Biosynthesis of Food Constituents: Natural Pigments. Part 1 – a Review

Total Page:16

File Type:pdf, Size:1020Kb

Biosynthesis of Food Constituents: Natural Pigments. Part 1 – a Review Czech J. Food Sci. Vol. 25, No. 6: 291–315 Biosynthesis of Food Constituents: Natural Pigments. Part 1 – a Review Jan VELÍŠEK, Jiří DAVÍDEK and Karel CEJPEK Department of Food Chemistry and Analysis, Faculty of Food and Biochemical Technology, Institute of Chemical Technology in Prague, Prague, Czech Republic Abstract VELÍŠEK J., DAVÍDEK J., CEJPEK K. (2007): Biosynthesis of food constituents: Natural pigments. Part 1 – a re- view. Czech J. Food Sci., 25: 291–315. This review article gives a survey of the generally accepted biosynthetic pathways that lead to the most important natural pigments in organisms closely related to foods and feeds. The biosynthetic pathways leading to hemes, chlo- rophylls, melanins, betalains, and quinones are described using the enzymes involved and the reaction schemes with detailed mechanisms. Keywords: biosynthesis; tetrapyrroles; hemes; chlorophylls; eumelanins; pheomelanins; allomelanins; betalains; betax- anthins; betacyanins; benzoquinones; naphthoquinones; anthraquinones Natural pigments are coloured substances syn- noids. Despite their varied structures, all of them thesised, accumulated in or excreted from living are synthesised by only a few biochemical path- or dying cells. The pigments occurring in food ways. There are also groups of pigments that defy materials become part of food, some other pig- simple classification and pigments that are rare ments have been widely used in the preparation or limited in occurrence. of foods and beverages as colorants for centuries. Many foods also owe their colours to pigments that 1 TETRAPYRROLES form in food materials and foods during storage and processing as a result of reactions between food Tetrapyrroles (tetrapyrrole pigments) represent a constituents, notably the non-enzymatic browning relatively small group of pigments that contribute reaction and the Maillard reaction. Furthermore, the greatest range of colours and are, at the same many artificial colorants have been used to improve time, the most abundant globally. All are based on the colour of foods. the same structure in which the pyrrole-derived Almost all biological pigment structures can rings A, B, C, and D (Figure 1) are joined into be reduced to no more than a few major classes. tetrapyrrole by one-carbon unit links (methine The most important chromophores of biological bridges) between the pyrrole rings α position pro- pigments are N-heterocyclic compounds, O-hete- viding a chromophore with a system of conjugated rocyclic compounds, quinones, and tetraterpe- double bonds. Tetrapyrroles occur either in their Partly supported by the Ministry of Education, Youth and Sports of the Czech Republic (Project No. MSM 6046137305). 291 Vol. 25, No. 6: 291–315 Czech J. Food Sci. 5 7 3 5 7 3 4 6 4 6 8 2 A B 8 2 A B NN 1 NH N 9 1 H 9 2 3 7 8 12 13 17 18 21 22 10 20 10 20 24 23 A B 19 11 1 C D 19 19 11 N HN 6 N H N N 4 N 9 11 N 14 16 N 18 D C 12 18 14 C 12 5 10 15 D H 16 13 17 16 14 13 17 15 E 15 2 1 13 13 basic structure of bilins basic structure of porphyrins basic structure of chlorophylls Figure 1 linear form (sometimes bound to sugars), which are of the tetrapyrrole molecule itself and relatively known as bile pigments or bilins or in the cyclic little by the metal (Gross 1987, 1991; Hendry & forms based on a macrocyclic tetrapyrrole, which Houghton 1992). is known as porphyrin1 (IUPAC 2007). The tetrapyrroles are mostly classified according 1.1 Porphyrins to their occurrence in nature. The linear bilins com- prise two groups of pigments, phycobilins and bile The biosynthesis of porphyrins requires the pigments. The first group comprises the pigments