Bones of the Upper and Lower Limb

Total Page:16

File Type:pdf, Size:1020Kb

Bones of the Upper and Lower Limb Bones of the Upper and Lower limb Musculoskeletal block- Anatomy-lecture 1 Editing file Objectives Color guide : important in Red ✓ Classify the bones of the three regions of the lower Doctor note in Green limb (thigh, leg and foot). Extra information in Grey ✓ Memorize the main features of the – Bones of the thigh (femur & patella) – Bones of the leg (tibia & Fibula) – Bones of the foot (tarsals, metatarsals and phalanges) ✓ Recognize the side of the bone. Note: this lecture is based on female slides since Prof abuel makarem said only things that are mentioned in the female slides will come in the exam Note : All bones picture which are described in this lecture are bones on the right side of the body Before start :Please make yourself familiar with these terms to better understand the lecture Terms Meaning Example Ridge The long and narrow upper edge, angle, or crest The supracondylar ridges (in the distal part of of something (the humerus The trochlear notch (in the proximal part of the Notch An indentation, (incision) on an edge or surface (ulna A nodule or a small rounded projection on the Tubercles (Dorsal tubercle (in the distal part of the radius bone A hollow place (The Notch is not complete but the Subscapular fossa (in the concave part of the Fossa fossa is complete and both of them act as the lock (scapula (of the joint A large prominence on a bone usually serving for Deltoid tuberosity (in the humorous) and it Tuberosity the attachment of muscles or ligaments (is a connects the deltoid muscle (bigger projection than the Tubercle A V-shaped indentation (act as the key of the Processes (Coracoid process (in the scapula (joint Spiral (Radial) groove (in the posterior aspect of Groove A channel, a long narrow depression sure (the humerus Between bones (the place where the two parallel Interosseous border bones attach together by the interosseous Lateral interosseous sharp end of the ulna (membrane Spine Thick projecting ridge of bone Spine of the scapula Meeting of two bones to make the joints The articulation between the glenoid cavity and Articulation humerus The Upper Limbs: The Bones of the Upper limbs are: Pectoral Girdle: Clavicle and Scapula Arm : Humerus Forearm : Radius & Ulna Wrist : Carpal bones Hand: Metacarpals & Phalanges Pectoral Girdle: ● Formed of Two Bones:1- Clavicle (anteriorly) and 2-Scapula (posteriorly). ● It is very light and allows the upper limb to have exceptionally free movement. 1- Clavicle: it is a doubly curved long bone with no medullary (bone marrow) cavity, lying horizontally across the root of the neck. It is subcutaneous (under the skin) throughout its length. it has : Two Ends Body (shaft) Two Surfaces Superior surface which is smooth (ﻣﺤﺪب) Medial(sternal): enlarged It’s medial ⅔ is convex and triangular forward because it lies just deep to the skin Inferior surface which is rough (ﻣﻘﻌﺮ) Lateral(Acromial): It’s lateral ⅓ is concave flattened forward because strong ligaments bind to note: The sternal end is attached to the sternum 1st rib The acromial end is attached to the acromion part of scapula Superior surface (smooth) medial ⅔ lateral ⅓ Inferior surface (rough) Pectoral Girdle: 2- Scapula (shoulder blade): It is a triangular Flat bone ,Extends between the 2nd _ 7th ribs. It has : Three Processes: Three Borders: Three Angles: Two Surfaces: 1-Spine 1-Superior 1-Superior 1-Convex Posterior, 2- Acromion 2-Medial (Vertebral) 2-Lateral (forms the Glenoid Smaller Supraspinous Fossa 3- Coracoid 3-Lateral (Axillary) cavity) (above the spine) and the 3-Inferior. larger Infraspinous Fossa (below the spine). 