An Annotated List of the Ants (Hymenoptera: Formicidae) Found in Fort Washington and Piscataway National Parks, Maryland

Total Page:16

File Type:pdf, Size:1020Kb

An Annotated List of the Ants (Hymenoptera: Formicidae) Found in Fort Washington and Piscataway National Parks, Maryland AN ANNOTATED LIST OF THE ANTS (HYMENOPTERA: FORMICIDAE) FOUND IN FORT WASHINGTON AND PISCATAWAY NATIONAL PARKS, MARYLAND Theodore W. Suman Principal Investigator Theodore W. Suman, Ph.D. 7591 Polly's Hill Lane Easton, Maryland 21601 (410) 822 1204 [email protected] 'C ,:; ~) 71' 5 ?--- / I &, ·-1 U..~L:, 1 AN ANNOTATED LIST OF THE ANTS (HYMENOPTERA: FORMICIDAE) FOUNDINFORTWASHINGTONANDPISCATAWAYNATIONALPARKS, MARYLAND Theodore W. Suman The ants (Hymenoptera: Formicidae) listed in this report represent the results of a two-year (2002 - 2003) survey conducted in Fort Washington and Piscataway National Parks located in southwestern Prince Georges and northwestern Charles Counties, Maryland. This survey is part of the National Parks Service effort to broaden knowledge of the biodiversity occurring within the National Parks and was conducted under Permit # NACE-2002-SCI-0005 and Park-assigned Study Id. # NACE-00018. Table 1 is the result of this survey and consists of an alphabetical list (by subfamily, genus, and species) of all of the ant species found in both Parks. Information on the number of specimens collected, caste, date collected, and habitat is also included. Table 2 lists species found in only one or the other of the two Parks. General information on the collecting dates, collecting and extracting methods, and specific collecting sites is described below. COLLECTING DATES Collecting dates were spread throughout the spring to fall seasons of 2002 and 2003 to maximize the probability of finding all the species present. Collecting dates for each Park are listed separately. FORT WASHINGTON 2002 -27 March; 2,23 April; 20 May; 21,23 August; 12,25 September 2003 - 8 May; 12,26 June PISCATAWAY PARK 2002-9,16 April; 21 May; 24 June; 1 July 2003 - 20,30 May; 5 November 2 COLLECTING AND EXTRACTING METHODS Specimens were collected on site by the following methods. - A standard insect sweep net used both for sweeping vegetation and beating vegetation as high as could be reached. - Hand sweeping about one square meter of leaf litter for later extraction of specimens in the lab. - Pitfall traps using plastic drinking cups (15 cm. in dia.) with non-toxic antifreeze used for a preservative. The traps were left in place about one week. - Hand collecting specimens from webs, dead leaves etc. Extraction of specimens in the lab from leaf litter and other debris utilized Berlese funnels (15 watt light hung over the top) and Winkler mesh bags. The funnels and mesh bags operated for several days each until no more specimens were recovered. COLLECTING SITES The collecting sites selected represent many different types of habitats. The sites within each park are designated in Table 1 with the numbers I through 3 for Fort Washington and with numbers 4 through 7 for Piscataway Park. The specific habitats within each site are designated with letters. FORT WASHINGTON I. Southeastern part of the Park. Includes gravel service road beyond locked chain to BunkerB. a. Open grass areas and young upland woods on west side of service road about halfway between the locked chain and Bunker B. b. Deep gully adjacent to and north of Bunker B. c. In, around and on top of Bunker B. 2 3 2. Western part of Park near public fishing area and lighthouse. Includes grass area and woods adjacent to parking lot, around old brick building, and edge of Potomac River near lighthouse. a. Beach and misc. debris used as bulk heading along Potomac River. b. Debris around foundation of old brick building near river. c. Young stand of trees about halfway between parking lot and river. d. Vegetation (grass, trees, edge veg.) adjacent to parking lot. 3. Northeastern part of Park. Includes