Paleontology and the History of Life
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 20 - the History of Life on Earth
Lecture 20 - The History of Life on Earth Lecture 20 The History of Life on Earth Astronomy 141 – Autumn 2012 This lecture reviews the history of life on Earth. Rapid diversification of anaerobic prokaryotes during the Proterozoic Eon Emergence of Photosynthesis and the rise of O2 in the Earth’s atmosphere. Rise of Eukaryotes and the Cambrian Explosion in biodiversity at the start of the Phanerozoic Eon Colonization of land first by plants, then by animals Emergence of primates, then hominids, then humans. A brief digression on notation: “ya” = “years ago” Introduce a simple compact notation for writing the length of time before the present day. For example: “3.5 Billion years ago” “454 Million years ago” Gya = “giga-years ago”, hence 3.5 Gya = 3.5 Billion years ago Mya = “mega-years ago”, hence 454 Mya = 454 Million years ago [Note: some sources use Ga and Ma] Astronomy 141 - Winter 2012 1 Lecture 20 - The History of Life on Earth The four Eons of geological time. Hadean: 4.5 – 3.8 Gya: Formation, oceans & atmosphere Archaean: 3.8 – 2.5 Gya: Stromatolites & fossil bacteria Proterozoic: 2.5 Gya – 454 Mya: Eukarya and Oxygen Phanerozoic: since 454 Mya: Rise of plant and animal life The Archaean Eon began with the end of heavy bombardment ~3.8 Gya. Conditions stabilized. Oceans, but no O2 in the atmosphere. Stromatolites appear in the geological record ~3.5 Gya and thrived for >1 Billion years Rise of anaerobic microbes in the deep ocean & shores using Chemosynthesis. Time of rapid diversification of life driven by Natural Selection. -
Chapter 22 Notes: Introduction to Evolution
NOTES: Ch 22 – Descent With Modification – A Darwinian View of Life Our planet is home to a huge variety of organisms! (Scientists estimate of organisms alive today!) Even more amazing is evidence of organisms that once lived on earth, but are now . Several hundred million species have come and gone during 4.5 billion years life is believed to have existed on earth So…where have they gone… why have they disappeared? EVOLUTION: the process by which have descended from . Central Idea: organisms alive today have been produced by a long process of . FITNESS: refers to traits and behaviors of organisms that enable them to survive and reproduce COMMON DESCENT: species ADAPTATION: any inherited characteristic that enhances an organism’s ability to ~based on variations that are HOW DO WE KNOW THAT EVOLUTION HAS OCCURRED (and is still happening!!!)??? Lines of evidence: 1) So many species! -at least (250,000 beetles!) 2) ADAPTATIONS ● Structural adaptations - - ● Physiological adaptations -change in - to certain toxins 3) Biogeography: - - and -Examples: 13 species of finches on the 13 Galapagos Islands -57 species of Kangaroos…all in Australia 4) Age of Earth: -Rates of motion of tectonic plates - 5) FOSSILS: -Evidence of (shells, casts, bones, teeth, imprints) -Show a -We see progressive changes based on the order they were buried in sedimentary rock: *Few many fossils / species * 6) Applied Genetics: “Artificial Selection” - (cattle, dogs, cats) -insecticide-resistant insects - 7) Homologies: resulting from common ancestry Anatomical Homologies: ● comparative anatomy reveals HOMOLOGOUS STRUCTURES ( , different functions) -EX: ! Vestigial Organs: -“Leftovers” from the evolutionary past -Structures that Embryological Homologies: ● similarities evident in Molecular/Biochemical Homologies: ● DNA is the “universal” genetic code or code of life ● Proteins ( ) Darwin & the Scientists of his time Introduction to Darwin… ● On November 24, 1859, Charles Darwin published On the Origin of Species by Means of Natural Selection. -
Timeline of the Evolutionary History of Life
Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016 -
Evolutionary Trends
