Hexachlorocyclohexane Dehydrochlorinase Lina

Total Page:16

File Type:pdf, Size:1020Kb

Hexachlorocyclohexane Dehydrochlorinase Lina PROTEINS:Structure,Function,andGenetics45:471–477(2001) IdentificationofProteinFoldandCatalyticResiduesof␥- HexachlorocyclohexaneDehydrochlorinaseLinA YujiNagata,1* KatsukiMori,2 MasamichiTakagi,2 AlexeyG.Murzin,3 andJirˇı´Damborsky´ 4 1GraduateSchoolofLifeSciences,TohokuUniversity,Sendai,Japan 2DepartmentofBiotechnology,TheUniversityofTokyo,Tokyo,Japan 3 CentreforProteinEngineering,MedicalResearchCouncilCentre,Cambridge,UnitedKingdom 4NationalCentreforBiomolecularResearch,MasarykUniversity,Brno,CzechRepublic ABSTRACT ␥-Hexachlorocyclohexanedehy- tion.Infact,wehaverevealedthatthreedifferenttypesof drochlorinase(LinA)isauniquedehydrochlorinase dehalogenases,dehydrochlorinaseLinA,4,5 halidohydro- thathasnohomologoussequenceattheaminoacid- laseLinB,6,7 andreductivedehalogenaseLinD,8 arese- sequencelevelandforwhichtheevolutionaryori- quentiallyinvolvedinthedegradationof␥-HCHinUT26.9 ginisunknown.WehereproposethatLinAisa Amongthesethreedehalogenases,LinAisthoughttobea memberofanovelstructuralsuperfamilyofpro- uniquedehydrochlorinase,basedonthefailureofFASTA 5 teinscontainingscytalonedehydratase,3-oxo-⌬ - andBLASTdatabasesearchestofindanysignificantly steroidisomerase,nucleartransportfactor2,and homologoussequencestothelinAgene.4 Thus,theorigin the␤-subunitofnaphthalenedioxygenase—all ofthelinAgeneisofgreatinterest,butisstillunknown. knownstructureswithdifferentfunctions.Thecat- LinAcatalyzestwostepsofdehydrochlorinationfrom alyticandtheactivesiteresiduesofLinAarepre- ␥-HCHto1,3,4,6-tetrachloro-1,4-cyclohexadiene(1,4- dictedonthebasisofitshomologymodel.Ninemu- TCDN)via␥-pentachlorocyclohexene(␥-PCCH;Fig.1).It tantsthatcarrysubstitutionsoftheproposed hasbeenproposedthat1,4-TCDNisconvertedto1,2,4- catalyticresidueswereconstructedbysite-directed trichlorobenzene(1,2,4-TCB)nonenzymatically(Fig.1), mutagenesis.Inadditiontothese,eightmutants because1,4-TCDNhasanunstablediene-typestructure thathaveapotentialtomakecontactwiththesub- andistobechangedintoamoleculewithastablearomatic stratewerepreparedbysite-directedmutagenesis. ring.10 InUT26,partof1,4-TCDNishydrolyticallydechlo- ThesemutantswereexpressedinEscherichiacoli, rinatedbyLinBto2,5-dichloro-2,5-cyclohexadiene-1,4-diol andtheiractivitiesincrudeextractwereevaluated. (2,5-DDOL)via2,4,5-trichloro-2,5-cyclohexadiene-1-ol MostofthefeaturesoftheLinAmutantscouldbe (2,4,5-DNOL).6 explainedonthebasisofthepresentLinAmodel, ThelinAgenewashighlyexpressedinrecombinant indicatingitsvalidity.WeconcludethatLinAcata- Escherichiacolicells,andthegeneproduct(LinA)was lyzestheprotonabstractionviathecatalyticdyad 5 ␥ H73-D25byasimilarmechanismasdescribedfor purifiedtohomogeneity. Inadditionto -HCHand ␥ ␣ ␦ scytalonedehydratase.Theresultssuggestthat -PCCH, -and -isomersofHCHwerealsodehydrochlo- ␤ 5 LinAandscytalonedehydrataseevolvedfroma rinatedbyLinA;however, -HCHwasnot. Theseresults commonancestor.LinAmayhaveevolvedfroman areconsistentwiththoseobtainedusingrestingUT26 10 enzymeshowingadehydrataseactivity.Proteins cells. ItwassuggestedthatdehydrochlorinationbyLinA 2001;45:471–477.