2- Concave Anterior (Costal) it forms the large Subscapular Fossa Humerus: Typical Long bone it has: Proximal End Shaft (Body) Distal end ● Head ,Neck Has two prominent Anteriorly Posteriorly ● Greater Tubercles features: ● Lesser Tubercles 1. Deltoid ● Trochlea: (medial) for ● Olecranon fossa: tuberosity ● articulation with the above the Intertubercular 2. Spiral (Radial) Groove. groove ulna trochlea. ● Anatomical neck: ● Capitulum: (lateral) ● Medial epicondyle formed by a for articulation with (can be felt) ● Lateral epicondyle groove separating Note: The radial the radius. nerve passe along the head from the the the radial groove ● Coronoid fossa: above tubercles. the trochlea. ● Surgical Neck: a ● Radial fossa: above the narrow part distal capitulum. to the tubercles. IMPORTANT: Don’t mix up between the coracoid in the scapula and the coronoid in the humerus Ulna: it is stabilizing bone of the forearm also it longest bone in forearm Proximal End Shaft (Body) Distal end 1. Olecranon Process Thick & cylindrical superiorly but ● Small rounded 2. Coronoid Process diminishes in diameter inferiorly 1. Head: lies distally It has 3.Tuberosity of Ulna at the wrist. Three Surfaces 4.Trochlear Notch 2. Styloid process: (Anterior, Medial & Posterior). 5.Radial Notch Sharp Lateral Interosseous border. Medial. Helpful Note The ulna is a medial bone it has a medial surface and a medial styloid process Radius: it shortest and lateral bone of forearm Proximal End Shaft (Body) Distal end 1.Head: small & circular, ● Has a lateral ● It is rectangular it’s upper surface is convexity Ulnar Notch : a medial concavity concave for articulation ● It gradually to accommodate the head of the with the capitulum. enlarges as it ulna. 2.Neck passes distally. 2. Radial Styloid process: 3.Radial (bicipital) extends from the lateral aspect. tuberosity: medially directed and separates 3.Dorsal tubercle: projects the proximal end from dorsally the body. Bones of the Wrist and Hand : 1. Carpal bones :Composed of Eight short bones ● Proximal row (from lateral to medial): Scaphoid, Lunate, Triquetral & Pisiform bones. ● Distal row (from lateral to medial):Trapezium, Trapezoid, Capitate & Hamate. She Looks Too Pretty, Try To Catch Her Scaphoid Lunate Triquetral Pisiform Trapezium Trapezoid Capitate Hamate Proximal Row Distal Row 2. Metacarpal bones: Five Metacarpal bones, each has a Base, Shaft, and a Head. 3. Phalanges: Fourteen Each digit has Three Phalanges Except the Thumb which has only Two Don’t forget we start from thumb always. The Lower Limbs: The Bones of Lower limbs are: ● Pelvic Girdle: Hip bone & Sacrum ● Thigh: Femur & Patella ● Leg: Tibia & Fibula ● Ankle: Tarsal bones ● Foot : Metatarsal & Phalanges Femur: Articulates above with acetabulum of hip bone to form the hip joint. ,Articulates below with tibia and patella to form the knee joint. Consists of: Upper End Shaft (Body) Lower end ● Head :It articulates with 3 surfaces 3 borders ● Has lateral and medial condyles, separated acetabulum of hip bone to form hip Anterior Two rounded anteriorly by articular joint. Medial medial and patellar surface, and ● Neck : It connects head to the shaft. Lateral lateral posteriorly by Greater & lesser trochanters intercondylar notch or ● Anteriorly, connecting the 2 One thick fossa. trochanters, the inter-trochanteric posterior ● The 2 condyles take part line, where the iliofemoral border or ridge in the knee joint. called linea ● Above the condyles are ligament(ligament of the hip joint which the medial & lateral extends from the ilium to the femur in front of aspera (important epicondyles. the joint). is attached. point from ● Posteriorly, the inter-trochanteric female’s crest, on which is the quadrate doctor) tubercle (Quadratus femoris muscle). Anteriorly Posteriorly Patella: ● It’s the largest sesamoid bone. It lies inside the Quadriceps tendon in front of the knee joint ● It’s anterior surface is rough and subcutaneous ● It’s posterior surface articulates with the condyles of the femur to form the knee joint ● It’s apex lies inferiorly and is connected to the tuberosity of the tibia by ligamentum patellae ● It’s