Taxonomic Status of the Population of Rhacophorus Angulirostris Ahl

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomic Status of the Population of Rhacophorus Angulirostris Ahl SALAMANDRA 47(3) 133–143 20 AugustNew 2011 RhacophorusISSN 0036–3375 from Sumatra Taxonomic status of the population of Rhacophorus angulirostris Ahl, 1927 (Anura: Rhacophoridae) from Sumatera Barat (West Sumatra) and its description as a new species J. Maximilian Dehling Institut für Integrierte Naturwissenschaften, Abteilung Biologie, AG Zoologie, Universität Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz, Germany e-mail: [email protected] Manuscript received: 26 November 2010 Abstract. The taxonomic status of the population ofRhacophorus angulirostris from West Sumatra is reassessed. This record was based on five specimens that had been collected in Padang, West Sumatra, more than a century ago, are stored in the collection of the Naturhistorisches Museum Wien, Austria, and were assigned to R. angulirostris from Borneo by Inger (1966). Reexamination revealed that the specimens from Sumatra share only few diagnostic characters with R. angulirostris from Borneo. Bornean and Sumatran specimens differ in the presence of a dermal projection at the tibio-tarsal articula- tion, male body size, snout shape, shape of the canthus rostralis and the supratympanic fold, extent of webbing between the fingers, size of the thenar tubercle, position of the nostrils, internarial distance, the eye-to-nostril distance, size of eye and tympanum, and size and position of the dentigerous processes of the vomers. The specimens from Padang were compared to all other Southeast Asian members of the genus and found to represent a distinct species, herein described as new, that appears to be not even closely related to R. angulirostris. Because the only record of R. angulirostris from Sumatra was based on these specimens, the geographic distribution of R. angulirostris is again restricted to northeastern Borneo. An identifica- tion key for the Rhacophorus species from Sumatra is provided. Key words. Amphibia, Rhacophorus pseudacutirostris sp. n., identification key, Indonesia, Borneo, endemism. Introduction Therefore, both R. reinwardtii and R. norhayatiae are in- cluded in the identification key to the Sumatran species of Species of the genus Rhacophorus Kuhl & van Hasselt, Rhacophorus provided below. 1822 are distributed from India to China and southern Ja- Rhacophorus angulirostris was originally described as pan and southeastwards to the Greater Sunda Islands and “Rhacophorus acutirostris” by Mocquard (1890) from the Philippines. The genus currently contains 82 species “Kina Balu” [= Gunung Kinabalu, Sabah, Malaysia, north- (Frost 2011, Chan & Grismer 2010). eastern Borneo]. Subsequently, the species, which was Fourteen species of Rhacophorus have been reported originally described as Ixalus acutirostris by Peters (1867) from Sumatra: R. achantharrhena Harvey, Pemberton and which is now in the genus Philautus, was transferred & Smith, 2002; R. angulirostris Ahl, 1927; R. appendicula­ to the genus Rhacophorus, rendering R. acutirostris Moc- tus (Günther, 1858); R. barisani Harvey, Pemberton & quard, 1890 a junior homonym. Therefore, Mocquard’s Smith, 2002; R. bifasciatus van Kampen, 1923; R. catami­ (1890) original name was replaced with Rhacophorus an­ tus Harvey, Pemberton & Smith, 2002; R. cyanopuncta­ gulirostris by Ahl (1927). tus Manthey & Steiof, 1998; R. margaritifer (Schlegel, Rhacophorus angulirostris has been recorded only once 1837); R. modestus Boulenger, 1920; R. nigropalmatus from Sumatra by Inger (1966) who referred specimens Boulenger, 1895; R. pardalis Günther, 1858; R. poecilono­ of a Rhacophorus species collected at Padang, West Su- tus Boulenger, 1920; R. prominanus Smith, 1924; and R. matra, and