©2001Wiley-Liss,Inc. occursstereoselectivelyatatransanddiaxialpairof hydrogenandchlorine.10 Recently,weconfirmedexperi- Keywords:dehydrochlorination;evolution;␥-hexa- mentallythatdehydrochlorinationof␥-HCHproceedsbya chlorocyclohexane;homologymodel- 1,2-antidehydrochlorinationreaction.11 Theotherchlori- ing;LinA;reactionmechanism INTRODUCTION Abbreviations:2,5-DDOL,2,5-dichloro-2,5-cyclohexadiene-1,4-diol; DDT,1,1,1-trichloro-2,2-bis(p-chloro-phenyl)ethane;2,4,5-DNOL, ␥-Hexachlorocyclohexane(␥-HCH;alsocalledBHCor 2,4,5-trichloro-2,5-cyclohexadiene-1-ol;ECD,electroncapturedetec- lindane)isahalogenatedorganicinsecticidethathasbeen tor;GC,gaschromatography;GSH,glutathione;GST,glutathione S-transferase;HCH,hexachlorocyclohexane;LinA,␥-hexachlorocyclo- usedworldwidesincethe1940s,butthathasbeenprohib- hexanedehydrochlorinase;LinB,1,4-TCDNhalidohydrolase;␥-PCCH, itedinmostcountriesbecauseofitstoxicityandlong ␥-pentachlorocyclohexene;PLP,pyridoxal5Ј-phosphate;1,2,4-TCB, persistenceinsoil.Unfortunately,manycontaminated 1,2,4-trichlorobenzene;1,4-TCDN,1,3,4,6-tetrachloro-1,4-cyclohexa- diene. sitesremainthroughouttheworld.Moreover,somecoun- ␥ Grantsponsor:Grant-in-AidforScientificResearchfromtheMinis- triesarepresentlyusing -HCHforeconomicreasons,and tryofEducation,Science,SportsandCultureofJapan. 1,2 thusnewsitesarecontinuouslybeingcontaminated. *Correspondenceto:YujiNagata,GraduateSchoolofLifeSciences, SphingomonaspaucimobilisUT26degrades␥-HCHun- TohokuUniversity,2-1-1Katahira,Sendai,980-8577,Japan.E-mail: deraerobicconditions.3 Because␥-HCHisahighlychlori- [email protected] natedcompoundhavingsixchlorineatomspermolecule, Received15March2001;Accepted31July2001 dechlorinationisaverysignificantstepforitsdegrada- ©2001WILEY-LISS,INC. 472 Y. NAGATA ET AL. were obtained from Takara Shuzo Co. (Kyoto, Japan). The mutagenesis primers were obtained from Espec-oligo Ser- vice Co. (Tsukuba, Japan). The strain used in this study is E. coli HB101.24 Fig. 1. Proposed degradation pathway of ␥-HCH by LinA. The first and Site-directed Mutagenesis the second reaction steps are catalyzed by LinA. The third reaction is proposed to be nonenzymatic, because 1,4-TCDN has an unstable Site-directed mutagenesis of linA was performed by diene-type structure and is to be changed into a molecule with a stable using the principle of a LA PCR in vitro mutagenesis kit 10 aromatic ring. Compounds: 1, ␥-HCH; 2, ␥-PCCH; 3, 1,4-TCDN; 4, (TaKaRa Shuzo Co. Kyoto, Japan), according to the pro- 1,2,4-TCB. vided protocol except for using KOD (King of DNA) polymer- ase (Toyobo Co., Osaka, Japan) and Pyrobest DNA polymer- nated compounds tested were not dehydrochlorinated by ase (TaKaRa) whose fidelity are very high. All of the the purified enzyme, indicating that the substrate specific- 5 nucleotide sequences of mutants were confirmed by the ity of LinA is narrow. dideoxy-chain termination method with an automated Dehydrochlorinase eliminates HCl from the substrate 12,13 DNA sequencer (ABI PRISM 310 genetic analyzer; Ap- molecule, leading to the formation of a double bond. To plied Biosystems, Foster City, CA). The oligo nucleotides date, the properties of three dehydrochlorinases (including used are as follows: K20Q (5Ј-TAC TCT GAC CAG CTC LinA) have been reported. An eukaryotic dehydrochlorinase ATT GCC-3Ј), K20M (5Ј-TAC TCT GAC ATG CTC ATT isolated from Musca domestica catalyzes the monodehydro- GCC-3Ј), D25N (5-ATT GCC GTA AAC AAG CGC C-3Ј), chlorination of 1,1,1-trichloro-2,2-bis(p-chloro-phenyl)ethane Ј 14,15 D25L (5 -CTC ATT GCC GTA CTC AAG CGC CAA (DDT). 