availability of a suitable amino acids and its con- of some algae, the second group are the typical stituent nitrogen to yield the building block of pigments of animal urine and faeces (formed by all tetrapyrroles in nature. This building block, the breakdown of heme pigments). The porphyrin 5-aminolevulinic (δ-aminolevulinic or 5-ami- based pigments constitute the chromophore of no-4-oxopentanoic) acid is sinthesised via a dif- two most important metalloproteins, i.e. red heme ferent pathway in animal cells, lower plants, and pigments (hemes) chelated with iron, and green bacteria that in green plants. chlorophyll pigments (chlorophylls) chelated with In animal cells, 5-aminolevulinic acid biosyn- magnesium2. The basic structure (IUPAC 2007) of thesis involves two steps. The first step is the the majority of chlorophylls represents the cyclic biosynthesis of succinyl-CoA from succinic acid tetrapyrrole, i.e. 17,18-dihydroporphyrin, with and HS-CoA under the catalysis of succinyl coen- partially reduced ring D and the fifth ring (ring E) zyme A synthetase (ADP forming, also known as formed by cyclisation of one of the propionic succinate thiokinase, EC 6.2.1.5). The second step acid side chains attached at C-13 (Figure 1). The is the condensation of glycine with succinyl-CoA colour of the particular cyclic tetrapyrrole is de- to l-2-amino-3-oxoadipic acid by the pyridoxal termined largely by the structure and substitutions phosphate-containing enzyme 5-aminolevulinate 1The 1–24 numbering system upon which the numbering system for corrinoids is based was adopted for the porphyrin nucleus shown in Figure 1. The 2,3,7,8,12,13,17, and 18 positions have commonly been referred to generically as β-positions (i.e. of the pyrrole rings). Similarly, positions at 1,4,6,9,11,14,16, and 19 have been referred to generically as α-positions, while those at 5,10,15, and 20 are referred to generically as meso-positions (IUPAC 2007). 2Aside from its importance as the prosthetic group of hemoglobin (the respiratory pigment in red blood cells of ver- tebrates) and myoglobin (the pigment in muscle fibers), hemes are also the prosthetic groups of a small number of enzymes, such as detoxifying cytochromes and cytochromes (Voet & Voet 1990). Chlorophylls are found in most plants, algae, and cyanobacteria. Their molecules in Eucaryota are specifically arranged in and around pigment protein complexes called photosystems, which are embedded in the thylakoid membranes of chloroplasts. Thylakoid membranes are a phospholipid bilayer membrane-bound compartment internal to chloro- plasts, and represent the majority of its internal structure. Chloroplasts like all other plastids (including chromoplasts and leucoplasts), are organelles found in the photosynthetic eukaryotic species. Chromoplasts are responsible for the pigment synthesis and storage, they mainly store carotenoids but also other pigments. In chloroplasts, some carotenoids are also used as accessory pigments in photosynthesis. Leucoplasts are non-pigmented and predictably located in roots and non-photosynthetic tissues of plants. They may become specialised for bulk storage of starch, lipid or protein and are then known as amyloplasts, elaioplasts, or proteinoplasts, respectively (Gross 1987, 1991; Hendry & Houghton 1992). 292 Czech J. Food Sci. Vol. 25, No. 6: 291–315 HOOC COOH succinic acid HS-CoA + ATP EC 6.2.1.5 ADP + P HS CoA CO2 O O O HOOC + CoA HOOC H2N S COOH COOH COOH NH2 EC 2.3.1.37 EC 2.3.1.37 NH2 glycine succinyl-CoA L-2-amino-3-oxoadipic acid 5-aminolevulinic acid Figure 2 synthase (EC 2.3.1.37) (Figure 2). l-2-Amino-3-oxo- acid to transfer RNA (tRNAGlu). In the second adipic acid eliminates carbon dioxide and yields reaction, the glutamyl-tRNA complex is converted 5-aminolevulinic acid, which is then exported to to a glutamic acid 1-semialdehyde by glutamate- cytoplasm for further metabolism (IUBMB 2007; tRNA reductase (EC 1.2.1.70). Using pyridoxamine Bergfeld et al. 2003). 