sites west of service road/trail that begins on right (north) just before entrance station to park and picnic area and adjacent woods on west side of site. a. Wooded area and gully west of service road/trail. Located about 2/10 kilometer from locked chain at entrance along service road/trail. b. Area of mowed grass and edge vegetation on west side of service road/trail about halfway between entrance to road and site 3a. c. Grass area around picnic tables, adjacent woods, and gully in interior of woods. This site located on west side of site 3. PISCATAWAY PARK 4. Mockley Point and adjacent Indian grounds. a. Mockley Point. Includes agricultural field/meadow along dirt road leading to Mockley Point, and woods and beach area along Potomac River at end of dirt road. b. Areas adjacent to Indian grounds. Includes dry and swampy woods on eastern side of Accokeek Creek. 5. Park on west side of Accokeek Creek. Includes meadows along access road, woods adjacent to parking lot, and western bank of Accokeek Creek near mouth and western end of boardwalk a. Meadows on both sides of access road leading to parking lot. b. Wooded bank along western side of Accokeek Creek near mouth. c. Dry woods adjacent to parking lot between lot and Potomac River 3 4 6. National Colonial Fann grounds. a. Maintenance and storage buildings, and museum barn. Includes area around foundation of buildings, in buildings, and nearby young patch of woods and dry stream bed. b. Area along Bluebird trail. Includes meadow just east of trail, woods just west of trail and in gully adjacent to trail. 7. Marshall Hall. Collecting sites located just northeast of end of entrance road. a. Along Potomac River. Includes beach debris, and woody and herbaceous riparian vegetation. b. Wooded area northeast of historic cemetery. Includes vegetation in bottom of wet gully, sides of gully and upland woods. RESULTS AND DISCUSSION Table 1 is a listing of all of the ant species found during this survey. Table 2 lists the species occurring in only one or the other of the two Parks. A total of 37 species belonging to 23 genera and 4 subfamilies were found. For comparison, Lynch (see Ref.) found 60 species with the expectation of 102 species occurring in the Chesapeake Bay region. Lynch's study is the result of an intensive multi­ year effort at the large 1,000 ha Smithsonian Environmental Research Center (SERC) south of Annapolis, Maryland. A recent survey of the literature for the District of Columbia metro area indicates the potential of 131 ant species occurring in this region (see Ref for the Georgetown Univ. biodiversity web site). The species listed in this report include representatives of all 4 subfamilies and 23 of the 29 general found by Lynch. No threatened, endangered or invasive species such as the Argentine ant or the fire ant were found during this survey. Most of the species found are fairly common and should not require any special conservation measures beyond maintaining the Parks in at least their present condition. One species, Vollenhovia emeryi W.M. Wheeler, was found in shoreline debris along the Potomac River near the lighthouse in Fort Washington and represents a new record for Maryland. First described from Japan, this species was found in the Rock Creek Park area of the District of Columbia (Holldobler & Wilson 1990: p.66). Specimens are in the Smithsonian NMNH collection. This species has also been found recently in the Dyke Marsh Wildlife Preserve in Virginia (Dan Kjar, pers. comm.. ) 4 5 Most species of ants in this region are known to nest either in the ground or in ground litter (leaves, rotten wood etc.). Consequently, most of the effort during this survey was on sampling these types of habitats. A thorough search of the canopy layer may reveal other species and foraging individuals not found at ground level. Collecting in the canopy layer however requires more specialized equipment and methods not available during this survey. TABLE 1 Table 1 is an alphabetical list (by subfamily, genus and species) of all of the ant species found in both Parks during this survey. Following the name of each species is information on: 1. The total number and caste of the specimens collected (w. = worker, m. = male, f. = queen). 