Hymenoptera: Formicidae) Diversity in Urban Forest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Survey of Ground-Dwelling Ants (Hymenoptera: Formicidae) in Georgia
Ipser et al.: Ground-Dwelling Ants in Georgia 253 A SURVEY OF GROUND-DWELLING ANTS (HYMENOPTERA: FORMICIDAE) IN GEORGIA REID M. IPSER, MARK A. BRINKMAN, WAYNE A. GARDNER AND HAROLD B. PEELER Department of Entomology, University of Georgia, College of Agricultural and Environmental Sciences Griffin Campus, 1109 Experiment Street, Griffin, GA 30223-1797, USA ABSTRACT Ground-dwelling ants (Hymenoptera: Formicidae) were sampled at 29 sites in 26 counties in Georgia with pitfall traps, leaf litter extraction, visual searching, and bait stations. We found 96 ant taxa including nine species not previously reported from Georgia: Myrmica ameri- cana Weber, M. pinetorum Wheeler, M. punctiventris Roger, M. spatulata Smith, Pyramica wrayi (Brown), Stenamma brevicorne (Mayr), S. diecki Emery, S. impar Forel, and S. schmitti Wheeler, as well as three apparently undescribed species (Myrmica sp. and two Ste- namma spp.). Combined with previous published records and museum records, we increased the total number of ground-dwelling ants known from Georgia to 144 taxa. Key Words: ground-dwelling ants, Formicidae, survey, Georgia, species. RESUMEN Hormigas que habitan en el suelo (Hymenoptera: Formicidae) fueron recolectadas en 29 si- tios en 26 condados del estado de Georgia con trampas de suelo, extración de hojarasca, bus- queda visual, y trampas de cebo. Nosotros encontramos 96 taxa de hormigas incluyendo nueve especies no informadas anteriormente en Georgia: Myrmica americana Weber, M. pin- etorum Wheeler, M. punctiventris Roger, M. spatulata Smith, Pyramica wrayi (Brown), Ste- namma brevicorne (Mayr), S. diecki Emery, S. impar Forel, y S. schmitti Wheeler, además de tres especies aparentemente no descritas (Myrmica sp. y dos Stenamma spp.). -
Ants (Hymenoptera: Formicidae) for Arkansas with a Synopsis of Previous Records
Midsouth Entomologist 4: 29–38 ISSN: 1936-6019 www.midsouthentomologist.org.msstate.edu Research Article New Records of Ants (Hymenoptera: Formicidae) for Arkansas with a Synopsis of Previous Records Joe. A. MacGown1, 3, JoVonn G. Hill1, and Michael Skvarla2 1Mississippi Entomological Museum, Department of Entomology and Plant Pathology, Mississippi State University, MS 39762 2Department of Entomology, University of Arkansas, Fayetteville, AR 72207 3Correspondence: [email protected] Received: 7-I-2011 Accepted: 7-IV-2011 Abstract: Ten new state records of Formicidae are reported for Arkansas including Camponotus obliquus Smith, Polyergus breviceps Emery, Proceratium crassicorne Emery, Pyramica metazytes Bolton, P. missouriensis (Smith), P. pulchella (Emery), P. talpa (Weber), Stenamma impar Forel, Temnothorax ambiguus (Emery), and T. texanus (Wheeler). A synopsis of previous records of ant species occurring in Arkansas is provided. Keywords: Ants, new state records, Arkansas, southeastern United States Introduction Ecologically and physiographically, Arkansas is quite diverse with seven level III ecoregions and 32 level IV ecoregions (Woods, 2004). Topographically, the state is divided into two major regions on either side of the fall line, which runs northeast to southwest. The northwestern part of the state includes the Interior Highlands, which is further divided into the Ozark Plateau, the Arkansas River Valley, and the Ouachita Mountains. The southern and eastern portions of the state are located in the Gulf Coastal Plain, which is divided into the West Gulf Coastal Plain in the south, the Mississippi River Alluvial Plain in the east, and Crowley’s Ridge, a narrow upland region that bisects the Mississippi Alluvial Plain from north to south (Foti, 2010). -