5'-phosphate as a cofactor, glutamate 1-semialde- In green plants, 5-aminolevulinic acid is formed hyde 2,1-aminomutase (glutamate semialdehyde from l-glutamic acid in three reactions (Figure 3). aminotransferase, EC 5.4.3.8) converts glutamic In the first reaction, glutamate-tRNA ligase acid 1-semialdehyde to 5-aminolevulinic acid via (EC 6.1.1.17) catalyses the ligation of glutamic 4,5-diaminopentanoic acid (IUBMB 2007). Glu Glu NADP + tRNA ATP + tRNA AM P +PP NADPH + H O O HOOC HOOC HOOC COOH tRNA H EC 1.2.1.70 NH NH2 2 NH2 EC 6.1.1.7 Glu L-glutamic acid 1-semialdehyde L-glutamic acid Glu-tRNA H2N EC 5.4.3.8 OH NH 2 NH2 NH2 PO H HOOC HOOC HOOC N CH3 HN HN HN H pyridoxamine-5´-phosphate (bound non-covalently OH OH OH to the enzyme) PO PO PO NCH 3 N CH3 N CH3 H H H O NH2 H N H2N 2 COOH COOH 4,5-diaminopentanoic acid 5-aminolevulinic acid COOH COOH COOH H N H2N H2N 2 H HN HN HN H HN OH OH OH OH PO PO PO PO NCH NCH 3 NCH3 N CH3 3 H H H H pyridoxal 5´-phosphate (bound as an aldimine to a Lys residue of the enzyme) Figure 3 293 Vol. 25, No. 6: 291–315 Czech J. Food Sci. The next three steps of porphyrin biosynthesis In the pathway leading to porphyrins, uropor- follow those of vitamin B12 coenzyme (adenosylco- phyrinogen decarboxylase (uroporphyrinogen balamin) pathway. These steps (Figure 4) start with decarboxylase, EC 4.1.1.37) catalyses decarboxyla- the condensation of two 5-aminolevulinic acids tion of the acetic acid residues attached to C-2, to form porphobilinogen (aminolevulinate dehy- C-7, C-12, and C-18 of uroporphyrinogen III to dratase or porphobilinogen synthase, EC 4.2.1.24), yield coproporphyrinogen III also known as copro- four porphobilinogens are converted to hy- gen III (Figure 4).
Recommended publications
  • 1 Introduction
    Introduction 1 1 Introduction Tetrapyrroles belong to a group of molecules with a common structure. They are synthesized in a branched pathway, in which various end products are formed to different amounts. The most abundant cyclic tetrapyrroles are chlorophyll (Chl) and heme, which are characterized by a chelated magnesium and ferrous ion, respectively. Chlorophyll is involved in light absorption and energy transduction during photosynthesis. Heme is a cofactor of hemoglobin, cytochromes, P450 mixed-function oxygenases, and catalases. Other members of the class of tetrapyrroles include siroheme (the prosthetic group of nitrite and sulphite reductases) and phytochromobilin, the chromophore of phytochrome, which is involved in light perception. Tetrapyrrole biosynthesis has been the subject of numerous studies over several decades. But genetic and biochemical characterization of tetrapyrrole biosynthesis has progressed by using approaches to genetically dissect the tetrapyrrole biosynthetic pathway. Pigment-deficient mutants and antisense technology have proved to be useful for examining the mechanisms of metabolic control or for analyzing biochemically the enzymatic steps which are affected by the mutation or by the antisense RNA expression. Tetrapyrrole intermediates are highly photoreactive. They can easily be excited and transfer the energy or electrons to O2. Then reactive oxygen species (ROS) are produced upon exposure to light and oxygen. Under normal growth conditions the risk of photooxidative damage from intermediates in tetrapyrrole biosynthesis is low. Excessive accumulation of such intermediates is the result of deregulation of tetrapyrrole biosynthesis. Toxic effects of porphyrins are evident in human patients with deficiencies of one of the enzymes of heme biosynthesis. These patients are suffering from metabolic diseases, which are called porphyrias (Moore, 1993).
