be addressed to Department of Sustainability, Environment, Water, Population and Communities, Public Affairs, GPO Box 787 Canberra ACT 2601 or email [email protected] Images: A gorgonian wtih polyps extended – Geoscience Australia, Hawksbill Turtle – Paradise Ink, Crested Tern fishing – R.Freeman, Hard corals – A.Heyward and M.Rees, Morning Light – I.Kiessling, Soft corals – A.Heyward and M.Rees, Snubfin Dolphin – D.Thiele, Shrimp, scampi and brittlestars – A.Heyward and M.Rees, Freshwater sawfish – R.Pillans, CSIRO Marine and Atmospheric Research, Yellowstripe Snapper – Robert Thorn and DSEWPaC ii | Supporting the marine bioregional plan for the North Marine Region | Species group report card – marine reptiles CONTENTS Species group report card – marine reptiles ..........................................................................1 1. Marine reptiles of the North Marine Region .............................................................................3 2. Vulnerabilities and pressures ................................................................................................ -
Fluorescence Emission in a Marine Snake
Galaxea, Journal of Coral Reef Studies 21: 7-8(2019) Photogallery Fluorescence emission in a marine snake Takashi SEIKO and Yohey TERAI SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa 240-0193, Japan. Corresponding authors: Y. Terai, T. Seiko Emails: [email protected]; [email protected] Communicated by Frederic Sinniger (Associate EditorsinChief) Keywords fluorescence, Laticauda, marine reptile, sea krait Coral reefs are one of the most colorful environments on Earth. Light in coral reefs includes fluorescence as well as reflectance of sunlight. In fluorescence, mole cules are excited by illuminating light and emit longer wavelength fluorescence than the excitation light wave length. In coral reefs, fluorescent light emission is observed in a range of taxa including cnidarians (e.g. corals), arthropods and fishes (e.g., Johnsen 2012). In marine reptiles, fluorescent emission has reported thus far only from sea turtles (Gruber and Sparks 2015). Here we report fluorescent light emission in a marine snake. Laticauda laticaudata Linnaeus, 1758 is a semi aquatic sea krait (Elapidae: Laticaudinae) often ob served in coral reefs. We examined a specimen that was freshly frozen after death and subsequently thawed. This speci men was caught at Oganzaki, Ishigaki island, Oki nawa, Japan (24°27′12.4″N; 124°04′37.4″E) Fig. 1 Photographs of a sea krait (Laticauda laticaudata) illuminated with white light (A) without a filter, and ultraviolet LED light (B) through a blue light cutting filter (<490 nm). (C) A reflectance and fluorescence light spectrum measured from a pale band. -
Marine Reptiles Arne R
Virginia Commonwealth University VCU Scholars Compass Study of Biological Complexity Publications Center for the Study of Biological Complexity 2011 Marine Reptiles Arne R. Rasmessen The Royal Danish Academy of Fine Arts John D. Murphy Field Museum of Natural History Medy Ompi Sam Ratulangi University J. Whitfield iG bbons University of Georgia Peter Uetz Virginia Commonwealth University, [email protected] Follow this and additional works at: http://scholarscompass.vcu.edu/csbc_pubs Part of the Life Sciences Commons Copyright: © 2011 Rasmussen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Downloaded from http://scholarscompass.vcu.edu/csbc_pubs/20 This Article is brought to you for free and open access by the Center for the Study of Biological Complexity at VCU Scholars Compass. It has been accepted for inclusion in Study of Biological Complexity Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Review Marine Reptiles Arne Redsted Rasmussen1, John C. Murphy2, Medy Ompi3, J. Whitfield Gibbons4, Peter Uetz5* 1 School of Conservation, The Royal Danish Academy of Fine Arts, Copenhagen, Denmark, 2 Division of Amphibians and Reptiles, Field Museum of Natural History, Chicago, Illinois, United States of America, 3 Marine Biology Laboratory, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia, 4 Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina, United States of America, 5 Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America Of the more than 12,000 species and subspecies of extant Caribbean, although some species occasionally travel as far north reptiles, about 100 have re-entered the ocean. -
First Record of the Blue-Banded Sea Krait (Laticauda Laticaudata, Reptilia: Squamata: Elapidae: Laticaudinae) on Jeju Island, South Korea