3-Chloro-D-alanine dehydrochlorinase was iso- Ј Ј 16 GAG-3 ), H73Q (5 -GAA TGT ATT CAG TAT GGA ACC- lated from Pseudomonas putida. LinA is, however, very 3Ј), D115N (5Ј-CTC ATA CTC ATT CGT GAA GAC-3Ј), different from these two other dehydrochlorinases. DDT D115L (5Ј-GCG CTC ATA CTC AAG CGT GAA GAC dehydrochlorinase and 3-chloro-D-alanine dehydrochlorinase CGC-3Ј), R129Y (5-CGT GCA TGC GTT GTA CTT AGA Ј require glutathione (GSH) and pyridoxal 5 -phosphate (PLP), GAA CTT-3Ј), R129M (5Ј-CGT GCA TGC GTT CAT CTT respectively, for their activities, whereas LinA does not Ј Ј 5 AGA GAA CTT-3 ) W42L (5 -GCA GAG TTG ACC ATT require any cofactors. Purified LinA did not show gluta- GAG-3Ј), Y50A (5Ј-ATC GGC ACC GCC AAG GGC CCG- thione S-transferase (GST) nor DDT dehydrochlorinase activ- 3Ј), L64A (5Ј-AAT AAC GTA GCC TGG CCA ATG-3Ј), ity in the presence of glutathione. Thus, it seems most likely M67A (5Ј-CTC TGG CCA GCG TTT CAC GAA-3Ј), L96A that LinA is not a GST-type enzyme. LinA is thought to be a (5Ј-ATT TCC AAG GGC AAG GAC GTC-3Ј), F113L (5Ј- unique dehydrochlorinase, and its mechanism of dehydrochlo- ATC CGT GAG GAC CGC AGC-3Ј), F113Y (5Ј-ATC CGT rination is of great interest. GTA GAC CGC AGC-3Ј), and F144L (5Ј-CGG TGC GAG In this study, we propose the protein fold of LinA and ATG AAT GCC-3Ј). identify its catalytic residues. A model of the three- dimensional structure of LinA constructed using homolo- Overexpression of LinA Mutants in E. coli gous proteins as the templates is used for identification of the putative catalytic and the active site residues. The To overproduce LinA mutants in E. coli, plasmids for overexpression were constructed from pAQN, which has mutants designed according to the model are constructed 25 by site-directed mutagenesis. The divergence of the evolu- the same structure as pAQI except for differences in the tion of LinA from the common ancestor with scytalone aqualysin I-coding region. In these plasmids, linA mutants ⌬5 are transcribed by the tac promoter under the control of dehydratase, nuclear transport factor-2,3-oxo- -steroid q isomerase and ␤-subunit of naphthalene 1,2-dioxygenase lacI . E. coli HB101 containing these plasmids for mutants is discussed. were cultured in 10 ml of Luria broth (LB) at 30°C. Cells were harvested after induction with 1 mM IPTG, washed MATERIALS AND METHODS in 50 mM potassium phosphate buffer (pH 7.5), and Identification of the Protein Fold and Computer resuspended in the sample buffer [50 mM potassium Modeling of LinA phosphate buffer (pH 7.5) containing 1 mM 2-mercapto- Sequence comparisons were conducted with a PSI- ethanol and 10% glycerol]. The cells were disrupted by BLAST and BLOSUM62 substitution matrix.17 Threading sonication (Sonifier 250; Branson, Danbury, CT). After searches for remote homologues of LinA were performed centrifugation at 12,000g for 10 min, the supernatant was using Bioinbgu18 and 3D-PSSM19 servers. The homology used as a crude extract. model
Recommended publications
  • Legionella Genus Genome Provide Multiple, Independent Combinations for Replication in Human Cells
