History 598, Fall 2004
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Terms for Talking About Information and Communication
Information 2012, 3, 351-371; doi:10.3390/info3030351 OPEN ACCESS information ISSN 2078-2489 www.mdpi.com/journal/information Concept Paper Terms for Talking about Information and Communication Corey Anton School of Communications, Grand Valley State University, 210 Lake Superior Hall, Allendale, MI 49401, USA; E-Mail: [email protected]; Tel.: +1-616-331-3668; Fax: +1-616-331-2700 Received: 4 June 2012; in revised form: 17 August 2012 / Accepted: 20 August 2012 / Published: 27 August 2012 Abstract: This paper offers terms for talking about information and how it relates to both matter-energy and communication, by: (1) Identifying three different levels of signs: Index, based in contiguity, icon, based in similarity, and symbol, based in convention; (2) examining three kinds of coding: Analogic differences, which deal with positive quantities having contiguous and continuous values, and digital distinctions, which include “either/or functions”, discrete values, and capacities for negation, decontextualization, and abstract concept-transfer, and finally, iconic coding, which incorporates both analogic differences and digital distinctions; and (3) differentiating between “information theoretic” orientations (which deal with data, what is “given as meaningful” according to selections and combinations within “contexts of choice”) and “communication theoretic” ones (which deal with capta, what is “taken as meaningful” according to various “choices of context”). Finally, a brief envoi reflects on how information broadly construed relates to probability and entropy. Keywords: sign; index; icon; symbol; coding; context; information; communication “If you have an apple and I have an apple and we exchange apples then you and I will still each have one apple. -
Cybernetics and Contingency, Codes and Programs : an Account of Social System Thinking in Law and Legal Theory Today
ORBIT-OnlineRepository ofBirkbeckInstitutionalTheses Enabling Open Access to Birkbeck’s Research Degree output Cybernetics and contingency, codes and programs : an account of social system thinking in law and legal theory today https://eprints.bbk.ac.uk/id/eprint/40396/ Version: Full Version Citation: Bryson, Giulia (2019) Cybernetics and contingency, codes and programs : an account of social system thinking in law and legal theory today. [Thesis] (Unpublished) c 2020 The Author(s) All material available through ORBIT is protected by intellectual property law, including copy- right law. Any use made of the contents should comply with the relevant law. Deposit Guide Contact: email CYBERNETICS AND CONTINGENCY, CODES AND PROGRAMS: AN ACCOUNT OF SOCIAL SYSTEM THINKING IN LAW AND LEGAL THEORY TODAY GIULIA BRYSON DOCTORATE OF PHILOSOPHY (PHD) IN LAW 2018 LAW DEPARTMENT, BIRKBECK COLLEGE, UNIVERSITY OF LONDON 1 I hereby declare that the work presented in this thesis is my own, except where explicit reference is made to the work of others. Giulia Bryson 2 ABSTRACT The thesis discusses aspects of current Social Systems Theory, with the main attention devoted both to the level of the compassing social system society and to that of function systems, especially law. Throughout, I refer to the version of social systems theory developed and presented as theory of social autopoiesis in Niklas Luhmann's mature work, while a lim- ited but important part of the thesis will explain this choice and serve as a comparative and genealogical guideline. Central will be the notion and idea of what Luhmann calls a Contingency Formula — term that both func- tions as a problem outline and that indicates how the problem can be solved, within the context of the Legal System. -
Michael S. Brown, MD