    [Show full text]
  • Opuntia Dillenii (Ker-Gawl) Haw
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2015; 7(6); 1101-1110 ISSN: 0975-4873 Research Article Pectin and Isolated Betalains from Opuntia dillenii (Ker-Gawl) Haw. Fruit Exerts Antiproliferative Activity by DNA Damage Induced Apoptosis Pavithra K1, Sumanth, M S2, Manonmani,H K2, ShashirekhaM N1* 1Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute Mysore -570 020, Karnataka, India 2Food Protectants and Infestation Control, CSIR-Central Food Technological Research Institute, Mysore -570 020, Karnataka, India Available Online: 11th October, 2015 ABSTRACT In India, nearly three million patients are suffering from Cancer. There is an alarming increase in new cancer cases and every year ~ 4.5 million people die from cancer in the world. In recent years there is a trend to adopt botanical therapy that uses many different plant constituents as medicine. One plant may be able to address many problems simultaneously by stimulating the immune system to help fight off cancer cells. There appears to be exceptional and growing public enthusiasm for botanical or "herbal" medicines, especially amongst cancer patients. In present study, we studied the in vitro anticancer properties of various fractions of cactus Opuntia dillenii (Ker-Gawl) Haw.employing Erlich ascites carcinoma (EAC) cell lines. The EAC cells when treated with fractions of O. dillenii showed apoptosis that was further confirmed by fluorescent and confocal microscopy. In addition, Cellular DNA content was determined by Flow cytometric analysis, wherein pigment treated cells exhibited 78.88 % apoptosis while pulp and pectin treated cells showed 39 and 38% apoptosis respectively. Tunnel assay was carried out to detect extensive DNA degradation in late stages of apoptosis.
    [Show full text]
  • Crystal Structure of Uroporphyrinogen III Synthase from Pseudomonas Syringae Pv. Tomato DC3000
    Biochemical and Biophysical Research Communications 408 (2011) 576–581 Contents lists available at ScienceDirect Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc Crystal structure of uroporphyrinogen III synthase from Pseudomonas syringae pv. tomato DC3000 ⇑ Shuxia Peng a,b, Hongmei Zhang a, Yu Gao a, Xiaowei Pan a, Peng Cao a, Mei Li a, Wenrui Chang a, a National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, PR China b Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China article info abstract Article history: Uroporphyrinogen III synthase (U3S) is one of the key enzymes in the biosynthesis of tetrapyrrole com- Received 11 April 2011 pounds. It catalyzes the cyclization of the linear hydroxymethylbilane (HMB) to uroporphyrinogen III Available online 19 April 2011 (uro’gen III). We have determined the crystal structure of U3S from Pseudomonas syringae pv. tomato DC3000 (psU3S) at 2.5 Å resolution by the single wavelength anomalous dispersion (SAD) method. Each Keywords: psU3S molecule consists of two domains interlinked by a two-stranded antiparallel b-sheet. The confor- Uroporphyrinogen III synthase mation of psU3S is different from its homologous proteins because of the flexibility of the linker between Crystal structure the two domains, which might be related to this enzyme’s catalytic properties. Based on mutation and Mutation activity analysis, a key residue, Arg219, was found to be important for the catalytic activity of psU3S. Enzymatic activity Tetrapyrroles Mutation of Arg219 to Ala caused a decrease in enzymatic activity to about 25% that of the wild type enzyme.