    Supplemental Material More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells Laura Gomez-Valero1,2, Christophe Rusniok1,2, Danielle Carson3, Sonia Mondino1,2, Ana Elena Pérez-Cobas1,2, Monica Rolando1,2, Shivani Pasricha4, Sandra Reuter5+, Jasmin Demirtas1,2, Johannes Crumbach1,2, Stephane Descorps-Declere6, Elizabeth L. Hartland4,7,8, Sophie Jarraud9, Gordon Dougan5, Gunnar N. Schroeder3,10, Gad Frankel3, and Carmen Buchrieser1,2,* Table S1: Legionella strains analyzed in the present study Table S2: Type IV secretion systems predicted in the genomes analyzed Table S3: Eukaryotic like domains identified in the Legionella proteins analyzed Table S4: Small GTPases domains detected in the genus Legionella as defined in the CDD ncbi domain database Table S5: Eukaryotic like proteins detected in the Legionella genomes analyzed in this study Table S6: Aminoacid identity of the Dot/Icm components in Legionella species with respect to orthologous proteins in L. pneumophila Paris Table S7: Distribution of seventeen highly conserved Dot/Icm secreted substrates Table S8: Comparison of the effector reperotoire among strains of the same Legionella species Table S9. Number of Dot/Icm secreted proteins predicted in each strain analyzed Table S10: Replication capacity of the different Legionella species analyzed in this study and collection of literature data on Legionella replication Table S11: Orthologous table for all genes of the 80 analyzed strains based on PanOCT. The orthologoss where defined with the program PanOCT using the parameters previously indicated in material and methods.) Figure S1: Distribution of the genes predicted to encode for the biosynthesis of flagella among all Legionella species.
    [Show full text]
  • Structure-Function Studies of Iron-Sulfur Enzyme Systems
    Structure-Function Studies of Iron-Sulfur Enzyme Systems Rosmarie Friemann Department of Molecular Biology Uppsala Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2005 1 Acta Universitatis Agriculturae Sueciae Agraria 504 ISSN 1401-6249 ISBN 91-576-6783-7 © 2004 Rosmarie Friemann, Uppsala Tryck: SLU Service/Repro, Uppsala 2004 2 Abstract Friemann, R., 2005, Structure-Function Studies of Iron-Sulfur Enzyme Systems. Doctorial dissertation. ISSN 1401-6249, ISBN 91-576-6783-7 Iron-sulfur clusters are among the most ancient of metallocofactors and serve a variety of biological functions in proteins, including electron transport, catalytic, and structural roles. Two kinds of multicomponent enzyme systems have been investigated by X-ray crystallography, the ferredoxin/thioredoxin system and bacterial Rieske non- heme iron dioxygenase (RDO) systems. The ferredoxin/thioredoxin system is a light sensitive system controlling the activities of key enzymes involved in the assimilatory (photosynthetic) and dissimilatory pathways in chloroplasts and photosynthetic bacteria. The system consists of a ferredoxin, ferredoxin:thioredoxin reductase (FTR), and two thioredoxins, Trx-m and Trx-f. In light, photosystem I reduces ferredoxin that reduces Trx-m and Trx- f. This two-electron reduction is catalyzed by FTR that contains a [4Fe-4S] center and a proximal disulfide bridge. When the first electron is delivered by the ferredoxin, an intermediate is formed where one thiol of the proximal disulfide attacks the disulfide bridge of thioredoxin. This results in a transient protein-protein complex held together by a mixed disulfide between FTR and Trx-m. This complex is stabilized by using a C40S mutant Trx-m and its structure have been determined.