A Survey of the Ants (Hymenoptera: Formicidae) of Arkansas and the Ozark Mountains Joseph O'neill University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Horticulture Undergraduate Honors Theses Horticulture 12-2011 A Survey of the Ants (Hymenoptera: Formicidae) of Arkansas and the Ozark Mountains Joseph O'Neill University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/hortuht Recommended Citation O'Neill, Joseph, "A Survey of the Ants (Hymenoptera: Formicidae) of Arkansas and the Ozark Mountains" (2011). Horticulture Undergraduate Honors Theses. 1. http://scholarworks.uark.edu/hortuht/1 This Thesis is brought to you for free and open access by the Horticulture at ScholarWorks@UARK. It has been accepted for inclusion in Horticulture Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. A Survey of the Ants (Hymenoptera: Formicidae) of Arkansas and the Ozark Mountains An Undergraduate Honors Thesis at the University of Arkansas Submitted in partial fulfillment of the requirements for the University of Arkansas Dale Bumpers College of Agricultural, Food and Life Sciences Honors Program by Joseph C. O’Neill and Dr. Ashley P.G. Dowling December 2011 < > Dr. Curt R. Rom < > Dr. Ashley P.G. Dowling < > Dr. Donn T. Johnson < > Dr. Duane C. Wolf ABSTRACT Ants are among the most abundant animals in most terrestrial ecosystems, yet local fauna are often poorly understood due to a lack of surveys. This study separated and identified ant species from arthropod samples obtained during ongoing projects by the lab of Dr. A.P.G. Dowling, Professor of Entomology at the University of Arkansas. More than 600 ants were prepared, 284 of which were identified to genus and 263 to species. -
An Annotated List of the Ants (Hymenoptera: Formicidae) Found in Fort Washington and Piscataway National Parks, Maryland
AN ANNOTATED LIST OF THE ANTS (HYMENOPTERA: FORMICIDAE) FOUND IN FORT WASHINGTON AND PISCATAWAY NATIONAL PARKS, MARYLAND Theodore W. Suman Principal Investigator Theodore W. Suman, Ph.D. 7591 Polly's Hill Lane Easton, Maryland 21601 (410) 822 1204 [email protected] 'C ,:; ~) 71' 5 ?--- / I &, ·-1 U..~L:, 1 AN ANNOTATED LIST OF THE ANTS (HYMENOPTERA: FORMICIDAE) FOUNDINFORTWASHINGTONANDPISCATAWAYNATIONALPARKS, MARYLAND Theodore W. Suman The ants (Hymenoptera: Formicidae) listed in this report represent the results of a two-year (2002 - 2003) survey conducted in Fort Washington and Piscataway National Parks located in southwestern Prince Georges and northwestern Charles Counties, Maryland. This survey is part of the National Parks Service effort to broaden knowledge of the biodiversity occurring within the National Parks and was conducted under Permit # NACE-2002-SCI-0005 and Park-assigned Study Id. # NACE-00018. Table 1 is the result of this survey and consists of an alphabetical list (by subfamily, genus, and species) of all of the ant species found in both Parks. Information on the number of specimens collected, caste, date collected, and habitat is also included. Table 2 lists species found in only one or the other of the two Parks. General information on the collecting dates, collecting and extracting methods, and specific collecting sites is described below. COLLECTING DATES Collecting dates were spread throughout the spring to fall seasons of 2002 and 2003 to maximize the probability of finding all the species present. Collecting dates for each Park are listed separately. FORT WASHINGTON 2002 -27 March; 2,23 April; 20 May; 21,23 August; 12,25 September 2003 - 8 May; 12,26 June PISCATAWAY PARK 2002-9,16 April; 21 May; 24 June; 1 July 2003 - 20,30 May; 5 November 2 COLLECTING AND EXTRACTING METHODS Specimens were collected on site by the following methods. -
Great Lakes Entomologist
The GREAT LAKES ENTOMOLOGIST Vol. 8, No. 4 Winter 1975 THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 8 1975 No. 4 TABLE OF CONTENTS A New Genus, Six New Species, and Records of Protura from Michigan Ernest C. Bernard .................................... 157 A New Species of Neelides (Collembola: Neelidae) from the United States Ernest C. Bernard ................................... 183 New Species and Additional Records of Protura from Michigan e Ernest C. Be'inard .................................... 187 Pesticide Effects on Orthopteroid Distribution in Southern Michigan Farmlands Benedict C. Pinkowski ....: ............................ 197 Heptageniidae (Ephemeroptera) of Wisconsin R. Wills Flowers and William L. Hilsenhoff .................... 201 Curculionidae and Chrysomelidae found in Aquatic Habitats in Wisconsin Lutz J. Bayer and H. Jane Brockman ......................... 