DISTINGUISHED PHYSICIANS AND Michael S. Brown, M.D. Sir Richard Roberts, Ph.D. Winner, 1985 Nobel Prize in Physiology or Medicine Winner, 1993 Nobel Prize in Physiology or Medicine MEDICAL SCIENTISTS MENTORING Winner, 1988 Presidential National Medal of Science A globally prominent biochemist and molecular biologist, DELEGATES HAVE INCLUDED... Dr. Brown received the world’s most prestigious medical Dr. Roberts was awarded the Nobel Prize for his prize for his work describing the regulation of the groundbreaking contribution to discovering RNA splicing. cholesterol metabolism. His work laid the foundation for Dr. Roberts is dedicating his future research to GMO crops the class of drugs now called statins taken daily by more than 20 million and food sources, and demonstrating the effect they have on humanity. — GRANDg MASTERS — people worldwide. Ferid Murad, M.D., Ph.D. Mario Capecchi, Ph.D. Boris D. Lushniak, M.D., M.P.H Winner, 1998 Nobel Prize in Physiology or Medicine Academy Science Director The Surgeon General of the United States (acting, 2013-2014) Winner, 2007 Nobel Prize in Physiology or Medicine A world-renowned pioneer in biochemistry, Dr. Murad’s Winner, 2001 National Medal of Science Rear Admiral Lushniak, M.D., M.P.H., was the United award-winning research demonstrated that nitroglycerin Winner, 2001 Lasker Award States’ leading spokesperson on matters of public health, and related drugs help patients with heart conditions by Winner, 2003 Wolf Prize in Medicine overseeing the operations of the U.S. Public Health Service releasing nitric oxide into the body, thus relaxing smooth Mario Capecchi, Ph.D., a biophysicist, is a Distinguished Commissioned Corps, which consists of approximately muscles by elevating intracellular cyclic GMP, leading to vasodilation and Professor of Human Genetics at the University of Utah School of Medicine. -
Alexander Rich (1924–2015) Biologist Who Discovered Ribosome Clusters and ‘Left-Handed’ DNA
OBITUARY COMMENT Alexander Rich (1924–2015) Biologist who discovered ribosome clusters and ‘left-handed’ DNA. first came across Alexander Rich worked out the structure of Rich in 1963. He was on the a Z-DNA fragment bound to an cover of that year’s 13 May issue RNA-editing enzyme. He and his Iof Newsweek with his PhD student colleagues also showed how the JOSIAH D. RICH Jonathan Warner. The two of them pathogenicity of the vaccinia virus, had just discovered clusters of ribo- and probably of the smallpox virus, somes called polysomes — crucial correlated with a virus-specific pro- components involved in the build- tein binding to the host’s Z-DNA. ing of proteins. Rich’s interest in the latest Rich, who died on 27 April, was discoveries across diverse disciplines born in 1924 in Hartford, Connecticut was irrepressible. During the 1970s, to immigrant parents from Russia and he worked as an adviser for NASA, Eastern Europe. He grew up during weighing in on projects exploring the Great Depression in Springfield, the possible existence of life on Mars. Massachusetts, attending a technical He also ventured into biotechnology secondary school by day, and work- and co-founded three companies: ing nights at a local rifle factory. At Repligen, Alkermes, and in his 80s, one point, his family went to live at a 3-D Matrix. local YMCA club after being evicted Rich received numerous honorary from their home. Against the odds, degrees and awards, including the US Rich made it to Harvard University National Medal of Science, presented in Cambridge, Massachusetts, grad- to him in 1995 by then US President uating with a bachelor’s degree in Bill Clinton. -
Molecular and Cellular Biology Volume 4 - December 1984 C Number 12
MOLECULAR AND CELLULAR BIOLOGY VOLUME 4 - DECEMBER 1984 C NUMBER 12 Aaron J. Shatkin, Editor in Chief(1985) Louis Siminovitch, Editor (1985) Roche Institute of Molecular Biology Hospital for Sick Children Nutley, N.J. Toronto, Canada Harvey F. Lodish, Editor (1986) Paul S. Sypherd, Editor (1985) Whitehead Institute for Biomedical University of California Research Irvine, Calif. Cambridge, Mass. Harold E. Varmus, Editor (1989) David J. L. Luck, Editor (1987) University of California Rockefeller University San Francisco New York, N.Y. EDITORIAL BOARD Renato Baserga (1985) Ari Helenius (1984) Steven McKnight (1986) Milton J. Schlesinger (1986) Alan Bernstein (1984) Susan A. Henry (1985) Robert L. Metzenberg (1985) Phillip A. Sharp (1985) J. Michael Bishop (1984) Ira Herskowitz (1984) Robert K. Mortimer (1985) Fred Sherman (1985) Joan Brugge (1985) James B. Hicks (1986) Paul Neiman (1986) Anna Marie Skalka (1986) Breck Byers (1985) John A. Carbon (1984) Tony Hunter (1986) Harvey L. Ozer (1985) Pamela Stanley (1985) Lawrence A. Chasin (1985) Larry Kedes (1985) Mary Lou Pardue (1985) Joan A. Steitz (1985) Nam-Hai Chua (1985) Barbara Knowles (1986) Mark Pearson (1985) James L. Van Etten (1985) Terrance G. Cooper (1984) Marilyn Kozak (1985) Jeremy Pickett-Heaps (1985) Jonathan R. Warner (1984) James E. Darnell, Jr. (1985) Monty Krieger (1986) Robert E. Pollack (1985) Robert A. Weinberg (1984) Gary Felsenfeld (1985) Elias Lazarides (1985) Keith R. Porter (1985) I. Bernard Weinstein (1985) Norton B. Gilula (1985) John B. Little (1985) John R. Pringle (1985) Harold Weintraub (1985) James E. Haber (1984) William F. Loomis, Jr. (1985) Daniel B. Rifkin (1985) Reed B. -