2. The National Park Service catalog numbers (FOWA ..... = Fort Washington, PISC ..... = Piscataway Park). 3. Site(s) and date(s) represent specifically where the specimens were collected within the Parks and the day(s) and month(s) when the specimens were collected. 4. The habitat of the specimen and the method of collecting/extracting. DOLICHODERINAE Dolichoderus pustulatus Mayr; 1 w.; PISC 21440 Site - 5b; 2002 - 1 July Habitat - sweeping along boardwalk at Accokeek Creek Tapinoma sessile (Say); 133 w. 's; 1 m. FOWA - 13626; PISC - 21441 Sites - la, lb, 4a, 4b, 5a, 5b, 6a, 6b; 2002 -21 May; 1 July; 12,25 Sept. Habitat - litter in woods, gully, meadow, along trails dead leaves, around hidings; Berlese, Winkler, pitfall traps 5 6 FORMICINAE Brachymyrmex debilis Emery; 113 w. 's FOWA-13627; PISC-21442 Sites - 2b, 5b; 2003 - 30 May; 26 June Habitat - litter around blding, bank of Accokeek Creek; Berlese Camponotus americana Mayr; 37 w. 's FOWA- 13628; PISC-21443 Sites - la, lb, le, 2a, 2d, 3a, 3c, 4b, 5c, 6b, 7a 2002 - 9,16,23 April; 1 July; 12,25 Sept. 2003 - 8-20 May; 12,26 June; 5 Nov. Habitat- litter in woods, gully, open areas, around hidings, along shore of Potomac River; Berlese, pitfall traps sweeping Camponotus ferrugineus (Fabricius ); 17 w. 's FOWA-13629; PISC-21444 Sites - 1a, 2a, 2d, 3a, 5c, 6b 2002 - 1 July; 12 Aug.; 12 Sept. 2003 - 8-20,20-30 May; 26 June Habitat - litter in woods, gully, dead leaves, along shore of Potomac River; pitfall traps, sweeping Camponotus pennsylvanicus (De Geer); 5 w.'s FOWA-13630; PISC-21445 Sites - 2a, 7a; 2003 - 26 June; 5 Nov. Habitat - litter along shore of Potomac River; Berlese Formica pallidefulva Latreille; 21 w.
Recommended publications
  • Association Between Host Wing Morphology Polymorphism And
    Association between host wing morphology polymorphism and Wolbachia infection in Vollenhovia emeryi (Hymenoptera: Myrmicinae) Pureum Noh1, Seung-Yoon Oh2, Soyeon Park3, Taesung Kwon4, Yonghwan Kim5, Jae Chun Choe3, and Gilsang Jeong6 1Ewha Womans University 2Seoul National University School of Biological Sciences 3Affiliation not available 4Korea Forest Research Institute 5Konkuk University 6National Institute of Ecology May 5, 2020 Abstract Many eusocial insects, including ants, show complex colony structures, distributions, and reproductive strategies. In the ant Vollenhovia emeryi Wheeler (Hymenoptera: Myrmicinae), queens and males are produced clonally, while sterile workers arise sexually, unlike other ant species and Hymenopteran insects in general. Furthermore, there is a wing length polymorphism in the queen caste. Despite its ecological and evolutionary importance, little is known about the population dynamics and structure of this ant species, which may provide insight into its unique reproductive mode and polymorphic traits. We performed in-depth analyses of ant populations from Korea, Japan, and North America using three mitochondrial genes (COI, COII, and Cytb). The long-winged (L) morph is predominant in Korean populations, and the short-winged (S) morph is very rare. Interestingly, all L morphs were infected with Wolbachia, while all Korean S morphs lacked Wolbachia, demonstrating a novel association between a symbiont and a phenotypic trait. A phylogenetic analysis revealed that the S morph is derived from the L morph. We propose that the S morph is associated with potential resistance to Wolbachia infection, and that Wolbachia infection does not influence clonal reproduction. Introduction Population structure analyses using genetic data provide extensive information about populations, including genetic distribution, genetic diversity, gene flow, and selection.