upper, lateral, and medial margins gives attachments to quadriceps femoris muscle ● Base of patella* (Extra note) quadriceps femoris ligamentum patellae Anterior posterior Bones of leg(Tibia and Fibula): Each of them has upper end, shaft, and lower end. 1- Tibia :It is the medial bone of leg. Upper End Shaft (Body) Lower end Medial condyle : is larger and articulate Tibial It has 3 It has 3 borders Articulates with talus tuberosity : for formation of ankle with medial condyle of femur. It has a surfaces joint. groove on its posterior surface for Its upper Medial : Anterior border : Medial malleolus: semimembranosus muscles. smooth part subcutaneous. sharp and Its medial surface is Lateral condyle : is smaller and gives subcutaneous. subcutaneous. articulates with lateral condyle of attachment to Lateral Its lateral surface femur. ligamentum Medial border. articulate with talus. patellae. Posterior has It has facet on its lateral side for Its lower rough oblique line, Lateral border Fibular notch: lies on articulation with head of fibula to form part is soleal line for interosseous its lateral surface of proximal tibio-fibular joint. subcutaneous. attachment of border. lower end to form Intercondylar area : is rough and has soleus muscle distal tibiofibular intercondylar eminence. joint Medial Posterior Anterior Lateral 2- Fibula: It is the lateral bone of leg. ● It is the slender lateral bone of the leg ● It takes no part in articulation of knee joint Upper End Shaft Lower end ● Head: ● 4 borders: it’s Lateral malleolus: articulate medial It’s subcutaneous, it’s s with interosseous medial surface is smooth for lateral border gives articulation with talus to condyle of attachment to form ankle joints tibia interosseous ● Neck membrane Malleolus Groove* ● Styloid ● 4 surfaces: process Extra note Bones of the Ankle and Foot: ● 7 Tarsal Bones: 1. Calcaneum 2. Talus 3. Navicular 4. Cuboid 5. Medial cuneiform 6. Intermediate cuneiform 7. Lateral cuneiform Cute Tigers Need M I L C Calcaneum Talus Navicular Medial, Intermediate, and lateral Cuboid cuneiform ● Only Talus articulates with the tibia & fibula at ankle joint ● Calcaneum is the largest bone of the foot, it forms the heel ● 5 Metatarsal Bones They are numbered from medial (big toe) to lateral. 1st metatarsal bone is large and lies medially.
Recommended publications
  • Skeletal Foot Structure
    Foot Skeletal Structure The disarticulated bones of the left foot, from above (The talus and calcaneus remain articulated) 1 Calcaneus 2 Talus 3 Navicular 4 Medial cuneiform 5 Intermediate cuneiform 6 Lateral cuneiform 7 Cuboid 8 First metatarsal 9 Second metatarsal 10 Third metatarsal 11 Fourth metatarsal 12 Fifth metatarsal 13 Proximal phalanx of great toe 14 Distal phalanx of great toe 15 Proximal phalanx of second toe 16 Middle phalanx of second toe 17 Distal phalanx of second toe Bones of the tarsus, the back part of the foot Talus Calcaneus Navicular bone Cuboid bone Medial, intermediate and lateral cuneiform bones Bones of the metatarsus, the forepart of the foot First to fifth metatarsal bones (numbered from the medial side) Bones of the toes or digits Phalanges -- a proximal and a distal phalanx for the great toe; proximal, middle and distal phalanges for the second to fifth toes Sesamoid bones Two always present in the tendons of flexor hallucis brevis Origin and meaning of some terms associated with the foot Tibia: Latin for a flute or pipe; the shin bone has a fanciful resemblance to this wind instrument. Fibula: Latin for a pin or skewer; the long thin bone of the leg. Adjective fibular or peroneal, which is from the Greek for pin. Tarsus: Greek for a wicker frame; the basic framework for the back of the foot. Metatarsus: Greek for beyond the tarsus; the forepart of the foot. Talus (astragalus): Latin (Greek) for one of a set of dice; viewed from above the main part of the talus has a rather square appearance.