Kybernetik in Österreich
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität Wien: OJS-Service Kybernetik in Österreich Ein Gespräch zwischen Robert Trappl und Albert Müller1 Albert Müller: Wie kam die Kybernetik nach Österreich? Dieses Thema ist noch wenig behandelt worden, obwohl es sich um eine wichtige Sache handelt. Eine der Besonderheiten besteht darin, dass zu einem bestimmten Zeitpunkt in Österreich Kybernetik selbst in der hohen Politik Aufmerksamkeit fand. Ein früherer öster- reichischer Bundeskanzler, Josef Klaus, hat in einem Buch, das er 1971 als eine Art Rechenschaftsbericht über seine politischen Aktivitäten veröffentlichte,2 unter anderem Folgendes geschrieben: „Die Kybernetisierung der Menschheit kommt mit Riesenschritten auf uns zu.“ In seiner Rolle als Finanzminister erwarb er die erste IBM 360, die er auch selbst feierlich in Betrieb nahm. Josef Klaus bezieht sich in die- sem Text auf Norbert Wiener und W. Ross Ashby, was für einen Politiker doch ziem- lich ungewöhnlich ist. Seine Begeisterung für Kybernetik und Computer brachte ihn schließlich dazu, sich als Privatschüler bei Heinz Zemanek anzumelden, der damals Leiter eines wichtigen Forschungslabors bei IBM in Wien war. Er schreibt relativ genau, wie er als Bundeskanzler um 1968 jeden Morgen vor seinem Erschei- nen im Amt zu Zemanek geht und von ihm Unterricht erhält. Zum Abschluss dieser Aus- und Weiterbildung schreibt der Bundeskanzler Klaus selbst ein kleines FORTRAN-Programm, das auf dem Computer auch zum Laufen gebracht werden konnte. – Das ist eine untypische Geschichte, wie ich glaube, man wird in Öster- reich kaum Politiker finden, die sich ähnlich verhalten haben, und wahrscheinlich wird man auch in anderen Ländern kaum Spitzenpolitiker finden, die sich in mor- gendlicher Frühe einem Privatunterricht in Kybernetik unterziehen. -
Physical Relationships Among Matter, Energy and Information
Physical Relationships among Matter, Energy and Information Stuart A. Umpleby Department of Management The George Washington University Washington, DC 20052, USA email: [email protected] Published in Systems Research and Behavioral Science Vol. 24, No. 3, 2007, pp. 369-372. An earlier version appeared in Robert Trappl (ed.) Cybernetics and Systems ‘04 Vienna: Austrian Society for Cybernetic Studies, 2004 Physical Relationships Among Matter, Energy and Information Stuart A. Umpleby Department of Management Science The George Washington University Washington, DC 20052, USA email: [email protected] “Information is the difference that makes a difference.” Shannon [1949] defined information as a reduction of Gregory Bateson uncertainty. Bateson [1972] defined information as "that which changes us" or "the difference that makes a Abstract difference." A crucial point is that information, unlike matter and energy, is a function of the observer. [von General systems theorists often refer to matter, Foerster, 1974] For example, the same message may energy and information as fundamental have different meanings for different people. Although categories. The three concepts – matter, energy information requires the perception of a difference, the and information – are related through scientific difference will require a matter or energy carrier (e.g., a laws. Matter and energy relations are more page in a book or sound waves in air). In addition, thoroughly understood than relations involving cognition requires a nervous system. information. At the level of data or signal In 1967 at a panel discussion at the University of “difference” is suggested as a more elementary Illinois I heard Ross Ashby mention Bremermann’s limit. term than “information.” Bremermann’s limit states a relationship between matter and information. -
Primer Requirement and Template Specificity of the DNA Polymerase of RNA Tumor Viruses (Avian Myeloblastosis Virus/Mouse Leukemia Virus/E