Asian Herpetological Research 2017, 8(2): 131–136 ORIGINAL ARTICLE DOI: 10.16373/j.cnki.ahr.160066 First Record of the Blue-banded Sea Krait (Laticauda laticaudata, Reptilia: Squamata: Elapidae: Laticaudinae) on Jeju Island, South Korea Jaejin PARK1#, Kyo-Soung KOO1#, Il-Hun KIM1,2, Woo-Jin CHOI1 and Daesik PARK3* 1 Department of Biology, Kangwon National University, Chuncheon, Kangwon 24341, South Korea 2 National Marine Biodiversity Institute of Korea, Seocheon, Chungnam 33662, South Korea 3 Division of Science Education, Kangwon National University, Chuncheon, Kangwon 24341, South Korea Abstract We report the first recorded capture of a blue-banded sea snake (Laticauda laticaudata Linnaeus, 1758, Jobeuntti KunBadabam in Korean) in South Korea based on one male specimen collected from Marado-ri, Seogwipo- si, Jeju-do on 20 October 2016. The morphological features of the lateral nostrils, the much wider ventrals than adjacent dorsals, the horizontally undivided rostral, the two prefrontals, and the uniform black bands on the body indicate that the specimen is L. laticaudata. An analysis of the partial mitochondrial cytochrome b gene sequence indicated that the specimen fits well into the known L. laticaudata phylogenetic group, which confirms that the sea krait is L. laticaudata. Including this report, five species of sea snakes (L. laticaudata, L. semifasciata, Hydrophis platurus, H. cyanocinctus, and H. melanocephalus) have now been reported in Korean waters. Keywords sea snake, Hydrophiinae, Laticaudinae, blue-banded sea snake, Laticauda laticaudata 1. Introduction approaches, studies to determine the species distributions and biological and ecological characteristics are necessary Marine (Hamann et al., 2007; Rasmussen et al., 2011a; (Hamann et al., 2007; GBRMPA, 2012). -
Marine Protected Species Identification Guide
Department of Primary Industries and Regional Development Marine protected species identification guide June 2021 Fisheries Occasional Publication No. 129, June 2021. Prepared by K. Travaille and M. Hourston Cover: Hawksbill turtle (Eretmochelys imbricata). Photo: Matthew Pember. Illustrations © R.Swainston/www.anima.net.au Bird images donated by Important disclaimer The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. Department of Primary Industries and Regional Development Gordon Stephenson House 140 William Street PERTH WA 6000 Telephone: (08) 6551 4444 Website: dpird.wa.gov.au ABN: 18 951 343 745 ISSN: 1447 - 2058 (Print) ISBN: 978-1-877098-22-2 (Print) ISSN: 2206 - 0928 (Online) ISBN: 978-1-877098-23-9 (Online) Copyright © State of Western Australia (Department of Primary Industries and Regional Development), 2021. ii Marine protected species ID guide Contents About this guide �������������������������������������������������������������������������������������������1 Protected species legislation and international agreements 3 Reporting interactions ���������������������������������������������������������������������������������4 Marine mammals �����������������������������������������������������������������������������������������5 Relative size of cetaceans �������������������������������������������������������������������������5 -
Sea Snakes by Guy Belleranti
Name: ______________________________ Sea Snakes by Guy Belleranti Did you know that some snakes live in the ocean? These snakes are called sea snakes. There are approximately 60 species of sea snakes. Their muscular bodies have flattened, paddle-like tails that help them swim in the warm coastal waters of the Indian and Pacific oceans. Like all snakes, sea snakes have forked tongues and scales. Also, like snakes that live on land, they shed their skin and breathe air. The way they breathe is different from snakes that live on land, however. Sea snakes breathe through lungs and their skin! This allows them to stay underwater for a long time. How long? An hour, two hours, or sometimes even more, depending on the species. Their nostrils are at the top of their snouts. This helps them to breathe more easily when they're at the surface. Sea snakes also have valves in their nostrils that shut water out when they swim. While all sea snakes are very venomous, most sea snakes have short fangs and mild temperaments unless provoked. Even then, many only give a “dry” bite and do not inject venom. However, the two species of beaked sea snakes are aggressive. Fishermen have been bitten, and even killed, by beaked sea snakes tangled in their nets. Sea snakes are carnivores. They hunt along sandy bottoms, under rocks, in coral reefs, and in brackish mangrove swamps for fish, fish eggs, mollusks, and crustaceans. Most sea snakes give birth to live young who then swim away. The majority of sea snakes stay in the sea and are very clumsy on land. -