deposited in the collection of the Naturhis- reinwardtii (Schlegel, 1840). Recently, R. norhayatiae torisches Museum Wien, Austria (NHW), to the Bornean Chan & Grismer, 2010 has been described from south- species R. angulirostris (using the old name R. acutirostris ern Thailand and Peninsular Malaysia. The species was Mocquard, 1890) based on the morphological characters provisionally included in the herpetofauna of Sumatra by he had studied. In the course of an ongoing study on the Chan & Grismer (2010) for closely matching the descrip- rhacophorids of the Sunda region, I examined the speci- tion of “Rhacophorus reinwardti var. lateralis” which had mens of the genus Rhacophorus from Sumatra deposited been described by Werner (1900) from Laut Tador, Batu in the collection of the NHW and noticed many morpho- Bahra, Sumatra, and formerly been considered a synonym logical differences between the specimens from Padang as- of R. reinwardtii. It is currently unclear, to which species signed to R. angulirostris by Inger (1966) and specimens of the Sumatran population belongs that has been referred to R. angulirostris from Borneo. The former represent a spe- as R. reinwardtii or if even both species occur on Sumatra. cies that appears to be not even closely related to R. an­ © 2011 Deutsche Gesellschaft für Herpetologie und Terrarienkunde e.V. (DGHT), Rheinbach, Germany All articles available online at http://www.salamandra-journal.com 133 J. Maximilian Dehling gulirostris and furthermore does not match any of the de- all species that are currently regarded as synonyms of spe- scribed species from Southeast Asia. Therefore, I formally cies occurring on Sumatra and/or Java, i.e., Rhacophorus describe it herein as new to science. As a consequence, the barbouri Ahl, 1923, R. javanus Boettger, 1893, R. phy llo­ geographic distribution of R. angulirostris is restricted to pygus Werner, 1900, and R. pulchellus Werner, 1900. northeastern Borneo. Additional information on characters used to compare Southeast Asian species of Rhacophorus and for working out the identification key to the Sumatran species was taken Material and methods from: Boulenger (1882, 1920), Werner (1900), van Kam- pen (1923), Ahl (1927), Inger et al. (1999), Ohler et al. Type specimens are stored in the collection of the Naturhis- (2000), Orlov et al. (2001), Harvey et al. (2002), Inger & torisches Museum Wien, Austria (NHW). I took the fol- Iskandar (2005), Wilkinson et al. (2005), Matsui & Pan- lowing measurements with a digital calliper (to the near- ha (2006), Orlov (2008), Dehling & Grafe (2008), Or- est 0.1 mm): snout–vent length (SVL, from tip of snout lov et al. (2008, 2010), Ohler (2009), and Chan & Gris- to vent); tibiofibula length (TFL, measured with both the mer (2010). Where respective data was available, compari- knee and tibio-tarsal articulation flexed); knee to knee dis- sons were made for males and females separately. tance (KNE, distance between knees with thighs being held laterally at right angles to the body); thigh length (THL, half the knee to knee distance); tarsus + foot length (TarL; Rhacophorus pseudacutirostris sp. n. distance from tibio-tarsal articulation to tip of fourth toe); (Figs. 1–3) foot length (FOT, distance from proximal end of inner metatarsal tubercle to tip of fourth toe); total leg length Rhacophorus acutirostris (nec Rhacophorus acutirostris Mocquard, (LEG, distance from vent to tip of fourth toe, measured 1890, archeonym replaced by Rhacophorus angulirostris Ahl, 1927): with leg fully extended at a right angle to the body); length Inger (1966, partim). of fingers (1FL, 2FL, 3FL, 4FL, distance from proximal end Rhacophorus angulirostris (nec Rhacophorus angulirostris Ahl, 1927): of thenar tubercle to tip of first, second, third, and fourth Manthey & Grossmann (1997, partim); Harvey et al. (2002, par- finger, respectively); forearm + hand length (ARM, dis- tim); Malkmus et al. (2002, partim); Dehling (2008, partim); Tey- tance from elbow to tip of third finger); elbow to elbow nié et al. (2010, partim). distance (ELB, measured with upper arms held laterally at right angles to body and elbows flexed); head width (HW, Holotype: NHW 16301:5, adult male, from Padang, Sumat- distance between angles of jaw); head length (HL, distance era Barat (West Sumatra), Indonesia, collected between from angle of jaw to tip of snout); horizontal eye diameter 1890 and 1904 by Consul Johannes Schild. (ED); horizontal tympanum diameter (TD); upper eyelid width (EW); interorbital distance (IO, shortest distance be- Paratypes: NHW 16301:1, NHW 16301:3, two adult females, tween upper eyelids); eye to nostril distance (EN, distance NHW16301:2, 16301:4, two adult males, same data as holo- between anterior margin of eye and centre of nostril); nos- type. tril to snout distance (NS, distance between centre of nos- tril and tip of snout); snout length (SL, distance between Diagnosis: A species of the genus Rhacophorus, distin- anterior margin of eye and tip of snout); internarial dis- guishable from its congeners by the combination of the tance (NN, distance between centres of nostrils). The web- following characters: (1) small to medium size (SVL of bing formulae are given as proposed by Myers & Duell- adult males 37.0–39.9 mm, adult females 51.8–52.3 mm); man (1982). (2) snout obtusely pointed in both dorsal view and profile; For comparisons, I examined museum specimens of (3) head wider than trunk and wider than long; (4) canthus several species of Rhacophorus (see Appendix). Museum rostralis distinct; (5) nostrils closer to tip of snout than to abbreviations are as follows: The Natural History Museum eye, separated from each other by distance subequal to dis- (British Museum [Natural History]), London, United King- tance between eye and nostril; (6) eyes moderately large; dom (BMNH); The Field Museum (Field Museum of Natu- (7) eye diameter greater
Recommended publications
  • Title a New Gliding Frog of the Genus Rhacophorus from Borneo Author(S
    Title A New Gliding Frog of the Genus Rhacophorus from Borneo Author(s) Matsui, Masafumi; Shimada, Tomohiko; Sudin, Ahmad Citation Current Herpetology (2013), 32(2): 112-124 Issue Date 2013-08 URL http://hdl.handle.net/2433/216848 Right © 2013 by The Herpetological Society of Japan Type Journal Article Textversion publisher Kyoto University Current Herpetology 32(2): 112–124, August 2013 doi 10.5358/hsj.32.112 © 2013 by The Herpetological Society of Japan A New Gliding Frog of the Genus Rhacophorus from Borneo 1 2 3 MASAFUMI MATSUI *, TOMOHIKO SHIMADA , AND AHMAD SUDIN 1 Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606–8501, JAPAN 2 Department of Science (Biology), Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448–8542 JAPAN 3 The School of Engineering and Information Technology, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, MALAYSIA Abstract: A rhacophorid frog from Borneo is divergent genetically and morphologically from Javanese R. reinwardtii, with which it was formerly confused, and is recognized as a distinct species. The frog differs from R. reinwardtii by an immaculate green dorsum and a black posterior thigh surface, which is studded with sky blue spots in the female. Because the frog is also divergent genetically and morphologically from the other congeners recently split from R. reinwardtii, we describe it as a new species, R. borneensis. Key words: New species; MtDNA phylogeny; Rhacophorus reinwardtii; Borneo; Taxonomy INTRODUCTION Ohler and Delorme, 2006) as in many other frogs (e.g., Stuart et al., 2006; Inger et al., The frog genus Rhacophorus Kuhl and Van 2008; Shimada et al., 2011).