    [Show full text]
  • June 3, 2016 Karen B. Desalvo, M.D., M.P.H., M.Sc. Acting Assistant
    June 3, 2016 Karen B. DeSalvo, M.D., M.P.H., M.Sc. Acting Assistant Secretary Department of Health and Human Services Office of the National Coordinator for Health Information Technology Attention: RFI Regarding Assessing Interoperability for MACRA 330 C Street, SW, Room 7025A Washington, DC 20201 Subject: Office of the National Coordinator for Health Information Technology; Medicare Access and CHIP Reauthorization Act of 2015; Request for Information Regarding Assessing Interoperability for MACRA Dear Acting Assistant Secretary DeSalvo: The American Association of Orthopaedic Surgeons (AAOS) and orthopaedic specialty societies, representing over 18,000 board-certified orthopaedic surgeons, appreciate the opportunity to provide comments on the Request for Information Regarding Assessing Interoperability for MACRA by the Office of the National Coordinator (ONC) for Health Information Technology, and published in the Federal Register on April 8, 2016. The AAOS has been committed to working with ONC in the adoption of electronic health records. As surgical specialists, we have unique Health Information Technology (HIT) needs and respectfully offer some suggestions to improve interoperability to better reflect the needs of our surgical specialists and their patients and accelerate HIT adoption in the future by orthopaedic surgeons. The AAOS thanks ONC in advance for its solicitation and consideration of the following comments and concerns. We have structured our comments in the order that ONC is soliciting public feedback in the RFI document referenced above. Scope of Measurement: Defining Interoperability and Population The focus of measurement should not be limited to “meaningful Electronic Health Records (EHR) users,” as defined (e.g., eligible professionals, eligible hospitals, and CAHs that attest to meaningful use of certified EHR technology under CMS’ Medicare and Medicaid EHR Incentive Programs), and their exchange partners.
    [Show full text]
  • Fractures of the Anterior Process of the Calcaneum; a Review and Proposed Treatment Algorithm
    Foot and Ankle Surgery 25 (2019) 258–263 Contents lists available at ScienceDirect Foot and Ankle Surgery journal homepage: www.elsevier.com/locate/fas Review Fractures of the anterior process of the calcaneum; a review and proposed treatment algorithm a, b b b b Baljinder S. Dhinsa *, Ahmed Latif , Roland Walker , Ali Abbasian , Diane Back , b Sam Singh a William Harvey Hospital, Kennington Road, Willesborough, Ashford TN24 0LZ, United Kingdom b Guy’s and St Thomas’ NHS Foundation Trust, Great Maze Pond, London SE1 9RT, United Kingdom A R T I C L E I N F O A B S T R A C T Article history: Background: There remains a lack of recognition of these fractures, which leads to a delay in diagnosis and Received 18 June 2017 appropriate management. Received in revised form 1 February 2018 Methods: A comprehensive literature search was performed. Following inclusion and exclusion criteria, Accepted 3 February 2018 23 studies were available for analysis. Results: Delay in diagnosis is common and has a negative impact on outcome. If an APC fracture is Keywords: suspected; anteroposterior, lateral and oblique plain radiographs should be requested. Further Fracture investigation with computed tomography or magnetic resonance imaging is indicated if plain Calcaneum radiographs are inconclusive and patient remains symptomatic. Non-operative measures are usually Anterior process Avulsion adequate for most undisplaced fractures, however surgical intervention maybe required for large, intra- Compression articular fractures in the acute setting and for non-union. Calcaneocuboid Conclusions: A treatment algorithm is suggested that may help with the diagnosis and management of these injuries.
    [Show full text]
  • Morphological and Biomechanical Implications of Cuboid Facet of the Navicular Bone in the Gait
    Int. J. Morphol., 37(4):1397-1403, 2019. Morphological and Biomechanical Implications of Cuboid Facet of the Navicular Bone in the Gait Implicaciones Morfológicas y Biomecánicas de la Faceta Cuboídea del Navicular en la Marcha Eduardo Saldías1; Assumpció Malgosa1; Xavier Jordana1 & Albert Isidro2 SALDÍAS, E.; MALGOSA, A.; JORDANA, X. & ISIDRO, A. Morphological and biomechanical implications of cuboid facet of the navicular bone in the gait. Int. J. Morphol., 37(4):1397-1403, 2019. SUMMARY: The cuboid facet of the navicular bone is an irregular flat surface, present in non-human primates and some human ancestors. In modern humans, it is not always present and it is described as an “occasional finding”. To date, there is not enough data about its incidence in ancient and contemporary populations, nor a biomechanical explanation about its presence or absence. The aim of the study was to evaluate the presence of the cuboid facet in ancient and recent populations, its relationship with the dimensions of the midtarsal bones and its role in the biomechanics of the gait. 354 pairs of naviculars and other tarsal bones from historical and contemporary populations from Catalonia, Spain, have been studied. We used nine measurements applied to the talus, navicular, and cuboid to check its relationship with facet presence. To analyze biomechanical parameters of the facet, X-ray cinematography was used in living patients. The results showed that about 50 % of individuals developed this surface without differences about sex or series. We also observed larger sagittal lengths of the talar facet (LSAGTAL) in navicular bones with cuboid facet. No significant differences were found in the bones contact during any of the phases of the gait.