    [Show full text]
  • Diversity from the Lower Kennebec Valley Region of Maine
    J. Acad. Entomol. Soc. 8: 48-51 (2012) NOTE Formicidae [Hymenoptera] diversity from the Lower Kennebec Valley Region of Maine Gary D. Ouellette and André Francoeur Ants [Hymenoptera: Formicidae] occupy an important ecological position in most terrestrial habitats and have been investigated for evaluating the effects of ecosystem characteristics such as soil, vegetation, climate and habitat disturbance (Sanders et al., 2003; Rios-Casanova et al., 2006). At present, Maine’s myrmecofauna has not been extensively studied (Ouellette et al., 2010). Early in the 20th century, Wheeler (1908) presented results from a small survey of the Casco Bay region and Wing (1939) published a checklist of ant species recorded from the state. Both Procter (1946) and Ouellette et al. (2010) reported ant species surveyed from the Mount Desert Island region. The importance of expanding this knowledge base is highlighted by a recent discovery of the invasive ant species Myrmica rubra (Linnaeus) (Garnas 2004; Groden et al. 2005; Garnas et al. 2007; McPhee et al. 2012). The present study represents the first evaluation and characterization of Formicidae from a White Pine- Mixed Hardwoods Forest (WPMHF) ecosystem (Gawler & Cutko 2010) located in the lower Kennebec Valley region. The species reported here provide a baseline condition and a means for future biodiversity comparison. Fifteen study sites, located in the lower Kennebec Valley region, were sampled 1 to 8 times between May 1998 and July 2011 (Figure 1). Habitats comprised of a closed-canopy, WPMHF ecosystem covered by hemlock forests, mixed beech forests, red-oak-northern-hardwood-white pine-forests, and white pine mixed conifer forests.
    [Show full text]
  • The Ants of Oklahoma Master of Science
    THE ANTS OF OKLAHOMA By Jerry H. Young(I\" Bachelor of Science Oklahoma Agricultural and Mechanical College Stillwater, Oklahoma 1955 Submitted to the faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1 1956 tl<lAWMA AGCMCl«.f�Al L �Ci'!AlttCAl e&U.Ull LIBRARY JUL16195 6 THE ANTS OF OKLAHOMA Thesis Approved: Thesis Adviser }>JcMem��f � 't'" he Thesis ) Committee Member of the Thesis Committee 7'4'.��Member of the Thesis Committee Head of the Department ifean of the Graduate School 361565 ii PREFACE The study of the distribution of ants in the United States has been a long and continuous process with many contributors, but the State of Oklahoma has not received the attentions of these observers to any great extent. The only known list of ants of Oklahoma is one prepared by Mo Ro Smith (1935)0 Early in 1954 a survey of the state of Oklahoma was made to determine the species present and their distributiono The results of this survey, which blanketed the entire State, are given in this paper. The author wishes to express his appreciation to Dro Do E. Howell, chairman of the writer's thesis committee, for his valuable assistance and careful guidance in the preparation of this papero Also, much guidance on preparation of this manuscrip_t was received from Drs. Do Eo Bryan, William H. Irwin and F. A. Fenton. Many of the determin­ ations were made by M. R. Smith.. Vital infonnation was obtained from the museums at Oklahoma Agricultural and Mechanical College and the University of Oklahoma.
    [Show full text]
  • Hymenoptera: Formicidae) Diversity in Urban Forest
    EFFECTS OF FOREST EDGES, EXOTIC ANTS AND NONNATIVE PLANTS ON LOCAL ANT (HYMENOPTERA: FORMICIDAE) DIVERSITY IN URBAN FOREST FRAGMENTS OF NORTHEASTERN OHIO KALOYAN IVANOV Master of Science in Entomology Sofia University Sofia, Bulgaria 2000 Submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN REGULATORY BIOLOGY at the CLEVELAND STATE UNIVERSITY December, 2010 This dissertation has been approved for the Department of Biological, Geological, and Environmental Sciences and for the College of Graduate Studies by Date: Dr. Joe B. Keiper, Virginia Museum of Natural History Major Advisor Date: Dr. B. Michael Walton, BGES / CSU Advisory Committee Member Date: Dr. Robert A. Krebs, BGES / CSU Advisory Committee Member Date: Dr. Jaharul Haque, The Cleveland Clinic Advisory Committee Member Date: Dr. Daniel R. Petit, National Fish and Wildlife Foundation Advisory Committee Member Date: Dr. F. Paul Doerder, BGES / CSU Internal Examiner Date: Dr. Carl D. Anthony, Department of Biology, John Carroll University External Examiner “The worst thing that can happen - will happen [in the 1980s] - is not energy depletion, economic collapse, limited nuclear war, or conquest by a totalitarian government. As terrible as these catastrophes would be for us, they can be repaired within a few generations. The one process ongoing in the 1980s that will take millions of years to correct is the loss of genetic and species diversity by the destruction of natural habitats. This is the folly our descendants are least likely to forgive us.” Wilson EO (Harvard Magazine 1980) ACKNOWLEDGMENTS Numerous people provided help, as diverse as it was important, that made this work possible.