    [Show full text]
  • Conservation of Amphibians and Reptiles in Indonesia: Issues and Problems
    Copyright: © 2006 Iskandar and Erdelen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and repro- Amphibian and Reptile Conservation 4(1):60-87. duction in any medium, provided the original author and source are credited. DOI: 10.1514/journal.arc.0040016 (2329KB PDF) The authors are responsible for the facts presented in this article and for the opinions expressed there- in, which are not necessarily those of UNESCO and do not commit the Organisation. The authors note that important literature which could not be incorporated into the text has been published follow- ing the drafting of this article. Conservation of amphibians and reptiles in Indonesia: issues and problems DJOKO T. ISKANDAR1 * AND WALTER R. ERDELEN2 1School of Life Sciences and Technology, Institut Teknologi Bandung, 10, Jalan Ganesa, Bandung 40132 INDONESIA 2Assistant Director-General for Natural Sciences, UNESCO, 1, rue Miollis, 75732 Paris Cedex 15, FRANCE Abstract.—Indonesia is an archipelagic nation comprising some 17,000 islands of varying sizes and geologi- cal origins, as well as marked differences in composition of their floras and faunas. Indonesia is considered one of the megadiversity centers, both in terms of species numbers as well as endemism. According to the Biodiversity Action Plan for Indonesia, 16% of all amphibian and reptile species occur in Indonesia, a total of over 1,100 species. New research activities, launched in the last few years, indicate that these figures may be significantly higher than generally assumed. Indonesia is suspected to host the worldwide highest numbers of amphibian and reptiles species.
    [Show full text]
  • Breeding of Rhacophorus (Polypedates) Feae
    The first breeding of Fea's Treefrog - Rhacophorus feae at the Leningrad Zoo with account of the species. by Anna A. Bagaturova, Mikhail F. Bagaturov (corresponding author, email: [email protected]), “Department of Insectarium and Amphibians”, Leningrad zoo, St. Petersburg, Russia Abstract. The success of first captive breeding of the giant species of rhacophorid arboreal frog Rhacophorus feae in amphibian facility in Leningrad Zoo (Saint-Petersburg, Russia) has been described. Their natural history data, conservation status, threads, natural predators, morphology including size discussion, prophylactic and medication treatment; issues of adopting of wild adult specimens, keeping and captive breeding in zoo’s amphibian facility were described; features of breeding behavior stimulation, foam nest construction, rising of tadpoles and young frogs of other rhacophorids in comparison with hylid treefrogs’ species were discussed. Keywords. Rhacophoridae: Polypedates, Rhacophorus maximus, R. dennysi, R. annamensis, R. orlovi, Kurixalus odontotarsus, R. feae: natural history, conservation status, threads, description, thread pose, Vietnam, Thailand; captive management, adaptation, breeding, nest, tadpoles, froglets, veterinary; feeding, proper housing, Hylidae, captive management, raising; Leningrad Zoo. Genus Rhacophorus H. Kuhl and J.C. van Hasselt, 1822 comprised for over 80 species (Frost, 2011, with later additions). Every year new species of rhacophorid frogs described from the territories of Vietnam, China, Cambodia and other countries of southeastern Asia for last decades (Inger et al, 1999 a, b.; Orlov et al, 2004, 2005 etc, see: References section for others). Some species of Rhacophorus also referred to as Polypedates, Aquixalus and Kurixalus according to different authors (Orlov and Ho, 2005, Fei et al, 2005, Yu et al, 2009, Frost, 2011, etc).
    [Show full text]
  • Species Account
    SPECIES ACCOUNT AMPHIBIA I. Family MEGOPHRYIDAE Megophrys acera s Horned Frog This was a leaf litter frog, which inhabited forest floor of closed-canopy evergreen forests at Gunung Tujuh. It occurs from the lowlands at about 750 meters asl up to mountain forests over 1500 meters asl (Mistar, 2003). At Gunung Tujuh it was found at elevation 1200 meters asl. This is a rare species, which was only found at Gunung Tujuh survey site. This species is known from Peninsular Thailand through most of Peninsular Malaysia (Berry, 1975) and Sumatra (Mistar, 2003). Figure 21. M. aceras from Gunung Tujuh (Photograph by J. Holden). Megophrys nasuta Bornean Horned Frog, Malayan Horned Frog, Horned Toad, Large Horned Frog It was a leaf litter frog, which inhabited intact lowland and sub mountain rainforest, generally near forest streams. Adults are terrestrial in habits, but tadpoles live in clear forest streams. It occurred about 500 meters asl up to 1000 meters asl. It was regularly encountered, and its characteristic call was frequently heard in suitable habitat. It was uncommon in Tapan, Lumayang, Sungai Durian, Muara Kambang, Muara Sako, Muara Labuh and Lubuk Selasih survey sites. This species is known from southern, throughout Peninsular Malaysia (Berry, 1975), Tioman Island, Singapore (Lim and Lim, 1992), Sumatra, Bintan, all parts of Borneo and the Natuna Islands (Inger and Stuebing, 2005; Mistar, 2003). Figure 22. M. nasuta from Tapan (Photograph by J. Holden). Megophrys paralella Megophrys paralella was described by Inger and Iskandar (2005). Type locality of the species is Lubuk Selasih, West Sumatra, at elevation 1289 meters asl.