    [Show full text]
  • Supporting Information High-Throughput Virtual Screening
    Supporting Information High-Throughput Virtual Screening of Proteins using GRID Molecular Interaction Fields Simone Sciabola, Robert V. Stanton, James E. Mills, Maria M. Flocco, Massimo Baroni, Gabriele Cruciani, Francesca Perruccio and Jonathan S. Mason Contents Table S1 S2-S21 Figure S1 S22 * To whom correspondence should be addressed: Simone Sciabola, Pfizer Research Technology Center, Cambridge, 02139 MA, USA Phone: +1-617-551-3327; Fax: +1-617-551-3117; E-mail: [email protected] S1 Table S1. Description of the 990 proteins used as decoy for the Protein Virtual Screening analysis. PDB ID Protein family Molecule Res. (Å) 1n24 ISOMERASE (+)-BORNYL DIPHOSPHATE SYNTHASE 2.3 1g4h HYDROLASE 1,3,4,6-TETRACHLORO-1,4-CYCLOHEXADIENE HYDROLASE 1.8 1cel HYDROLASE(O-GLYCOSYL) 1,4-BETA-D-GLUCAN CELLOBIOHYDROLASE I 1.8 1vyf TRANSPORT PROTEIN 14 KDA FATTY ACID BINDING PROTEIN 1.85 1o9f PROTEIN-BINDING 14-3-3-LIKE PROTEIN C 2.7 1t1s OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.4 1t1r OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.3 1q0q OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 1.9 1jcy LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.9 1fww LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.85 1uk7 HYDROLASE 2-HYDROXY-6-OXO-7-METHYLOCTA-2,4-DIENOATE 1.7 1v11 OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.95 1x7w OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.73 1d0l TRANSFERASE 35KD SOLUBLE LYTIC TRANSGLYCOSYLASE 1.97 2bt4 LYASE 3-DEHYDROQUINATE DEHYDRATASE
    [Show full text]
  • Magnaporthe Oryzae
    | INVESTIGATION Conidial Morphogenesis and Septin-Mediated Plant Infection Require Smo1, a Ras GTPase-Activating Protein in Magnaporthe oryzae Michael J. Kershaw,* Magdalena Basiewicz,*,1 Darren M. Soanes,* Xia Yan,*,2 Lauren S. Ryder,*,2 Michael Csukai,† Miriam Oses-Ruiz,* Barbara Valent,‡ and Nicholas J. Talbot*,2,3 *School of Biosciences, University of Exeter, EX4 4QD, UK, †Biological Sciences, Syngenta, Jeallott’s Hill International Research Centre, Bracknell RG42 6EY, UK, and ‡Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 ORCID IDs: 0000-0001-5025-295X (D.M.S.); 0000-0003-4509-0137 (X.Y.); 0000-0003-0370-5746 (L.S.R.); 0000-0003-0615-7802 (M.C.); 0000-0002-3989-9071 (M.O.-R.); 0000-0002-5088-3345 (B.V.); 0000-0001-6434-7757 (N.J.T.) ABSTRACT The pathogenic life cycle of the rice blast fungus Magnaporthe oryzae involves a series of morphogenetic changes, essential for its ability to cause disease. The smo mutation was identified . 25 years ago, and affects the shape and development of diverse cell types in M. oryzae, including conidia, appressoria, and asci. All attempts to clone the SMO1 gene by map-based cloning or complementation have failed over many years. Here, we report the identification of SMO1 by a combination of bulk segregant analysis and comparative genome analysis. SMO1 encodes a GTPase-activating protein, which regulates Ras signaling during infection- related development. Targeted deletion of SMO1 results in abnormal, nonadherent conidia, impaired in their production of spore tip mucilage. Smo1 mutants also develop smaller appressoria, with a severely reduced capacity to infect rice plants.