    [Show full text]
  • Frequent Occurrence of Gynandromorphs in the Natural Population of the Ant Vollenhovia Emeryi (Hymenoptera: Formicidae)
    Ins. Soc. 41:273-278 (1994) 1015-1621/94/030273-06 $1.50 + 0.20/0 1994 Birkh/iuser Verlag, Basel Frequent occurrence of gynandromorphs in the natural population of the ant Vollenhovia emeryi (Hymenoptera: Formicidae) K. Kinomura 1 and K. Yamauchi 2 1 Gifu-Aikawa High School, Gifu 501-31, Japan 2 Department of Biology, Faculty of Education, Gifu University, Gifu 501-11, Japan Key words: Vollenhovia emeryi; gynandromorph; dimorphism; microgyna; polygyny. Summary Many gynandromorphs were obtained from the natural population of Vollenhovia emeryi (mierogyna form) in Gifu, Japan. They were primarily male: most had the thorax and gaster of males, and the head contained tissues partially feminized to varying degrees. These gynandromorphs were found in 27 of 45 colonies studied (60.0%). Their proportion to total males in each colony varied from 3.7- 47.7 %, with a mean of 21.4 % (n = 21). The gynandromorphs were found in all study areas and in every study year, suggesting that gynandromorphism in this species is not a rare phenomenon. Moreover, this observation suggests that gynandromorphs may occur more frequently in micraners than in macraners. Introduction Gynandromorphs have been reported from 42 ant species in 22 genera (Jones and Phillips, 1985). There are many papers about gynandromorphism in ants but normally related to one or a few individuals among many species. The frequency of their occurrence in the natural population seems to be very low. In Japan, gynandromorphs have been recorded from Vollenhovia emeryi (Kubota, 1984), but the details remain unclear. Through our recent study on V. emeryi, we found extraordinarily frequent occurrences of gynandromorphs among the natural population.
    [Show full text]
  • A Survey of Ground-Dwelling Ants (Hymenoptera: Formicidae) in Georgia
    Ipser et al.: Ground-Dwelling Ants in Georgia 253 A SURVEY OF GROUND-DWELLING ANTS (HYMENOPTERA: FORMICIDAE) IN GEORGIA REID M. IPSER, MARK A. BRINKMAN, WAYNE A. GARDNER AND HAROLD B. PEELER Department of Entomology, University of Georgia, College of Agricultural and Environmental Sciences Griffin Campus, 1109 Experiment Street, Griffin, GA 30223-1797, USA ABSTRACT Ground-dwelling ants (Hymenoptera: Formicidae) were sampled at 29 sites in 26 counties in Georgia with pitfall traps, leaf litter extraction, visual searching, and bait stations. We found 96 ant taxa including nine species not previously reported from Georgia: Myrmica ameri- cana Weber, M. pinetorum Wheeler, M. punctiventris Roger, M. spatulata Smith, Pyramica wrayi (Brown), Stenamma brevicorne (Mayr), S. diecki Emery, S. impar Forel, and S. schmitti Wheeler, as well as three apparently undescribed species (Myrmica sp. and two Ste- namma spp.). Combined with previous published records and museum records, we increased the total number of ground-dwelling ants known from Georgia to 144 taxa. Key Words: ground-dwelling ants, Formicidae, survey, Georgia, species. RESUMEN Hormigas que habitan en el suelo (Hymenoptera: Formicidae) fueron recolectadas en 29 si- tios en 26 condados del estado de Georgia con trampas de suelo, extración de hojarasca, bus- queda visual, y trampas de cebo. Nosotros encontramos 96 taxa de hormigas incluyendo nueve especies no informadas anteriormente en Georgia: Myrmica americana Weber, M. pin- etorum Wheeler, M. punctiventris Roger, M. spatulata Smith, Pyramica wrayi (Brown), Ste- namma brevicorne (Mayr), S. diecki Emery, S. impar Forel, y S. schmitti Wheeler, además de tres especies aparentemente no descritas (Myrmica sp. y dos Stenamma spp.).