219 Projected Red Pine Yields from Aldrin-treated and Untreated Stands Damaged by White Grubs and other Agents Richard F. Fowler and Louis F. Wilson ....................... 227 Genetic Variation in Resistance of.Scotch Pine to Zirnmerman Pine Moth Jonathan W. Wright, Louis F. Wilson and John N. Bright ............. 231 Abundance of Insects Inhabiting the Male Strobili of Red Pine William J. Mattson ................................... 237 Habitats and Populations of the Ant Stenamma diecki Emery in Southern Michigan Mary Talbot ....................................... 241 A List of the Ants (Hymenoptera: Formicidae) of the Edwin S. George Reserve, Livingston County, Michigan Mary Talbot ....................................... 245 COVER ILLUSTRATION Anterior portion of a Proturan, Amerentulus americanus (Ewing) (Protura: Acerento- midae), mounted and cleared. Photograph taken with Nomarski interference contrast optics by E. C. Bernard. X950. Vol. 8, No. 3 of The Great Lakes Entomologist was mailed October 24, 1975. THE MICHIGAN ENTOMOLOGICAL SOCIETY 1975-76 OFFICERS President David C. -
Effects of Forest Edges, Exotic Ants and Nonnative Plants on Local Ant (Hymenoptera: Formicidae) Diversity in Urban Forest Fragments of Northeastern Ohio
Cleveland State University EngagedScholarship@CSU ETD Archive 2010 Effects of Forest Edges, Exotic Ants and Nonnative Plants on Local Ant (Hymenoptera: Formicidae) Diversity in Urban Forest Fragments of Northeastern Ohio Kaloyan Ivanov Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive Part of the Environmental Sciences Commons How does access to this work benefit ou?y Let us know! Recommended Citation Ivanov, Kaloyan, "Effects of Forest Edges, Exotic Ants and Nonnative Plants on Local Ant (Hymenoptera: Formicidae) Diversity in Urban Forest Fragments of Northeastern Ohio" (2010). ETD Archive. 141. https://engagedscholarship.csuohio.edu/etdarchive/141 This Dissertation is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected]. EFFECTS OF FOREST EDGES, EXOTIC ANTS AND NONNATIVE PLANTS ON LOCAL ANT (HYMENOPTERA: FORMICIDAE) DIVERSITY IN URBAN FOREST FRAGMENTS OF NORTHEASTERN OHIO KALOYAN IVANOV Master of Science in Entomology Sofia University Sofia, Bulgaria 2000 Submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN REGULATORY BIOLOGY at the CLEVELAND STATE UNIVERSITY December, 2010 This dissertation has been approved for the Department of Biological, Geological, and Environmental Sciences and for the College of Graduate Studies by Date: Dr. Joe B. Keiper, Virginia Museum of Natural History Major Advisor Date: Dr. B. Michael Walton, BGES / CSU Advisory Committee Member Date: Dr. Robert A. Krebs, BGES / CSU Advisory Committee Member Date: Dr. Jaharul Haque, The Cleveland Clinic Advisory Committee Member Date: Dr. -
Increased Ant (Hymenoptera: Formicidae) Incidence and Richness Are Associated with Alien Plant Cover in a Small Mid-Atlantic Riparian Forest
Myrmecological News 22 109-117 Online Earlier, for print 2016 Increased ant (Hymenoptera: Formicidae) incidence and richness are associated with alien plant cover in a small mid-Atlantic riparian forest Daniel KJAR & Zachory PARK Abstract Alien plants have invaded forest habitats throughout the eastern United States (US) and may be altering native ant communities through changes in disturbance regimes, microclimate, and native plant communities. To determine if ant communities differ among sites with varying alien plant cover, we analyzed pitfall-traps and soil-core samples from a mid-Atlantic riparian forest located within a US National Park. Only one alien ant species, Vollenhovia emeryi WHEELER , 1906 was found in this study. Total ant incidence and, to a lesser extent, richness were positively associated with the amount of alien plant cover. Species richness estimators also predicted more ant species within sites of greater alien plant cover. Increased ant incidence and ant richness appear to be the result of greater numbers of foraging ants in areas with greater alien plant cover rather than changes in the ant species composition. We suggest alien plant presence or other factors associated with alien plant cover have led to greater ant incidence and richness in these sites. Key words: Alien invasive plants, ant community, riparian forest, Lonicera japonica. Myrmecol. News 22: 109-117 (online xxx 2014) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 7 April 2015; revision received 28 July 2015; accepted 3 August 2015 Subject Editor: Nicholas J. Gotelli Daniel Kjar (contact author) & Zachory Park , Elmira College , 1 Park Place , Elmira, NY 14905 , USA. -