    [Show full text]
  • Parts of the Body 1) Head – Caput, Capitus 2) Skull- Cranium Cephalic- Toward the Skull Caudal- Toward the Tail Rostral- Toward the Nose 3) Collum (Pl
    BIO 3330 Advanced Human Cadaver Anatomy Instructor: Dr. Jeff Simpson Department of Biology Metropolitan State College of Denver 1 PARTS OF THE BODY 1) HEAD – CAPUT, CAPITUS 2) SKULL- CRANIUM CEPHALIC- TOWARD THE SKULL CAUDAL- TOWARD THE TAIL ROSTRAL- TOWARD THE NOSE 3) COLLUM (PL. COLLI), CERVIX 4) TRUNK- THORAX, CHEST 5) ABDOMEN- AREA BETWEEN THE DIAPHRAGM AND THE HIP BONES 6) PELVIS- AREA BETWEEN OS COXAS EXTREMITIES -UPPER 1) SHOULDER GIRDLE - SCAPULA, CLAVICLE 2) BRACHIUM - ARM 3) ANTEBRACHIUM -FOREARM 4) CUBITAL FOSSA 6) METACARPALS 7) PHALANGES 2 Lower Extremities Pelvis Os Coxae (2) Inominant Bones Sacrum Coccyx Terms of Position and Direction Anatomical Position Body Erect, head, eyes and toes facing forward. Limbs at side, palms facing forward Anterior-ventral Posterior-dorsal Superficial Deep Internal/external Vertical & horizontal- refer to the body in the standing position Lateral/ medial Superior/inferior Ipsilateral Contralateral Planes of the Body Median-cuts the body into left and right halves Sagittal- parallel to median Frontal (Coronal)- divides the body into front and back halves 3 Horizontal(transverse)- cuts the body into upper and lower portions Positions of the Body Proximal Distal Limbs Radial Ulnar Tibial Fibular Foot Dorsum Plantar Hallicus HAND Dorsum- back of hand Palmar (volar)- palm side Pollicus Index finger Middle finger Ring finger Pinky finger TERMS OF MOVEMENT 1) FLEXION: DECREASE ANGLE BETWEEN TWO BONES OF A JOINT 2) EXTENSION: INCREASE ANGLE BETWEEN TWO BONES OF A JOINT 3) ADDUCTION: TOWARDS MIDLINE
    [Show full text]
  • Clinical Anatomy of the Lower Extremity
    Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p.
    [Show full text]
  • Bones of the Upper and Lower Limb Musculoskeletal Block - Lecture 1
    Bones of the Upper and Lower limb Musculoskeletal Block - Lecture 1 Objective: Classify the bones of the three regions of the lower limb (Thigh, leg and foot). Memorize the main features of the – Bones of the thigh (femur & patella) – Bones of the leg (tibia & Fibula) – Bones of the foot (tarsals, metatarsals and phalanges) Recognize the side of the bone. Color index: Important In male’s slides only In female’s slides only Extra information, explanation Editing file Click here for Contact us: useful videos [email protected] Please make sure that you’re familiar with these terms Terms Meaning Example Ridge The long and narrow upper edge, angle, or crest of something The supracondylar ridges (in the distal part of the humerus) Notch An indentation, (incision) on an edge or surface The trochlear notch (in the proximal part of the ulna) Tubercles A nodule or a small rounded projection on the bone (Dorsal tubercle in the distal part of the radius) Fossa A hollow place (The Notch is not complete but the fossa is Subscapular fossa (in the concave part of complete and both of them act as the lock of the joint the scapula) Tuberosity A large prominence on a bone usually serving for Deltoid tuberosity (in the humorous) and it the attachment of muscles or ligaments ( is a bigger projection connects the deltoid muscle than the Tubercle ) Processes A V-shaped indentation (act as the key of the joint) Coracoid process ( in the scapula ) Groove A channel, a long narrow depression sure Spiral (Radial) groove (in the posterior aspect of (the humerus
    [Show full text]
  • Bones of Upper Limb
    BONES OF UPPER & LOWER LIMBS Khaleel Alyahya, PhD, MEd King Saud University College of Medicine @khaleelya OBJECTIVES At the end of the lecture, students should be able to: o List the different bones of the the upper and lower limbs. o List the characteristic features of each bone in both. o Differentiate between bones of right and left sides. o List the articulations between the different bones. o Learn some clinical significances associated with the upper and lower limbs. UPPER LIMBS BONES OF UPPER LIMB It consists of the following: o Pectoral Girdle • Clavicle • Scapula o Arm • Humerus o Forearm • Radius & Ulna o Wrist • Carpal bones o Hand • Metacarpals & Phalanges PECTORAL GIRDLE It composed of Two bones: o Clavicle o Scapula It is very light and it allows the upper