    [Show full text]
  • Introduction
    Benthic Microalgae and Nutrient Flux in Florida Bay, USA by Merrie Beth Neely A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy College of Marine Science University of South Florida Co-Major Professor: Gabriel A. Vargo, Ph.D. Co-Major Professor: Kent A. Fanning, Ph.D. Paul R. Carlson, Ph.D. Peter Howd, Ph.D. Karen Steidinger, Ph.D. Laura Yarbro, Ph.D. Date of Approval: November 20, 2008 Keywords: phosphorus, nitrogen, chlorophyll, mesocosm, microphytobenthos © Copyright 2008, Merrie Beth Neely Acknowledgements Portions of this project were funded by: USDOC/NOAA Award # NA06OP0519 to Dr. Gabriel A. Vargo and Dr. Gary L. Hitchcock (PI‟s) and a Florida Institute of Oceanography Student Grant in Aid to Merrie Beth Neely and Jennifer Jurado. Special thanks go to the Keys Marine Laboratory Staff; Jennifer Jurado, Gary Hitchcock, and Chris Kelble from the University of Miami; Dr. Rob Masserini, USF College of Marine Science; and Bill Sargeant and Dr. Cynthia Heil, Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute; the Florida Institute of Oceanography SEAKEYS buoy system; Dr. Carmelo Tomas and Dr. Larry Cahoon, University of North Carolina,Wilmington. i Table of Contents List of Tables .................................................................................................................... vi List of Figures ................................................................................................................. viii Chapter 1. Benthic
    [Show full text]
  • TION of BUCKWHEAT. It Has Been Known for a Long Time That Certain
    PHOTOSENSITIZATION OF ANIMALS AFTER THE INGES- TION OF BUCKWHEAT. BY CHARLES SHEARD, PH.D., HAROLD D. CAYLOR, M.D., AND CARL SCHLOTTHAUER, D.V.M. (From tke Section on Pkysics and Biophysical Research, tke Section on Surgical Pathology, and the Division of Experimental Palhdogy and Surgery, Mayo Clinic and The Mayo Foundation, Rochester, Minnesota.) (Received for publication,~'March 1, 1928.) It has been known for a long time that certain animals, following the ingestion of various substances, are rendered sensitive to certain types of radiant energy. The present study covers biologic and physical observations on the degree of sensitization, the character of the sensitizing light and the nature of the photodynamic substance of buckwheat. White rabbits, mice, rats, goats, swine, dogs and varicolored guinea pigs were studied. Sunlight, carbon arc lamp (Efka or Hoffman) with Conradty-Norris vacuum carbon electrodes and quartz mercury vapor arcs (Victor X-Ray Corporation), both with and without various filters, were employed for irradiation. All of these sources contain infra-red, visible and ultra-violet radiations. I~SLr~ OF LITERATURE. Considerable literature, especially European, has appeared on the subject of diseases in animals and man brought about by optical sensitization. Somewhat detailed accounts of the contributions relative to diseases due to exogenous sensi- tization are to be found in the brochures by Hausmann and by Mayer. Years ago European stockmen found that in certain animals which had ingested buckwheat (plant or seed), erythema, itching, edema and convulsions developed and, in many cases, paralysis and death, on exposure to out-of-door sunshine. However, untoward symptoms did not arise if the animals were kept indoors or in partial darkness and they recovered from the sensitization induced by eating certain plants if they were removed from the light early in the onset of the symp- toms.