    [Show full text]
  • Title a New Gliding Frog of the Genus Rhacophorus from Borneo Author(S)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Title A New Gliding Frog of the Genus Rhacophorus from Borneo Author(s) Matsui, Masafumi; Shimada, Tomohiko; Sudin, Ahmad Citation Current Herpetology (2013), 32(2): 112-124 Issue Date 2013-08 URL http://hdl.handle.net/2433/216848 Right © 2013 by The Herpetological Society of Japan Type Journal Article Textversion publisher Kyoto University Current Herpetology 32(2): 112–124, August 2013 doi 10.5358/hsj.32.112 © 2013 by The Herpetological Society of Japan A New Gliding Frog of the Genus Rhacophorus from Borneo 1 2 3 MASAFUMI MATSUI *, TOMOHIKO SHIMADA , AND AHMAD SUDIN 1 Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606–8501, JAPAN 2 Department of Science (Biology), Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448–8542 JAPAN 3 The School of Engineering and Information Technology, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, MALAYSIA Abstract: A rhacophorid frog from Borneo is divergent genetically and morphologically from Javanese R. reinwardtii, with which it was formerly confused, and is recognized as a distinct species. The frog differs from R. reinwardtii by an immaculate green dorsum and a black posterior thigh surface, which is studded with sky blue spots in the female. Because the frog is also divergent genetically and morphologically from the other congeners recently split from R. reinwardtii, we describe it as a new species, R. borneensis. Key words: New species; MtDNA phylogeny; Rhacophorus reinwardtii; Borneo; Taxonomy INTRODUCTION Ohler and Delorme, 2006) as in many other frogs (e.g., Stuart et al., 2006; Inger et al., The frog genus Rhacophorus Kuhl and Van 2008; Shimada et al., 2011).
    [Show full text]
  • TULISAN PENDEK Deteksi Chytridiomycosis Dengan
    Jurnal Biologi Indonesia 9(1): 153-157 (2013) TULISAN PENDEK Deteksi Chytridiomycosis dengan Menggunakan Koleksi Museum Zoologicum Bogoriense Pada Katak Asal Taman Nasional Gede-Pangrango, Jawa Barat (Chtridiomycosis detection by using Musem Zoologicum Bogoriense’s frog specimens that were originally collected from Gede-Pangrango National Park, West Java) Hellen Kurniati & Ni Luh Putu Rischa Phadmacanty Pusat Penelitian Biologi-LIPI, Gedung Widyasatwaloka, Jalan Raya Cibinong Km 46, Cibinong 16911, Jawa Barat. Email: [email protected] Memasukkan: September 2012, Diterima November 12 Chytridiomycosis merupakan penyakit tinggi membuat jamur ini mati, akibatnya jamur yang disebabkan oleh jamur chytrid Batracho- ini hidup subur pada daerah dataran tinggi; oleh chytrium dendrobatidis (Bd) yang menginfeksi sebab itu infeksi Chytridiomycosis biasanya terjadi jaringan kulit amfibia; pada banyak kasus terjadi pada jenis-jenis katak yang hidup di dataran ting- pada kelompok katak. Jamur ini menyerang per- gi. Pada tahun 2006 dan 