Proc. Nat. Acad. Sci. USA Vol. 68, No. 7, pp. 1507-1511, July 1971 Primer Requirement and Template Specificity of the DNA Polymerase of RNA Tumor Viruses (avian myeloblastosis virus/mouse leukemia virus/E. coli DNA polymerase/ homopolynucleotides/oligonucleotides) DAVID BALTIMORE AND DONNA SMOLER Department of Biology, Massachusetts Institute of Technology, Cambridge, Mass. 02139 Communicated by Alexander Rich, April 26, 1971 ABSTRACT Polyribonucleotides will act as efficient way, to prefer polyribonucleotides to polydeoxvribonucleo- templates for the DNA polymerases found in the virions of tides as templates. avian myeloblastosis virus and mouse leukemia virus if a short complementary oligodeoxyribonucleotide primer is MATERIALS AND METHODS added. Synthesis of the complementary polydeoxyribo- nucleotide continues until an amount of polymer equal to Polyribonucleotides were obtained from Miles Laboratories, the amount of initial template has been produced. The Elkhart, Ind.; their concentrations were determined from two viruses show slightly different specificities toward the the extinction coefficients provided by the manufacturer. four homoribopolymers. Polydeoxyribonucleotides are Dr. F. generally much poorer templates than the homologous Polydeoxyribonucleotides were a kind gift of Bollum; polyribonucleotides, in most cases yielding no detectable their concentrations were determined from extinction co- synthesis. The DNA polymerases of RNA tumor viruses, efficients provided by Dr. Bollum. The oligodeoxyribonucleo- therefore, have the same requirements for activity as do tides were a product of Collaborative Research, Waltham, other DNA polymerases, except that they prefer polyribo- Mass., and had chain lengths of 12-16 units (which are indi- nucleotides over polydeoxyribonucleotides as templates. cated as 14 in the text); their concentrations were determined Virions of the RNA tumor viruses contain a DNA polymerase from the extinction coefficients of the respective polydeoxy- (1, 2) which, in the absence of added nucleic acid, synthesizes ribonucleotides. -
NAM 2020 Annual Meeting Donor Listing Consolidated Final Version
2019 Honor Roll of Donors We gratefully acknowledge the following members and friends who have made generous charitable lifetime contributions. Their collective, private philanthropy enhances the impact of the Academies as advisor to the nation on matters of science, engineering, and medicine. Recently, three new giving societies were introduced, recognizing donors at $250,000 and above. Boldfaced names are NAM members. The Lincoln Society In recognition of members and friends who have made lifetime contributions of $1,000,000 or more to the National Academy of Sciences, National Academy of Engineering, or National Academy of Medicine. Bruce and Betty Alberts Irwin and Joan Jacobs Richard L. and Hinda G. Richard and Rita Atkinson Robert L. and Anne K. Rosenthal* Norman R. Augustine James Martine A. Rothblatt Craig and Barbara Barrett Kenneth A. Jonsson* Jack W. and Valerie Rowe Jordan* and Rhoda Baruch Fred Kavli* Fritz J. and Dolores H. Russ Stephen D. Bechtel, Jr. Daniel E. Koshland, Jr.* Prize Fund of the Russ Arnold and Mabel Tillie K. Lubin* College of Engineering Beckman* Whitney* and Betty and Technology at Ohio Leonard Blavatnik MacMillan University Harry E. Bovay, Jr.* John F. McDonnell Dame Jillian Sackler Donald L. Bren George P. Mitchell* Raymond* and Beverly Harvey V. Fineberg and The Ambrose Monell Sackler Mary E. Wilson Foundation Bernard and Rhoda Sarnat* Bernard M. Gordon Gordon and Betty Moore Leonard D. Schaeffer Cecil H. Green* Philip and Sima Sara Lee and Axel Schupf Michael and Sheila Held* Needleman James H. and Marilyn William R. and Rosemary B. Peter O’Donnell, Jr. Simons Hewlett* Robert* and Mayari Pritzker John and Janet Swanson Ming and Eva Hsieh Listed below are individuals who became members of the Lincoln Society between January 1 and October 7, 2020: Marci and James J. -
Investing in UK Health and Life Sciences