    [Show full text]
  • Hexachlorocyclohexane Dehydrochlorinase Lina
    PROTEINS:Structure,Function,andGenetics45:471–477(2001) IdentificationofProteinFoldandCatalyticResiduesof␥- HexachlorocyclohexaneDehydrochlorinaseLinA YujiNagata,1* KatsukiMori,2 MasamichiTakagi,2 AlexeyG.Murzin,3 andJirˇı´Damborsky´ 4 1GraduateSchoolofLifeSciences,TohokuUniversity,Sendai,Japan 2DepartmentofBiotechnology,TheUniversityofTokyo,Tokyo,Japan 3 CentreforProteinEngineering,MedicalResearchCouncilCentre,Cambridge,UnitedKingdom 4NationalCentreforBiomolecularResearch,MasarykUniversity,Brno,CzechRepublic ABSTRACT ␥-Hexachlorocyclohexanedehy- tion.Infact,wehaverevealedthatthreedifferenttypesof drochlorinase(LinA)isauniquedehydrochlorinase dehalogenases,dehydrochlorinaseLinA,4,5 halidohydro- thathasnohomologoussequenceattheaminoacid- laseLinB,6,7 andreductivedehalogenaseLinD,8 arese- sequencelevelandforwhichtheevolutionaryori- quentiallyinvolvedinthedegradationof␥-HCHinUT26.9 ginisunknown.WehereproposethatLinAisa Amongthesethreedehalogenases,LinAisthoughttobea memberofanovelstructuralsuperfamilyofpro- uniquedehydrochlorinase,basedonthefailureofFASTA 5 teinscontainingscytalonedehydratase,3-oxo-⌬ - andBLASTdatabasesearchestofindanysignificantly steroidisomerase,nucleartransportfactor2,and homologoussequencestothelinAgene.4 Thus,theorigin the␤-subunitofnaphthalenedioxygenase—all ofthelinAgeneisofgreatinterest,butisstillunknown. knownstructureswithdifferentfunctions.Thecat- LinAcatalyzestwostepsofdehydrochlorinationfrom alyticandtheactivesiteresiduesofLinAarepre- ␥-HCHto1,3,4,6-tetrachloro-1,4-cyclohexadiene(1,4- dictedonthebasisofitshomologymodel.Ninemu-
    [Show full text]
  • Hyperbilirubinemia
    Porphyrins Porphyrins (Porphins) are cyclic tetrapyrol compounds formed by the linkage )). of four pyrrole rings through methenyl bridges (( HC In the reduced porphyrins (Porphyrinogens) the linkage of four pyrrole rings (tetrapyrol) through methylene bridges (( CH2 )) The characteristic property of porphyrins is the formation of complexes with the metal ion bound to nitrogen atoms of the pyrrole rings. e.g. Heme (iron porphyrin). Proteins which contain heme ((hemoproteins)) are widely distributed e.g. Hemoglobin, Myoglobin, Cytochromes, Catalase & Tryptophan pyrrolase. Natural porphyrins have substituent side chains on the eight hydrogen atoms numbered on the pyrrole rings. These side chains are: CH 1-Methyl-group (M)… (( 3 )) 2-Acetate-group (A)… (( CH2COOH )) 3-Propionate-group (P)… (( CH2CH2COOH )) 4-Vinyl-group (V)… (( CH CH2 )) Porphyrins with asymmetric arrangement of the side chains are classified as type III porphyrins while those with symmetric arrangement of the side chains are classified as type I porphyrins. Only types I & III are present in nature & type III series is more important because it includes heme. 1 Heme Biosynthesis Heme biosynthesis occurs through the following steps: 1-The starting reaction is the condensation between succinyl-CoA ((derived from citric acid cycle in the mitochondria)) & glycine, this reaction is a rate limiting reaction in the hepatic heme synthesis, it occurs in the mitochondria & is catalyzed by ALA synthase (Aminolevulinate synthase) enzyme in the presence of pyridoxal phosphate as a cofactor. The product of this reaction is α-amino-β-ketoadipate which is rapidly decarboxylated to form δ-aminolevulinate (ALA). 2-In the cytoplasm condensation reaction between two molecules of ALA is catalyzed by ALA dehydratase enzyme to form two molecules of water & one 2 molecule of porphobilinogen (PBG) which is a precursor of pyrrole.