Evo Edu Outreach (2008) 1:259–273 DOI 10.1007/s12052-008-0055-6 ORIGINAL SCIENTIFIC ARTICLE Evolutionary Trends T. Ryan Gregory Published online: 25 June 2008 # Springer Science + Business Media, LLC 2008 Abstract The occurrence, generality, and causes of large- a pattern alone, to extrapolate from individual cases to scale evolutionary trends—directional changes over long entire systems, and to focus on extremes rather than periods of time—have been the subject of intensive study recognizing diversity. This is especially true in the study and debate in evolutionary science. Large-scale patterns in the of historically contingent processes such as evolution, history of life have also been of considerable interest to which spans nearly four billion years and encompasses nonspecialists, although misinterpretations and misunder- the rise and disappearance of hundreds of millions, if not standings of this important issue are common and can have billions, of species and the struggles of an unimaginably significant implications for an overall understanding of large number of individual organisms. evolution. This paper provides an overview of how trends This is not to say that no patterns exist in the history of are identified, categorized, and explained in evolutionary life, only that the situation is often far more complex than is biology. Rather than reviewing any particular trend in detail, acknowledged. Notably, the most common portrayals of the intent is to provide a framework for understanding large- evolution in nonacademic settings include not just change, scale evolutionary patterns in general and to highlight the fact but directional, adaptive change—if not outright notions of that both the patterns and their underlying causes are usually “advancement”—and it is fair to say that such a view has in quite complex. -
Lecture 2 Our Place in the Universe (Cont'd)
Astronomy 110 –1 Lecture 2 Our Place in the Universe (Cont’d) 14/01/09 1 Copyright © 2009 Pearson Education, Inc. A few useful mathematical skills 14/01/09 2 Copyright © 2009 Pearson Education, Inc. Powers of ten 103 = 10 x 10 x 10 = 1000 102 = 10 x 10 = 100 101 = 10 100 = 1 10-1 = 1/10 = 0.1 10-2 = 1/10 x 1/10 = 0.01 10-3 = 1/10 x 1/10 x 1/10 = 0.001 Then: 300 = 3 x 100 = 3 x 102 2,500 = 2.5 x 1000 = 2.5 x 103 14/01/09 3 Copyright © 2009 Pearson Education, Inc. Multiplying & dividing 101 x 101 = 100 = 102 101 x 102 = 10 x 100 = 1000 = 103 102 x 102 = 100 x 100 = 10000 = 104 When multiplying two powers of ten, add the exponents 1000 ÷ 100 = 103 ÷ 102 = 10 = 101 10 ÷ 10 = 101 ÷ 101 = 1 = 100 10 ÷ 100 = 101 ÷ 102 = 1/10 = 10-1 When dividing, subtract exponent of divisor from exponent of numerator 14/01/09 4 Copyright © 2009 Pearson Education, Inc. Powers and roots (104)3 = 104 x 104 x 104 = 1012 Rule of thumb: when raising to a power, multiply exponents What about √(104)? √(104) = 102 taking roots is the same as raising to a fractional power, in this case 1/2 power: √(104) = (104)1/2 = 102 √ is the same as raising to 1/2 power 3√ is the same as raising to 1/3 power 4√ is the same as raising to 1/4 power 14/01/09 5 Copyright © 2009 Pearson Education, Inc. -
D Inosaur Paleobiology
Topics in Paleobiology The study of dinosaurs has been experiencing a remarkable renaissance over the past few decades. Scientifi c understanding of dinosaur anatomy, biology, and evolution has advanced to such a degree that paleontologists often know more about 100-million-year-old dinosaurs than many species of living organisms. This book provides a contemporary review of dinosaur science intended for students, researchers, and dinosaur enthusiasts. It reviews the latest knowledge on dinosaur anatomy and phylogeny, Brusatte how dinosaurs functioned as living animals, and the grand narrative of dinosaur evolution across the Mesozoic. A particular focus is on the fossil evidence and explicit methods that allow paleontologists to study dinosaurs in rigorous detail. Scientifi c knowledge of dinosaur biology and evolution is shifting fast, Dinosaur and this book aims to summarize current understanding of dinosaur science in a technical, but accessible, style, supplemented with vivid photographs and illustrations. Paleobiology Dinosaur The Topics in Paleobiology Series is published in collaboration with the Palaeontological Association, Paleobiology and is edited by Professor Mike Benton, University of Bristol. Stephen Brusatte is a vertebrate paleontologist and PhD student at Columbia University and the American Museum of Natural History. His research focuses on the anatomy, systematics, and evolution of fossil vertebrates, especially theropod dinosaurs. He is particularly interested in the origin of major groups such Stephen L. Brusatte as dinosaurs, birds, and mammals. Steve is the author of over 40 research papers and three books, and his work has been profi led in The New York Times, on BBC Television and NPR, and in many other press outlets. -
Lineages, Splits and Divergence Challenge Whether the Terms Anagenesis and Cladogenesis Are Necessary