Spatial Ecology of True Sea Snakes (Hydrophiinae) in Coastal Waters of North Queensland
ResearchOnline@JCU This file is part of the following reference: Udyawer, Vinay (2015) Spatial ecology of true sea snakes (Hydrophiinae) in coastal waters of North Queensland. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/46245/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/46245/ Spatial ecology of true sea snakes (Hydrophiinae) in coastal waters of North Queensland © Isabel Beasley Dissertation submitted by Vinay Udyawer BSc (Hons) September 2015 For the degree of Doctor of Philosophy College of Marine and Environmental Sciences James Cook University Townsville, Australia Statement of Access I, the undersigned author of this work, understand that James Cook University will make this thesis available within the University Library, and elsewhere via the Australian Digital Thesis network. I declare that the electronic copy of this thesis provided to the James Cook University library is an accurate copy of the print these submitted to the College of Marine and Environmental Sciences, within the limits of the technology available. I understand that as an unpublished work, this thesis has significant protection under the Copyright Act, and; All users consulting this thesis must agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper public written acknowledgement for any assistance they obtain from it. -
D:\In Press\Final Issue\IJFAS 1(1)
International Journal of Fishes and Aquatic Sciences 1(1): 5-15, 2012 ISSN: 2049-8411; e-ISSN: 2049-842X © Maxwell Scientific organization, 2012 Submitted: April 08, 2012 Accepted: April 30, 2012 Published: July 25, 2012 Some Aquatic Reptiles in Culture Fisheries Management E.N. Ogamba and J.F.N. Abowei Department of Biological Sciences, Faculty of Science, Niger Delta University, Wilberforce Island, Nigeria Abstract: Aquatic reptiles are major challenge in culture fisheries. These animals feed on culture fish. Adequate knowledge on them is essential for effective culture fisheries management. Marine iguana, aquatic snakes, crocodiles and sea turtles are some aquatic reptiles reviewed in this study. Keywords: Aquatic snakes, crocodiles and sea turtles, marine iguana INTRODUCTION THE MARINE IGUANA Aquatic reptiles are reptiles which have become The Marine Iguana (Amblyrhynchus cristatus) (Plate 1) is secondarily adapted for an aquatic or semi-aquatic life in an iguana found only on the Galápagos Islands that has the aquatic environment (Campbell and Lamar, 2004). the ability, unique among modern lizards, to live and The earliest marine reptiles arose in the Permian period forage in the sea, making it a marine reptile (Wikelski and during the Paleozoic era (Darwin, 2001). During the Thom, 2000). The Iguana can dive over 30 ft (10 m) into Mesozoic era, many groups of reptiles became adapted to the water. It has spread to all the islands in the life in the seas, including such familiar clades as the archipelago and is sometimes called the Galapagos ichthyosaurs, plesiosaurs (these two orders were once Marine Iguana. It mainly lives on the rocky Galapagos thought united in the group "Enaliosauria," a classification shore, but can also be spotted in marshes and mangrove now cladistically obsolete), mosasaurs, nothosaurs, beaches. -
Venom-Gland Transcriptomic, Venomic, and Antivenomic Profles of the Spine-Bellied Sea Snake (Hydrophis Curtus) from the South China Sea
Venom-gland Transcriptomic, Venomic, and Antivenomic Proles of the Spine-bellied Sea Snake (Hydrophis curtus) from the South China Sea Hong-Yan Zhao Hangzhou Normal University Lin Wen Hangzhou Normal University Yu-Feng Miao Hangzhou Normal University Yu Du Hainan Tropical Ocean University Yan Sun Hangzhou Normal University Yin Yin Hangzhou Normal University Chi-Xian Lin Hainan Tropical Ocean University Long-Hui Lin Hangzhou Normal University Xiang Ji Nanjing Normal University Jian-Fang Gao ( [email protected] ) Hangzhou Normal University https://orcid.org/0000-0003-1849-2544 Research article Keywords: Omics, Hydrophis curtus, Snake venom, Transcriptome, Proteome, Antivenomic, Positive selection Posted Date: November 24th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-112821/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at