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • Fatty Acid Synthase Beta Dehydratase in the Lipid Biosynthesis Pathway Is Required for Conidiogenesis, Pigmentation and Appresso
    International Journal of Molecular Sciences Article Fatty Acid Synthase Beta Dehydratase in the Lipid Biosynthesis Pathway Is Required for Conidiogenesis, Pigmentation and Appressorium Formation in Magnaporthe oryzae S6 Vaanee Sangappillai and Kalaivani Nadarajah * Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia; UKM Bangi 43600, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +603-89213465 Received: 5 August 2020; Accepted: 23 September 2020; Published: 30 September 2020 Abstract: Lipid biosynthesis produces glycerol, which is important in fueling turgor pressure necessary for germination and penetration of plant host by fungi. As the relationship between pathogenicity and the lipid biosynthetic pathway is not fully understood, we have elucidated the role of the fatty acid synthase beta subunit dehydratase (FAS1) gene in lipid biosynthesis. The FAS1 gene was silenced through homologous double crossover in Magnaporthe oryzae strain S6 to study the effect on lipid biosynthesis. The vegetative growth of Dfas1 mutants show the highest drop on oleic acid (between 10 and 50%), while the mycelial dry weight of mutants dropped significantly on all media. Conidiation of FAS1 mutants show a ~10- and ~5-fold reduction on oatmeal and Potato Dextrose Agar (PDA), respectively. Mutants formed mycelium that were mildly pigmented, indicating that the deletion of FAS1 may have affected melanin biosynthesis. Biochemical and gene expression studies concluded that the fatty acid degradation pathway might have been interrupted by FAS1 deletion. FAS1 mutants showed no enzyme activity on glucose or olive oil, suggesting that the mutants may lack functional peroxisomes and be defective in β-oxidation of fatty acids, hence explaining the reduced lipid deposits in the spores.
    [Show full text]
  • Dimethylformamide Inhibits Fungal Growth and Aflatoxin B1
    toxins Article Dimethylformamide Inhibits Fungal Growth and Aflatoxin B1 Biosynthesis in Aspergillus flavus by Down-Regulating Glucose Metabolism and‘Amino Acid Biosynthesis Lin Pan 1, Peng Chang 2, Jing Jin 1, Qingli Yang 2 and Fuguo Xing 1,* 1 Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; [email protected] (L.P.); [email protected] (J.J.) 2 College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; [email protected] (P.C.); [email protected] (Q.Y.) * Correspondence: [email protected]; Tel.: +86-10-6281-1868 Received: 5 October 2020; Accepted: 27 October 2020; Published: 29 October 2020 Abstract: Aflatoxins (AFs) are secondary metabolites produced by plant fungal pathogens infecting crops with strong carcinogenic and mutagenic properties. Dimethylformamide (DMF) is an excellent solvent widely used in biology, medicine and other fields. However, the effect and mechanism of DMF as a common organic solvent against fungal growth and AFs production are not clear. Here, we discovered that DMF had obvious inhibitory effect against A. flavus, as well as displayed complete strong capacity to combat AFs production. Hereafter, the inhibition mechanism of DMF act on AFs production was revealed by the transcriptional expression analysis of genes referred to AFs biosynthesis. With 1% DMF treatment, two positive regulatory genes of AFs biosynthetic pathway aflS and aflR were down-regulated, leading to the suppression of the structural genes in AFs cluster like aflW, aflP.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Biosynthesis of Food Constituents: Natural Pigments. Part 1 – a Review
    Czech J. Food Sci. Vol. 25, No. 6: 291–315 Biosynthesis of Food Constituents: Natural Pigments. Part 1 – a Review Jan VELÍŠEK, Jiří DAVÍDEK and Karel CEJPEK Department of Food Chemistry and Analysis, Faculty of Food and Biochemical Technology, Institute of Chemical Technology in Prague, Prague, Czech Republic Abstract VELÍŠEK J., DAVÍDEK J., CEJPEK K. (2007): Biosynthesis of food constituents: Natural pigments. Part 1 – a re- view. Czech J. Food Sci., 25: 291–315. This review article gives a survey of the generally accepted biosynthetic pathways that lead to the most important natural pigments in organisms closely related to foods and feeds. The biosynthetic pathways leading to hemes, chlo- rophylls, melanins, betalains, and quinones are described using the enzymes involved and the reaction schemes with detailed mechanisms. Keywords: biosynthesis; tetrapyrroles; hemes; chlorophylls; eumelanins; pheomelanins; allomelanins; betalains; betax- anthins; betacyanins; benzoquinones; naphthoquinones; anthraquinones Natural pigments are coloured substances syn- noids. Despite their varied structures, all of them thesised, accumulated in or excreted from living are synthesised by only a few biochemical path- or dying cells. The pigments occurring in food ways. There are also groups of pigments that defy materials become part of food, some other pig- simple classification and pigments that are rare ments have been widely used in the preparation or limited in occurrence. of foods and beverages as colorants for centuries. Many foods also owe their colours to pigments that 1 TETRAPYRROLES form in food materials and foods during storage and processing as a result of reactions between food Tetrapyrroles (tetrapyrrole pigments) represent a constituents, notably the non-enzymatic browning relatively small group of pigments that contribute reaction and the Maillard reaction.