limb to have exceptionally free movement. CLAVICLE It is considered as a long bone but it has no medullary (bone marrow) cavity. Its medial (Sternal) end is enlarged & triangular. Its lateral (Acromial) end is flattened. The medial 2/3 of the body (shaft) is convex forward. The lateral 1/3 is concave forward. These curves give the clavicle its appearance of an elongated capital (S) It has two surfaces: • Superior: smooth as it lies just deep to the skin. • Inferior: rough because strong ligaments bind it to the 1st rib. Functions: • It serves as a rigid support to keep upper limb suspended away from the trunk. • Transmits forces from the upper limb to the axial skeleton. • Provides attachment for muscles. • Forms a boundary of the cervicoaxillary canal for protection of the neurovascular bundle of the UL.
    [Show full text]
  • Species - Domesticus (Chicken) to Mammals (Human Being)
    Int. J. LifeSc. Bt & Pharm. Res. 2013 Sunil N Tidke and Sucheta S Tidke, 2013 ISSN 2250-3137 www.ijlbpr.com Vol. 2, No. 4, October 2013 © 2013 IJLBPR. All Rights Reserved Research Paper MORPHOLOGY OF KNEE JOINT - CLASS- AVES - GENUS - GALLUS, - SPECIES - DOMESTICUS (CHICKEN) TO MAMMALS (HUMAN BEING) Sunil N Tidke1* and Sucheta S Tidke2 *Corresponding Author: Sunil N Tidke [email protected] In the present investigation, a detailed comparison is made between the human knee and the knee of chicken (Gallus domesticus), with the object of determining similarities or variation of structure and their possible functional significance, if any special attention has been paid to bone taking part in joint, the surrounding muscles and tendons, which play an important part in stabilizing these joints, the form and attachments of the intraarticular menisci, which have been credited with the function of ensuring efficient lubrication throughout joints movement, and to the ligaments, the function of which is disputed. Keywords: Bony articular part, Intra capsular and extra capsular structure and Muscular changes INTRODUCTION patella. A narrow groove on the lateral condyle of femur articulate with the head of the fibula and The manner in which the main articulations of intervening femoro fibular disc. The tibia has a the vertebrate have become variously modified enormous ridge and crest for the insertion of the in relation to diverse function has been patellar tendon and origin of the extensor muscle. investigated by many workers, notably, Parsons The cavity of the joint communicates above and (1900) and Haines (1942). The morphology of the below the menisci with the central part of joint knee joint of human has been studied in great around the cruciate ligament.
    [Show full text]
  • Cuboid Fracture
    CUBOID FRACTURE Introduction The cuboid bone lies on the lateral side of the foot, in front of the calcaneus, and behind the fourth and fifth metatarsal bones. Isolated fractures of the cuboid are uncommon, and can be difficult to diagnose. They are more commonly part of more complex injuries, including the Lisfranc fracture- dislocation of the mid-foot. CT scan is often required to confirm the diagnosis and is usually required to fully assess the extent and nature of the injury, even when found on plain radiographs. Inadequately treated fractures of the body of the cuboid can lead to chronic disability. Anatomy The cuboid bone, showing its relations within the foot, (Gray's Anatomy, 1918). The cuboid forms an important structural element of lateral column of the foot. The peroneus longus tendon courses along the plantar surface of the cuboid bone in a lateral to medial direction. See also Appendix 1 below Mechanism Mechanisms of cuboid injury include: ● Minor fragmental avulsion fractures at ligament and capsule insertions are the most common form of cuboid injury. ● Direct trauma: ♥ Isolated fractures of the body are uncommon and are usually the result of direct trauma ● Indirect trauma: ♥ One particular injury pattern has been termed the “nutcracker fracture”.2 This results from an indirect compression force where the cuboid is crushed between the calcaneum and 4th and 5th metatarsals by axial torsional forces applied to the plantar-flexed foot ● More commonly cuboid fractures are seen in conjunction with other more complex injuries of the foot, such as the Lisfranc fracture-dislocation of the forefoot.