2007, Kusrini dkk mukaan kulit katak yang mengakibatkan rusaknya (2008) mendapatkan beberapa jenis katak yang lapisan keratin pada kulit. Stadium lanjut dari dijumpai di Taman Nasional Gede-Pangrango infeksi chytridiomycosis yaitu jamur akan menge- sudah terinfeksi Bd (Tabel 1). Penemuan ini ber- luarkan substansi toksik yang kemudian akan tanda bahwa penyebaran jamur Bd sudah meluas mengganggu sistem respirasi katak dan berakibat sampai kepada dataran tinggi di Jawa. Untuk pada kematian katak. Kasus chytridiomycosis mengetahui kapan jamur Bd masuk ke Indonesia, ditemukan pada tahun 1998 di Amerika Tengah khususnya pulau Jawa, maka dilakukan sayatan dan Australia sehubungan dengan kematian am- histologi kulit katak yang berasal dari daerah Ci- fibi mereka (http://trushin. wordpress.com/ bodas dan sekitarnya (termasuk Taman Nasional 2011/07/28/batrachochy-trium-dendroba-tidis- Gede-Pangrango) dengan menggunakan koleksi frog-killer).
    [Show full text]
  • DAFTAR PUSTAKA Alikodra, H. S. (2002). Pengelolaan Satwa Liar, Jilid 1. Bogor: Fakultas Kehutanan, Institut Pertanian Bogor
    DAFTAR PUSTAKA Alikodra, H. S. (2002). Pengelolaan Satwa Liar, Jilid 1. Bogor: Fakultas Kehutanan, Institut Pertanian Bogor. Anggoro, T. C. (2013). Populasi dan Karakteristik Habitat Katak Kongkang Jeram (Huia mansonii) di Kali Kuning Taman Nasional Gunung Merapi. (Skripsi) Sekolah Sarjana, Universitas Gajah Mada. Begon, M., Townsend C. R., & Harper, J. L. (2006). Ecology from Individual to Ecosystem. Fourth Edition. Malden. Blackwell Publishing. Brennan. (1993). The habitat concept in ornithology. Curr.Ornithol. 11:35 -91. Capula, M. Behler (1989). Simon & Schuster's guide to reptiles and amphibians of the world. Cannatella, D. (1995). Rhacophoridae. Old World Treefrogs. Version 01 January 1995 (under construction). [Online]. Electronic Database accessible at http://tolweb.org/Rhacophoridae/16960/1995.01.01 in The Tree of Life Web Project, http://tolweb.org/ [30 Juni 2018]. Clark, K. L., & Lazerte, B. D. (1985). A laboratory study of the effects of aluminum and pH on amphibian eggs and tadpoles. Canadian Journal of Fisheries and Aquatic Sciences, 42(9), 1544-1551. Cogger, H. G. & Zweifel, R. G. (2003). Encyclopedia of Reptiles and Amphibians. San Fransisco: Fog City Press. Crump, M. L. (2009). Amphibian diversity and life history. Amphibian Ecology and Conservation. A Handbook of Techniques, 3-20. Kemas Muhammad Abiyyu Ilham Malik, 2019 KARAKTERISTIK HABITAT DAN POPULASI Rhacophorus reinwardtii DI KAWASAN KAMPUNG CAI RANCA UPAS Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu 49 Cummins, C. P. (1986). Effects of aluminium and low pH on growth and development in Rana temporaria tadpoles. Oecologia, 69(2), 248-252. Disparbud Jabar. (2011). Bumi Perkemahan Rancaupas. [Online]. Electronic Database accessible at http://www.disparbud.jabarprov.go.id/applications/frontend/in dex.