Office for Life Sciences Office for Life Sciences Investing in UK Health and Life Sciences Printed in the UK on recycled paper containing a minimum of 75% post consumer waste. iv Department for Business, Innovation and Skills. www.bis.gov.uk i First published December 2011. © Crown copyright. BIS/Pub/1.0k/12/11.NP. URN 11/1428 Making the UK a world leading place for life sciences innovation Life science – and the UK’s role in it – is at a crossroads. Behind us lies a great history of discovery, from the unravelling of DNA to MRI scanning and genetic sequencing. We can be proud of our past, but this government is acutely aware that we cannot be complacent about the future. Your industry is undergoing profound change. The financial crisis is affecting healthcare budgets in the West, many blockbuster drugs are nearing the end of their patents, and new biological insights have dramatically altered the landscape of discovery and development. As a result of increasing R&D costs, the old ‘big pharma’ model is becoming more difficult to maintain. In its place is a new focus on translational medicine – more early stage clinical trails with patients, more external innovation, more collaboration. We understand that the game has changed – and that the UK must change with it. This country has all the ingredients to be an outstanding location for medical innovation: an integrated National Health Service, unlike any other; a highly competitive tax and investment framework; and an unrivalled science base, with four of the world’s top ten universities here in Britain. -
Information Theory." Traditions of Systems Theory: Major Figures and Contemporary Developments
1 Do not cite. The published version of this essay is available here: Schweighauser, Philipp. "The Persistence of Information Theory." Traditions of Systems Theory: Major Figures and Contemporary Developments. Ed. Darrell P. Arnold. New York: Routledge, 2014. 21-44. See https://www.routledge.com/Traditions-of-Systems-Theory-Major-Figures-and- Contemporary-Developments/Arnold/p/book/9780415843898 Prof. Dr. Philipp Schweighauser Department of English University of Basel Nadelberg 6 4051 Basel Switzerland Information Theory When Claude E. Shannon published "A Mathematical Theory of Communication" in 1948, he could not foresee what enormous impact his findings would have on a wide variety of fields, including engineering, physics, genetics, cryptology, computer science, statistics, economics, psychology, linguistics, philosophy, and aesthetics.1 Indeed, when he learned of the scope of that impact, he was somewhat less than enthusiastic, warning his readers in "The Bandwagon" (1956) that, while "many of the concepts of information theory will prove useful in these other fields, [...] the establishing of such applications is not a trivial matter of translating words to a new domain, but rather the slow tedious process of hypothesis and experimental verification" (Shannon 1956, 3). For the author of this essay as well as my fellow contributors from the humanities and social sciences, Shannon's caveat has special pertinence. This is so because we get our understanding of information theory less from the highly technical "A Mathematical Theory -
CIUDAD Y PROCESOS URBANOS TITULO: ¿Por Qué AGIL? [*] AUTOR: Niklas Luhmann TRADUCTOR: Ximena J
VOL: AÑO 5, NUMERO 12 FECHA: ENERO-ABRIL 1990 TEMA: CIUDAD Y PROCESOS URBANOS TITULO: ¿Por qué AGIL? [*] AUTOR: Niklas Luhmann TRADUCTOR: Ximena J. Wolff Reyes SECCION: Homenaje a Parsons TEXTO La obra de Talcott Parsons comienza con "La Estructura de la Acción Social" (1937). Durante toda su vida, del análisis de este libro obtuvo Parsons la seguridad de estar en la tradición de la construcción de teoría sociológica y de continuarla mediante el retorno a sus fundamentos. De los componentes del acto unidad (unit act) resultó para él un espacio combinatorio al que ninguna teoría factible puede plantearse agotar. Por ello, considera Parsons que la teoría estructural-funcionalista debería partir de supuestas estructuras para reducir este "espacio newtoniano" a un formato analizable. Por cierto no fue un programa "estático" (conservador) ni tampoco armónico socialmente, como pronto señaló una crítica ligera; pues en el concepto de estructura yace una limitación de las posibilidades pero no una fijación estática de los límites, como tampoco la suposición de una realidad libre de conflictos. Se exige solamente que cuando se trate de cambios sean cambios resultantes de la estructura y cuando sean conflictos se trate de conflictos resultantes de la estructura. Y de hecho: ¿Cómo podría pensarse la realidad de otra manera? Sin embargo, Parsons mismo superó esta fase de la acentuación de las limitaciones estructurales ya en la segunda mitad de los años cincuenta con la elaboración de una tabla de cruces que vio cada vez más como su propia aportación teórica. [1] En una larga conversación pocos días antes de su muerte me aseguró con insistencia que allí quería poner el énfasis.