    [Show full text]
  • From Sequence to Structure
    1 From Sequence to Structure The genomics revolution is providing gene sequences in exponentially increasing numbers. Converting this sequence information into functional information for the gene products coded by these sequences is the challenge for post-genomic biology. The first step in this process will often be the interpretation of a protein sequence in terms of the three- dimensional structure into which it folds. This chapter summarizes the basic concepts that underlie the relationship between sequence and structure and provides an overview of the architecture of proteins. 1-0 Overview: Protein Function and Architecture 1-1 Amino Acids 1-2 Genes and Proteins 1-3 The Peptide Bond 1-4 Bonds that Stabilize Folded Proteins 1-5 Importance and Determinants of Secondary Structure 1-6 Properties of the Alpha Helix 1-7 Properties of the Beta Sheet 1-8 Prediction of Secondary Structure 1-9 Folding 1-10 Tertiary Structure 1-11 Membrane Protein Structure 1-12 Protein Stability: Weak Interactions and Flexibility 1-13 Protein Stability: Post-Translational Modifications 1-14 The Protein Domain 1-15 The Universe of Protein Structures 1-16 Protein Motifs 1-17 Alpha Domains and Beta Domains 1-18 Alpha/Beta, Alpha+Beta and Cross-Linked Domains 1-19 Quaternary Structure: General Principles 1-20 Quaternary Structure: Intermolecular Interfaces 1-21 Quaternary Structure: Geometry 1-22 Protein Flexibility 1-0 Overview: Protein Function and Architecture Binding TATA binding protein Myoglobin Specific recognition of other molecules is central to protein function. The molecule that is bound (the ligand) can be as small as the oxygen molecule that coordinates to the heme group of myoglobin, or as large as the specific DNA sequence (called the TATA box) that is bound—and distorted—by the TATA binding protein.
    [Show full text]
  • Prediction of Anti-Hiv Activity of Flavanoid Constituents Through PASS
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OpenSIUC Ethnobotanical Leaflets 12: 954-94. 2008. Prediction of Anti-Hiv Activity of Flavanoid Constituents Through PASS M. Maridass1, G. Raju2, K. Thangavel3 and S. Ghanthikumar4 1Animal Health Research Unit, St.Xavier’s College (Autonomous), Palayamkottai-627002 2Dept. of Advanced Zoology and Biotechnology, PioneerKumaraswamy College, Nagercoil, 629 002 3Dept. of Biotechnology, Sri Paramakalyani College, Alwarkurichi, Thirunelveli – 627 412 4Centre for Biodiversity and Biotechnology,St. Xavier’s College (Autonomous), Palayamkottai-02, Tamil Nadu, India E-mail: [email protected] Issued 08 November 2008 ABSTRACT Prediction of Activity Spectra for Substances (PASS), a new computer program, has been generated to evaluate the biological activity of four major flavanoids from a medicinal herb, Boesenbergia pandurata Holtt. (Zingiberaceae). Principal anti-HIV and other biological activities of pinostrobin, pinocembrin, cardamonin and alpinetin were predicted through PASS, their similarity and difference in the mechanisms of action with reference to accessory biological activities have been compared (Tables 1-4) and verified with the available data (http://195.178.207.233/PASS/socket1.php.) on pharmacological and toxicological activity of these compounds. KEY WORDS: Anti-HIV Drugs, Flavanoids, Boesenbergia pandurata, Pinostrobin, Pinocembrin, Cardamonin, Alpinetin. INTRODUCTION Acquired immunodeficiency syndrome (AIDS) has evolved rapidly into an epidemic and world-wide health crisis. The number of people infected with HIV rose to just over 40 million in 2006, an increase of over 2 million since 2004 (WHO/UNAIDS (2006). More than 60% of infected people live in sub-Saharan Africa, where at least 2 million deaths from HIV/AIDS occurred in 2006.
    [Show full text]