    [Show full text]
  • BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
    The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls
    [Show full text]
  • Dr. Mirza Dikari Kusrini CURRICULUM VITAE
    Dr. Mirza Dikari Kusrini CURRICULUM VITAE CURRENT POSITIONS Lecturer Department Forest Resources Conservation & Ecotourism Faculty of Forestry, IPB University Jl. Ulin, Kampus Darmaga, Bogor 16680 Email: [email protected]; [email protected] Phone: +62 (251) 861947 Web: https://ipb.ac.id/faculty/index/faculty-of-forestry EMPLOYMENT HISTORY Lecturer (1990 – until now) Faculty of Forestry, Department of Forest Resources Conservation and Ecotourism, Bogor Agricultural University EDUCATION 2006: PhD degree from James Cook University, Queensland Australia. PhD Project: the harvest of three species of frogs in Indonesia and its conservation implication. Scholarship: Australian Development Scholarship Scheme 1997: Master Degree (S2) on Environmental and Natural Resources Management Studies, Bogor Agricultural University with thesis: Aquatic system analysis of Kota Baru Bandar Kemayoran, Jakarta for the conservation of Black Cormorant, Phalacrocorax sulcirostris Brand, and the management of its aquatic environment. Scholarship: OECF/Japan 1988: Bachelor Degree (S1) on Faculty of Fisheries, Aquatic Resources Management Program, Bogor Agricultural University with thesis (skripsi): The ecology of potamidid snails in mangrove forest of Hurun Bay, Lampung, South Sumatera. Scholarship: Van Deventer Foundation, Indonesia FUNDING (2016-2018) 1 Kusrini M. D. 2016. Java-Bali Herp CARE (Conservation, Awareness and Research) Initiatives. Funded by National Geographic Foundation for Science and Exploration: Asia-16-15. US$ 28500 Kusrini M. D. 2017. Lecturer Mobility Program, One month sabbatical leave to Sydney (Australian Museum) from IPB. IDR 19.600.000 Kusrini M. D. 2017 Long Term Ecological Study: Pattern of Biodiversity along elevational gradient in Mount Halimun Salak National Park. First Year. Won 25000 Kusrini M. D. 2018 Long Term Ecological Study: Pattern of Biodiversity along elevational gradient in Mount Halimun Salak National Park.
    [Show full text]
  • Supporting Information Tables
    Mapping the Global Emergence of Batrachochytrium dendrobatidis, the Amphibian Chytrid Fungus Deanna H. Olson, David M. Aanensen, Kathryn L. Ronnenberg, Christopher I. Powell, Susan F. Walker, Jon Bielby, Trenton W. J. Garner, George Weaver, the Bd Mapping Group, and Matthew C. Fisher Supplemental Information Taxonomic Notes Genera were assigned to families for summarization (Table 1 in main text) and analysis (Table 2 in main text) based on the most recent available comprehensive taxonomic references (Frost et al. 2006, Frost 2008, Frost 2009, Frost 2011). We chose recent family designations to explore patterns of Bd susceptibility and occurrence because these classifications were based on both genetic and morphological data, and hence may more likely yield meaningful inference. Some North American species were assigned to genus according to Crother (2008), and dendrobatid frogs were assigned to family and genus based on Grant et al. (2006). Eleutherodactylid frogs were assigned to family and genus based on Hedges et al. (2008); centrolenid frogs based on Cisneros-Heredia et al. (2007). For the eleutherodactylid frogs of Central and South America and the Caribbean, older sources count them among the Leptodactylidae, whereas Frost et al. (2006) put them in the family Brachycephalidae. More recent work (Heinicke et al. 2007) suggests that most of the genera that were once “Eleutherodactylus” (including those species currently assigned to the genera Eleutherodactylus, Craugastor, Euhyas, Phrynopus, and Pristimantis and assorted others), may belong in a separate, or even several different new families. Subsequent work (Hedges et al. 2008) has divided them among three families, the Craugastoridae, the Eleutherodactylidae, and the Strabomantidae, which were used in our classification.