    [Show full text]
  • ANNUAL REPORT 2020 Plant Protection & Conservation Programs
    Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County .
    [Show full text]
  • Systèmes De Reproduction Et Scénarios D'invasion Chez La Petite Fourmi De Feu, Wasmannia Auropunctata
    Montpellier SupAgro THÈSE pour obtenir le grade de DOCTEUR DE MONTPELLIER SUPAGRO Discipline : Biologie des organismes et des populations Formation doctorale : Évolution, Écologie, Ressources génétiques, Paléontologie Ecole doctorale : Systèmes Intégrés en Biologie, Agronomie, Géosciences, Hydrosciences et Environnement Systèmes de reproduction et scénarios d’invasion chez la petite fourmi de feu, Wasmannia auropunctata Présentée et soutenue publiquement par Olivier Rey Le 16 décembre 2011 Jury Myriam Valéro Directrice de recherche, CNRS Roscoff Rapporteur Claudie Doums Maître de conférences, EPHE, Paris Rapporteur Sandrine Maurice Maître de conférences, Univ. Montpellier II Examinateur Sébastien Lavergne Chargé de recherche, CNRS, Grenoble Examinateur Thomas Guillemaud Directeur de recherche, INRA Sophia-Antiopolis Examinateur Arnaud Estoup Directeur de recherche, INRA Montpellier Directeur Benoit Facon Chargé de recherche, INRA Montpellier Co-directeur Montpellier SupAgro THÈSE pour obtenir le grade de DOCTEUR DE MONTPELLIER SUPAGRO Discipline : Biologie des organismes et des populations Formation doctorale : Évolution, Écologie, Ressources génétiques, Paléontologie Ecole doctorale : Systèmes Intégrés en Biologie, Agronomie, Géosciences, Hydrosciences et Environnement Systèmes de reproduction et scénarios d’invasion chez la petite fourmi de feu, Wasmannia auropunctata Présentée et soutenue publiquement par Olivier Rey Le 16 décembre 2011 Jury Myriam Valéro Directrice de recherche, CNRS Roscoff Rapporteur Claudie Doums Maître de conférences,
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • Akes an Ant an Ant? Are Insects, and Insects Are Arth Ropods: Invertebrates (Animals With­
    ~ . r. workers will begin to produce eggs if the queen dies. Because ~ eggs are unfertilized, they usually develop into males (see the discus­ : ~ iaplodiploidy and the evolution of eusociality later in this chapter). =- cases, however, workers can produce new queens either from un­ ze eggs (parthenogenetically) or after mating with a male ant. -;c. ant colony will continue to grow in size and add workers, but at -: :;oint it becomes mature and will begin sexual reproduction by pro· . ~ -irgin queens and males. Many specie s produce males and repro­ 0 _ " females just before the nuptial flight . Others produce males and ---: : ._ tive fem ales that stay in the nest for a long time before the nuptial :- ~. Our largest carpenter ant, Camponotus herculeanus, produces males _ . -:= 'n queens in late summer. They are groomed and fed by workers :;' 0 it the fall and winter before they emerge from the colonies for their ;;. ights in the spring. Fin ally, some species, including Monomoriurn : .:5 and Myrmica rubra, have large colonies with multiple que ens that .~ ..ew colonies asexually by fragmenting the original colony. However, _ --' e polygynous (literally, many queens) and polydomous (literally, uses, referring to their many nests) ants eventually go through a -">O=- r' sexual reproduction in which males and new queens are produced. ~ :- . ant colony thus functions as a highly social, organ ized "super­ _ _ " 1." The queens and mo st workers are safely hidden below ground : : ~ - ed within the interstices of rotting wood. But for the ant workers ~ '_i S ' go out and forage for food for the colony,'life above ground is - =- .