    [Show full text]
  • Imaging of Os Peroneum Fracture Or Proximal Displacement Associated
    IRIS South Hospital Network Brussels, Belgium Case reports & series CR_009 Imaging of os peroneum fracture (or proximal displacement associated with peroneus longus full thickness tendon tear). Beckx F, Peetrons P, Chaabouni S, Campbell R Beckx F, Peetrons P, Chaabouni S: IRIS South Hospital Network Brussels, Belgium. Campbell R: Royal Liverpool University Hospital. Contact: [email protected] Conflict of interest: the authors declare that they have no conflicts of interest. • The peroneus longus tendon passes on one side of the peroneal tubercule, then entering the sole of the feet through a fibro-osseous tunnel (cuboid tunnel) beneath the cuboid bone. • In 25 percent of the population, there is a sesamoid bone called os peroneum within the substance of the peroneus longus tendon at the level of the fibro-osseous tunnel. • This ossicle is present in its fully ossified form in up to 20% of adults. It is bilateral in 60% of the cases and bipartite in 30% of the cases. • Fracture or displacement of the os peroneum is a rare traumatic injury. • The initial diagnosis of os peroneum fracture or proximal displacement associated with peroneal longus tendon rupture can be overlooked or delayed owing to – nonspecific symptoms, – confusion with a bipartite os peroneum – because of the ignorance of the signification of the displaced ossicle (particularly near the lateral malleolus). X-Ray • Os peroneum has rounded edges in normal population. – in about 25% of the normal populations (1) an os peroneum is located 7 mm proximal to 8 mm distal to the calcaneocuboid joint on lateral radiographs and from 9 mm proximal to 8 mm distal to the joint on oblique radiographs (1).
    [Show full text]
  • Traumatic Injuries of the Foot and Ankle
    Henry Ford Health System Henry Ford Health System Scholarly Commons Orthopaedics Articles Orthopaedics / Bone and Joint Center 1-1-2021 Traumatic Injuries of the Foot and Ankle Alexander D. Grushky Sharon J. Im Scott D. Steenburg Suzanne Chong Follow this and additional works at: https://scholarlycommons.henryford.com/orthopaedics_articles Traumatic Injuries of the Foot and Ankle Alexander D. Grushky, MD,*, Sharon J. Im, MD,†, Scott D. Steenburg, MD, FASER,z and Suzanne Chong, MD, MS, FASERx Introduction operative subset averaged 69 weeks until return to work, with an average cost of injury of $65,384.8 he pathologies involving the foot and ankle in the emer- Timely recognition of these injuries allows for early treat- T gency setting are widely ranging and vary from traumatic ment and minimizes the risk of complications related to fractures to soft tissue/joint infection. The ankle is the most delayed or missed diagnosis. Knowledge of mechanism and frequently injured major weight-bearing joint in the body, patterns of injury can aid in the detection of subtle or unsus- with lateral ankle sprains representing the most common pected injuries that impact management. injury in the musculoskeletal system.1,2 Fractures of the ankle and foot account for 9% and 10% of all fractures, respectively1,3; a review of the National Trauma Data Bank between 2007 and 2011 revealed 280,933 fracture-disloca- Imaging Technique tions of the foot and/or ankle4 and a population-based study found an incidence of 168.7/100,000/year, with lateral mal- The recommended initial imaging evaluation of patients with leolus fractures representing 55% of fractures.5 Common suspected acute traumatic injuries to the foot and ankle con- causes of injury range from trauma, eg, motor vehicle acci- sists of standard 3 view radiographs (Reference 2 ACR- dents and sports injury, to osteoporosis.6 Appropriateness Criteria: Acute Trauma to Ankle, and Foot).
    [Show full text]