    [Show full text]
  • Herpetofaunal Community Structure and Habitat Associations in Gunung Ciremai National Park, West Java, Indonesia
    BIODIVERSITAS ISSN: 1412-033X (printed edition) Volume 12, Number 1, January 2011 ISSN: 2085-4722 (electronic) Pages: 38-44 DOI: 10.13057/biodiv/d120108 Herpetofaunal community structure and habitat associations in Gunung Ciremai National Park, West Java, Indonesia AWAL RIYANTO♥ Zoology Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Widyasatwaloka Building, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, Indonesia. Tel.: 021-8765056 Fax.: 021-8765068 email: [email protected] Manuscript received: 1 March 2010. Revision accepted: 2 August 2010. ABSTRACT Riyanto A (2011) Herpetofaunal community structure and habitat associations in Gunung Ciremai National Park, West Java, Indonesia. Biodiversitas 12: 38-44. Community structure and habitat associations of amphibians and reptiles on both rainy and dry seasons of six habitat types of three sites in Gunung Ciremai National Park, West Java were investigated in March and October 2008. The data of herpetofauna was obtained by opportunistic searches. Herpetofaunal diversity for each habitat was determined by using Shannon Wiener index, the species abundance per unit area was calculated by using Margalef’s index, and the homogeneity of distribution of species in relation to other species in a sampled per unit area was evaluated using Evenness index. The similarity in herpetofauna communities among habitat types was determined using Sorensen’s coefficient, meanwhile the Jaccard’s index was used to estimate similarities in habitat utilization. Thus, both community similarities and habitat utilization displayed in cluster dendrogram. A total of 46 amphibian and reptile taxa were recorded, comprising 16 anurans, 22 lizards and 8 snakes. Of the total taxa, four anurans are endemic and unusual specimens probably new in sciences referred to the genus Cyrtodactylus and Eutropis.
    [Show full text]
  • The Tree Frog of Chevron Geothermal Concession, Mount Halimun-Salak
    2008 MIRZA D. KUSRINI M. I. LUBIS B. DARMAWAN [The Tree Frog of Chevron Geothermal Concession, Mount Halimun­Salak National Park Indonesia] REPORT SUBMITTED TO THE WILDLIFE TRUST­PEKA FOUNDATION Citation: Kusrini MD, Lubis MI, Darmawan B. 2008. The Tree Frog of Chevron Geothermal Concession, Mount Hakimun-Salak National Park - Indonesia. Technical report submitted to the Wildlife Truts – Peka Foundation PHOTO CREDITS Front cover: (top left) The Javanese tree frog Rhacophorus javanus, (top right) a female Philautus vittiger guarding its eggs, (bottom) the green flying frog Rhacophorus reinwardtii M. Irfansyah Lubis: Cover pictures, Fig2-5, fig2,7 to 2-11, Fig 3-1 top, Fig.3-4, Fig 3-4, Fig 3-7, Fig 3-8, Fig 3-0. (Stage 1, 16-18, 20, 21, 25, 42, 44, adult), Fig.3-11 and Fig 3-12 , Fig 3-13, Fig 3-15, Fig 3-16 B. Darmawan: Fig3-2, Fig.3-10. (Stage 13-15, 37,38,41,43,45,46) K3AR-IPB:Fig. 3-1 below Content Acknowledgments v Executive Summary v Chapter 1. Introduction 1 Chapter 2. The tree frog of CGI Concession 4 Introduction 4 Methods 4 Results 4 Species Review 10 Discussions 13 Literature cited 15 Chapter 3. Breeding ecology of Pgilautus vittiger (Anura:Rhacophoridae) from 17 CGI – Mount Halimun Salak National Park, West Java, Indonesia Introduction 17 Methods 18 Animal descriptions 18 Survey & Breeding Ecology 19 Results 21 I. Habitat 21 II. Breeding Ecology 23 2.1 Breeding Season 23 2.2 Eggs 24 2.3 Embryonic Development 24 2.4 Descriptions of tadpole 27 2.5 Breeding Behavior 29 2.6 Advertisement Calls 29 2.7 Parental Care 31 Discussions 31 Literature cited 33 Appendix 36 Chapter 4.
    [Show full text]