    [Show full text]
  • Ants (Hymenoptera: Formicidae) for Arkansas with a Synopsis of Previous Records
    Midsouth Entomologist 4: 29–38 ISSN: 1936-6019 www.midsouthentomologist.org.msstate.edu Research Article New Records of Ants (Hymenoptera: Formicidae) for Arkansas with a Synopsis of Previous Records Joe. A. MacGown1, 3, JoVonn G. Hill1, and Michael Skvarla2 1Mississippi Entomological Museum, Department of Entomology and Plant Pathology, Mississippi State University, MS 39762 2Department of Entomology, University of Arkansas, Fayetteville, AR 72207 3Correspondence: [email protected] Received: 7-I-2011 Accepted: 7-IV-2011 Abstract: Ten new state records of Formicidae are reported for Arkansas including Camponotus obliquus Smith, Polyergus breviceps Emery, Proceratium crassicorne Emery, Pyramica metazytes Bolton, P. missouriensis (Smith), P. pulchella (Emery), P. talpa (Weber), Stenamma impar Forel, Temnothorax ambiguus (Emery), and T. texanus (Wheeler). A synopsis of previous records of ant species occurring in Arkansas is provided. Keywords: Ants, new state records, Arkansas, southeastern United States Introduction Ecologically and physiographically, Arkansas is quite diverse with seven level III ecoregions and 32 level IV ecoregions (Woods, 2004). Topographically, the state is divided into two major regions on either side of the fall line, which runs northeast to southwest. The northwestern part of the state includes the Interior Highlands, which is further divided into the Ozark Plateau, the Arkansas River Valley, and the Ouachita Mountains. The southern and eastern portions of the state are located in the Gulf Coastal Plain, which is divided into the West Gulf Coastal Plain in the south, the Mississippi River Alluvial Plain in the east, and Crowley’s Ridge, a narrow upland region that bisects the Mississippi Alluvial Plain from north to south (Foti, 2010).
    [Show full text]
  • Hymenoptera: Formicidae), and Generalized Ant and Arthropod Diversity
    COMMUNITY AND ECOSYSTEM ECOLOGY Positive Association Between Densities of the Red Imported Fire Ant, Solenopsis invicta (Hymenoptera: Formicidae), and Generalized Ant and Arthropod Diversity LLOYD W. MORRISON AND SANFORD D. PORTER Center for Medical, Agricultural and Veterinary Entomology, USDAÐARS, P.O. Box 14565, Gainesville, FL 32604 Environ. Entomol. 32(3): 548Ð554 (2003) ABSTRACT The invasive ant, Solenopsis invicta Buren, is a threat to native arthropod biodiversity. We compared areas with naturally varying densities of mostly monogyne S. invicta and examined the association of S. invicta density with three diversity variables: (1) the species richness of ants, (2) the species richness of non-ant arthropods, and (3) the abundance of non-S. invicta ants. Pitfall traps were used to quantify S. invicta density and the three diversity variables; measurement of mound areas provided a complementary measure of S. invicta density. We sampled 45 sites of similar habitat in north central Florida in both the spring and autumn of 2000. We used partial correlations to elucidate the association between S. invicta density and the three diversity variables, extracting the effects of temperature and humidity on foraging activity. Surprisingly, we found moderate positive correlations between S. invicta density and species richness of both ants and non-ant arthropods. Weaker, but usually positive, correlations were found between S. invicta density and the abundance of non-S. invicta ants. A total of 37 ant species, representing 16 genera, were found to coexist with S. invicta over the 45 sites. These results suggest that S. invicta densities as well as the diversities of other ants and arthropods are regulated by common factors (e.g., productivity).
    [Show full text]