1 the RESTRUCTURING of ARTHROPOD TROPHIC RELATIONSHIPS in RESPONSE to PLANT INVASION by Adam B. Mitchell a Dissertation Submitt
THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell 1 A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Winter 2019 © Adam B. Mitchell All Rights Reserved THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell Approved: ______________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ______________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: ______________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Douglas W. Tallamy, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Charles R. Bartlett, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Jeffery J. Buler, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. -
Synonymic List of Neotropical Ants (Hymenoptera: Formicidae)
BIOTA COLOMBIANA Special Issue: List of Neotropical Ants Número monográfico: Lista de las hormigas neotropicales Fernando Fernández Sebastián Sendoya Volumen 5 - Número 1 (monográfico), Junio de 2004 Instituto de Ciencias Naturales Biota Colombiana 5 (1) 3 -105, 2004 Synonymic list of Neotropical ants (Hymenoptera: Formicidae) Fernando Fernández1 and Sebastián Sendoya2 1Profesor Asociado, Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, AA 7495, Bogotá D.C, Colombia. [email protected] 2 Programa de Becas ABC, Sistema de Información en Biodiversidad y Proyecto Atlas de la Biodiversidad de Colombia, Instituto Alexander von Humboldt. [email protected] Key words: Formicidae, Ants, Taxa list, Neotropical Region, Synopsis Introduction Ant Phylogeny Ants are conspicuous and dominant all over the All ants belong to the family Formicidae, in the superfamily globe. Their diversity and abundance both peak in the tro- Vespoidea, within the order Hymenoptera. The most widely pical regions of the world and gradually decline towards accepted phylogentic schemes for the superfamily temperate latitudes. Nonetheless, certain species such as Vespoidea place the ants as a sister group to Vespidae + Formica can be locally abundant in some temperate Scoliidae (Brother & Carpenter 1993; Brothers 1999). countries. In the tropical and subtropical regions numerous Numerous studies have demonstrated the monophyletic species have been described, but many more remain to be nature of ants (Bolton 1994, 2003; Fernández 2003). Among discovered. Multiple studies have shown that ants represent the most widely accepted characters used to define ants as a high percentage of the biomass and individual count in a group are the presence of a metapleural gland in females canopy forests. -
Timberhill Savanna Assessment of Landscape Management
Timberhill Savanna Assessment of Landscape Management April, 2007 Gerould Wilhelm and Laura Rericha Conservation Research Institute 375 W First Street Elmhurst, Illinios 60126 and Iowa Valley Resource Conservation and Development 300 West Welsh Street Williamsburg, Iowa 52361 Prepared for the Southern Iowa RC&D, 500 East Tailor, Creston, Iowa 50801 Final Report for Documentation: Restoration Potential of Oak Savannas in Southern Iowa Project #MM98752001 Prepared for EPA Region #7. Table of Contents Introduction . 1 Description of the Presettlement Landscape . 5 Timberhill . 7 Materials and Methods . 9 Results and Discussion . 12 GENERAL LAND SURVEY NOTES . 12 PLOT HISTORY . 13 TREE DEMOGRAPHY . 15 LIGHT AVAILABILITY . 16 VEGETATION . 16 BIRD OBSERVATIONS . 20 ANT SAMPLING . 25 Summary and Conclusions . 38 Most Useful Survey Metrics . 44 Acknowledgments . 45 Literature Cited . 46 List of Figures Figure 1: View into thinned and annually burned woods at Timberhill . 1 Figure 2: Typical head cut near woodland edge . 2 Figure 3: Erosional run at Timberhill, healing . 2 Figure 4: Woodland Glen by Asher Brown Durand . 3 Figure 5: Edge between plots 1 (left) and 2 (right) . 11 Figure 6: View from Plot #3 and Plot #4 . 11 Figure 7: Unmanaged groundcover in Plot #2 . 19 Figure 8: Thinned and annually burned groundcover, Plot #1 . 19 Figure 9: Thinned and annually burned landscape replaces edge with contiguous open woodland . 24 List of Tables Table 1: Demography of canopy trees in management plots at Timberhill 15 Table 2: Trees per hectare in sampling plots at Timberhill . 15 Table 3: Light levels and canopy tree density in management plots at Timberhill . 16 Table 4: Quadrat analysis between thinned and not thinned 0.125 ha plots at Timberhill . -