BMC Genomics on July 8th, 2021. See the published version at https://doi.org/10.1186/s12864-021-07824-7. Page 1/28 Abstract Background: A comprehensive evaluation of the -omic proles of venom is important for understanding the potential function and evolution of snake venom. Here, we conducted an integrated multi-omics-analysis to unveil the venom-transcriptomic and venomic proles in a same group of spine-bellied sea snakes (Hydrophis curtus) from the South China Sea, where the snake is a widespread species and might generate regionally-specic venom potentially harmful to human activities. The capacity of two heterologous antivenoms to immunocapture the H. curtus venom was determined for an in-depth evaluation of their rationality in treatment of H. -
Blacktip Reef Sharks, Carcharhinus Melanopterus, Have High Genetic Structure and Varying Demographic Histories in Their Indopaci
Molecular Ecology (2014) 23, 5193–5207 doi: 10.1111/mec.12936 Blacktip reef sharks, Carcharhinus melanopterus, have high genetic structure and varying demographic histories in their Indo-Pacific range THOMAS M. VIGNAUD,* JOHANN MOURIER,* JEFFREY A. MAYNARD,*† RAPHAEL LEBLOIS,‡ JULIA SPAET,§ ERIC CLUA,¶ VALENTINA NEGLIA* and SERGE PLANES* *Laboratoire d’Excellence “CORAIL”, USR 3278 CNRS – EPHE, CRIOBE, BP 1013 - 98 729 Papetoai, Moorea, Polynesie, Franßcaise, †Department of Ecology and Evolutionary Biology, Cornell University, E241 Corson Hall, Ithaca, NY 14853, USA, ‡INRA, UMR1062 CBGP, F-34988 Montferrier-sur-Lez, France, §Red Sea Research Center, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia, ¶French Ministry of Agriculture and Fisheries, 75007 Paris, France Abstract For free-swimming marine species like sharks, only population genetics and demo- graphic history analyses can be used to assess population health/status as baseline population numbers are usually unknown. We investigated the population genetics of blacktip reef sharks, Carcharhinus melanopterus; one of the most abundant reef-associ- ated sharks and the apex predator of many shallow water reefs of the Indian and Pacific Oceans. Our sampling includes 4 widely separated locations in the Indo-Pacific and 11 islands in French Polynesia with different levels of coastal development. Four- teen microsatellite loci were analysed for samples from all locations and two mito- chondrial DNA fragments, the control region and cytochrome b, were examined for 10 locations. For microsatellites, genetic diversity is higher for the locations in the large open systems of the Red Sea and Australia than for the fragmented habitat of the smaller islands of French Polynesia. -
Short Note Feeding and Reproductive Behavior of Captive Sea Snakes
Short note Feeding and reproductive behavior of captive sea snakes Hydrophis cyanocinctus R. Karthikeyan1,2, T. Balasubramanian1 1 Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608 502, Tamil Nadu, India 2 Corresponding author; e-mail: [email protected] Abstract. The annulated sea snake (Hydrophis cyanocinctus) is a black and yellow banded neurotoxic hydrophiid, widely distributed along the Indian coast. Observations on the feeding and reproductive behavior of the snake were made for the first time in captivity. It consumed live or chopped fish; prey size depended on snake size. Breeding commenced in October and the matured neonates were observed during the following January. Twenty five gravid snakes gave birth to 87 neonates, i.e. 3-5 neonates per snake. During delivery, they exhibited a different type of movement to release the neonates, and all were delivered only at night. All neonates were measured the morphological traits of weight, snout-vent length, tail length, head length, head width, neck girth and body girth. The relative size of females and males differed significantly. But the relative size of tail length showed an opposite trend compared to other morphological traits. At the end of the experiment, the snakes and neonates were released in the open sea. Key words: Breeding; captivity; feeding; Hydrophis cyanocinctus; neonates; sea snake. The sea snakes (Hydrophiidae) are a major reptilian group inhabiting tropical waters (Ahemed, 1975), known for their neurotoxic venom and valuable skin (Senanayake et al., 2005). From the Indian waters, 29 species have been reported (Ahemed, 1975). Their most powerful venom toxins (Murthy, 1977) and their role in the ma- rine food chain (Voris, 1972) have attracted studies but could not make a significant contribution as they cannot be kept in captivity.