Biological Journal of the Linnean Society, 2015, , – . With 2 figures. Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary FELIX VAUX*, STEVEN A. TREWICK and MARY MORGAN-RICHARDS Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand Received 3 June 2015; revised 22 July 2015; accepted for publication 22 July 2015 Using the framework of evolutionary lineages to separate the process of evolution and classification of species, we observe that ‘anagenesis’ and ‘cladogenesis’ are unnecessary terms. The terms have changed significantly in meaning over time, and current usage is inconsistent and vague across many different disciplines. The most popular definition of cladogenesis is the splitting of evolutionary lineages (cessation of gene flow), whereas anagenesis is evolutionary change between splits. Cladogenesis (and lineage-splitting) is also regularly made synonymous with speciation. This definition is misleading as lineage-splitting is prolific during evolution and because palaeontological studies provide no direct estimate of gene flow. The terms also fail to incorporate speciation without being arbitrary or relative, and the focus upon lineage-splitting ignores the importance of divergence, hybridization, extinction and informative value (i.e. what is helpful to describe as a taxon) for species classification. We conclude and demonstrate that evolution and species diversity can be considered with greater clarity using simpler, more transparent terms than anagenesis and cladogenesis. Describing evolution and taxonomic classification can be straightforward, and there is no need to ‘make words mean so many different things’. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000. -
Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna. -
The Cambrian and Beyond A. Types of Fossils 1. Compression
The Cambrian and Beyond A. Types of Fossils 1. Compression & Impression fossils 2. Permineralized fossils 3. Casts & Molds 4. Unaltered remains – mummy B. Sorting out the Fossil Record: Strengths & Weaknesses 1. Lowland and shallow marine bias 2. Hard part bias 3. Age bias 4. Goal is to recognize the constraints and still be creative C. Cambrian Explosion Revisited – The Metazoan Body Plan 1. All animal phyla appeared in ~40 million years! 2. Symmetry – Diploblasts and Triplotblasts (Radial and Bilateral) a. Ecto/Endo vs Ecto/Endo/Mesoderm 3. Coelom or fluid filled cavity via mesoderm lined peritoneum a. Coelomates, pseudocoelomates, acoelomates 4. Protostomes (Ecdysozoans & Lophotrochozoans) and deuterostomes a. both have bilateral symmetry, true coeloms, 3 tissue types b. spiral cleavage vs. radial cleavage c. gastrulation – first the mouth or second the mouth 5. Notochords.... D. Ediacaran & Burgess Shale Faunas 1. Ediacaran – Soft bodies forms, many trace type fossils 2. Burgess Shale – Wide variety of body plans evolved, only a subset remained, fewer yet exist today. Lecture 12.1 E. Phylogeny of Metazoans: New Ways to Make a Living 1. Environmental forcing functions, e.g., Oxygen Story 2. Genetic forcing functions, e.g., HOM/Hox genes F. Macroevolutionary Patterns: Evolution’s Greatest Hits! 1. Adaptive radiations correlated with adaptive innovations giving rise to a number of descendant species that occupy a large range of niches. a. Lacking competitors over superior adaptations 2. Major Examples: ! Cambrian Explosion for animals ! Twice with land plants, Silurian/Devonian and Cretaceous G. Punctuated Equilibrium 1. Darwin: aware of the problem, but wrote off as patchy record due to incompleteness of the fossil record. -
Rowan C. Martindale Curriculum Vitae Associate Professor (Invertebrate Paleontology) at the University of Texas at Austin
ROWAN C. MARTINDALE CURRICULUM VITAE ASSOCIATE PROFESSOR (INVERTEBRATE PALEONTOLOGY) AT THE UNIVERSITY OF TEXAS AT AUSTIN Department of Geological Sciences E-mail: [email protected] Jackson School of Geosciences Website: www.jsg.utexas.edu/martindale/ 2275 Speedway Stop C9000 Orchid ID: 0000-0003-2681-083X Austin, TX 78712-1722 Phone: 512-475-6439 Office: JSG 3.216A RESEARCH INTERESTS The overarching theme of my work is the connection between Earth and life through time, more precisely, understanding ancient (Mesozoic and Cenozoic) ocean ecosystems and the evolutionary and environmental events that shaped them. My research is interdisciplinary, (paleontology, sedimentology, biology, geochemistry, and oceanography) and focuses on: extinctions and carbon cycle perturbation events (e.g., Oceanic Anoxic Events, acidification events); marine (paleo)ecology and reef systems; the evolution of