The Coupled Influence of Thermal Physiology and Biotic Interactions
diversity Article The Coupled Influence of Thermal Physiology and Biotic Interactions on the Distribution and Density of Ant Species along an Elevational Gradient Lacy D. Chick 1,2,* , Jean-Philippe Lessard 3 , Robert R. Dunn 4,5 and Nathan J. Sanders 6 1 Hawken School, Gates Mills, OH 44040, USA 2 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA 3 Department of Biology, Concordia University, Montreal, QC H4B-1R6, Canada; [email protected] 4 Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA; [email protected] 5 Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark 6 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-843-450-9854 Received: 31 October 2020; Accepted: 26 November 2020; Published: 30 November 2020 Abstract: A fundamental tenet of biogeography is that abiotic and biotic factors interact to shape the distributions of species and the organization of communities, with interactions being more important in benign environments, and environmental filtering more important in stressful environments. This pattern is often inferred using large databases or phylogenetic signal, but physiological mechanisms underlying such patterns are rarely examined. We focused on 18 ant species at 29 sites along an extensive elevational gradient, coupling experimental data on critical thermal limits, null model analyses, and observational data of density and abundance to elucidate factors governing species’ elevational range limits. Thermal tolerance data showed that environmental conditions were likely to be more important in colder, more stressful environments, where physiology was the most important constraint on the distribution and density of ant species. -
Modern Methods of Estimating Biodiversity from Presence-Absence Surveys 1 Introduction
1 Modern Methods of Estimating Biodiversity from Presence-Absence Surveys Robert M. Dorazio1, U.S. Geological Survey and University of Florida, Department of Statistics, Gainesville, FL 32611, USA. Nicholas J. Gotelli, Department of Biology, University of Vermont, Burlington, VT 05405, USA Aaron M. Ellison, Harvard Forest, Harvard University, Petersham, MA 01366, USA 1 Introduction Communities of species are often sampled using so-called \presence-absence" surveys, wherein the apparent presence or absence of each species is recorded. Whereas counts of individuals can be used to estimate species abundances, apparent presence-absence data are often easier to obtain in surveys of multiple species. Presence-absence surveys also may be more accurate than abundance surveys, particularly in communities that contain highly mobile species. A problem with presence-absence data is that observations are usually contaminated by zeros that stem from errors in detection of a species. That is, true zeros, which are associated with the absence of a species, cannot be distinguished from false zeros, which occur when species are present in the vicinity of sampling but not detected. Therefore, it is more accurate to describe apparent presence-absence data as detections and non-detections, but this terminology is seldom used in ecology. Estimates of biodiversity and other community-level attributes can be dramatically affected by errors in detection of each species, particularly since the magnitude of these detection errors generally varies among species (Boulinier et al. 1998). For example, bias in estimates of biodiversity arising from errors in detection is especially pronounced in communities that contain a preponderance of rare or difficult-to-detect species.