reef builders (e.g., coral photosymbiosis); and exceptionally preserved fossil deposits (Lagerstätten). ACADEMIC APPOINTMENTS Associate Professor, University of Texas at Austin September 2020 to Present Assistant Professor, University of Texas at Austin August 2014 to August 2020 Postdoctoral Researcher, Harvard University August 2012 to July 2014 Department of Organismic and Evolutionary Biology; Mentor: Dr. Andrew H. Knoll. EDUCATION Doctorate, University of Southern California 2007 to 2012 Dissertation: “Paleoecology of Upper Triassic reef ecosystems and their demise at the Triassic-Jurassic extinction, a potential ocean acidification event”. Advisor: Dr. David J. Bottjer, degree conferred August 7th, 2012. Bachelor of Science Honors Degree, Queen’s University 2003 to 2007 Geology major with a general concentration in Biology (Geological Sciences Medal Winner). AWARDS AND RECOGNITION Awards During Tenure at UT Austin • 2019 National Science Foundation CAREER Award: Awarded to candidates who are judged to have the potential to serve as academic role models in research and education. -
Critical Analysis of Article "21 Reasons to Believe the Earth Is Young" by Jeff Miller
1 Critical analysis of article "21 Reasons to Believe the Earth is Young" by Jeff Miller Lorence G. Collins [email protected] Ken Woglemuth [email protected] January 7, 2019 Introduction The article by Dr. Jeff Miller can be accessed at the following link: http://apologeticspress.org/APContent.aspx?category=9&article=5641 and is an article published by Apologetic Press, v. 39, n.1, 2018. The problems start with the Article In Brief in the boxed paragraph, and with the very first sentence. The Bible does not give an age of the Earth of 6,000 to 10,000 years, or even imply − this is added to Scripture by Dr. Miller and other young-Earth creationists. R. C. Sproul was one of evangelicalism's outstanding theologians, and he stated point blank at the Legionier Conference panel discussion that he does not know how old the Earth is, and the Bible does not inform us. When there has been some apparent conflict, either the theologians or the scientists are wrong, because God is the Author of the Bible and His handiwork is in general revelation. In the days of Copernicus and Galileo, the theologians were wrong. Today we do not know of anyone who believes that the Earth is the center of the universe. 2 The last sentence of this "Article In Brief" is boldly false. There is almost no credible evidence from paleontology, geology, astrophysics, or geophysics that refutes deep time. Dr. Miller states: "The age of the Earth, according to naturalists and old- Earth advocates, is 4.5 billion years. -
Some Philosophical Questions About Paleontology and Their Practica1 Consequences
ACTA GEOLOGICA HISPANICA. Concept and method in Paleontology. 16 (1981) nos 1-2, pags. 7-23 Some philosophical questions about paleontology and their practica1 consequences by Miquel DE RENZI Depto. de Geología, Facultad de Ciencias Biológicas, Universidad de Valencia. Burjassot (Valencia). This papcr attempts to objectively discuss the actual state ofpaleontology. The En aquest treball s'ha intentat fer un balanc d'alguns aspectes de I'estat de la progress of this science stood still somewhat during the latter part of the last paleontologia. La historia de la paleontologia mostra un estancarnent a les century which caused it to develop apart from the biological sciences. an area to darreries del segle passac aquest estancament va Fer que la nostra ciencia s'anes which it is naturally tied. As aconsequence, this bruought a long-term stagnation, allunyant cada cop mes de I'area de les ciencies bii~logiques,amb les qualsestava because biology, dunng this century, has made great progress and paleontology lligada naturalment AixO va portar, com a conseqüencia, un important has not During the last 20 years paleontology as a science hasrecuperatedsome endarreriment, car la biologia, durant aquest segle, ha donat un gran pas of this loss, but we as scientists need to be careful in various aspects of its endavant, mentre que aquest no ha estat el cas de lapaleontologia Al nostre pais development -i possiblement a molts d'altres- la paleontologia es, fonamentalment, un estn per datar estrats. Tanmateix, un mal estri, car la datació es basadaen les especies fossils i la seva determinació es fonamenta en el ccncepte d'especie biolbgica; els fossils pero en moltes ocasions, són utilitzats mes aviat com si fossin segells o monedes.