    [Show full text]
  • Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics
    toxins Article Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics Bryan John J. Subong 1,2,* , Arturo O. Lluisma 1, Rhodora V. Azanza 1 and Lilibeth A. Salvador-Reyes 1,* 1 Marine Science Institute, University of the Philippines- Diliman, Velasquez Street, Quezon City 1101, Philippines; [email protected] (A.O.L.); [email protected] (R.V.A.) 2 Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-8654, Japan * Correspondence: [email protected] (B.J.J.S.); [email protected] (L.A.S.-R.) Abstract: Alexandrium minutum and Alexandrium tamutum are two closely related harmful algal bloom (HAB)-causing species with different toxicity. Using isobaric tags for relative and absolute quantita- tion (iTRAQ)-based quantitative proteomics and two-dimensional differential gel electrophoresis (2D-DIGE), a comprehensive characterization of the proteomes of A. minutum and A. tamutum was performed to identify the cellular and molecular underpinnings for the dissimilarity between these two species. A total of 1436 proteins and 420 protein spots were identified using iTRAQ-based proteomics and 2D-DIGE, respectively. Both methods revealed little difference (10–12%) between the proteomes of A. minutum and A. tamutum, highlighting that these organisms follow similar cellular and biological processes at the exponential stage. Toxin biosynthetic enzymes were present in both organisms. However, the gonyautoxin-producing A. minutum showed higher levels of osmotic growth proteins, Zn-dependent alcohol dehydrogenase and type-I polyketide synthase compared to the non-toxic A. tamutum. Further, A. tamutum had increased S-adenosylmethionine transferase that may potentially have a negative feedback mechanism to toxin biosynthesis.
    [Show full text]
  • What Pigments Are in Plants?
    BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD WHAT PIGMENTS ARE IN PLANTS? Pigments Pigments are chemical compounds responsible for color in a range of living substances and in the inorganic world. Pigments absorb some of the light they receive, and so reflect only certain wavelengths of visible light. This makes them appear "colorful.” Cave paintings by early man show the early use of pigments, in a limited range from straw color to reddish brown and black. These colors occurred naturally in charcoals, and in mineral oxides such as chalk and ochre. The WebExhibit on Pigments has more information on these early painting palettes. Many early artists used natural pigments, but nowadays they have been replaced by cheaper and less toxic synthetic pigments. Biological Pigments Pigments are responsible for many of the beautiful colors we see in the plant world. Dyes have often been made from both animal sources and plant extracts . Some of the pigments found in animals have also recently been found in plants. Website: www.bestextractionmachine.com Email: [email protected] Tel: +86 372 5965148 Fax: +86 372 5951936 Mobile: ++86 8937276399 BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD Major Plant Pigments White Bird Of Paradise Tree Bilirubin is responsible for the yellow color seen in jaundice sufferers and bruises, and is created when hemoglobin (the pigment that makes blood red) is broken down. Recently this pigment has also been found in plants, specifically in the orange fuzz on seeds of the white Bird of Paradise tree. The bilirubin in plants doesn’t come from breaking down hemoglobin.
    [Show full text]
  • RLIN1, Encoding a Putative Coproporphyrinogen III Oxidase, Is Involved in Lesion Initiation in Rice
    Available online at www.sciencedirect.com Journal of Genetics and Genomics 38 (2011) 29e37 www.jgenetgenomics.org RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice Changhui Sun a,b,d,1, Linchuan Liu b,c,1, Jiuyou Tang b, Aihong Lin b,c, Fantao Zhang b,d, Jun Fang b, Genfa Zhang a,*, Chengcai Chu a,b,c,* a Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China b The State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China c Graduate School of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China d Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China Received 11 October 2010; revised 17 October 2010; accepted 20 October 2010 Abstract Lesion mimic is necrotic lesions on plant leaf or stem in the absence of pathogenic infection, and its exact biological mechanism is varied. By a large-scale screening of our T-DNA mutant population, we identified a mutant rice lesion initiation 1 (rlin1), which was controlled by a single nuclear recessive gene. Map-based cloning revealed that RLIN1 encoded a putative coproporphyrinogen III oxidase in tetrapyrrole biosynthesis pathway. Sequencing results showed that a G to T substitution occurred in the second exon of RLIN1 and led to a missense mutation from Asp to Tyr. Ectopic expression of RLIN1 could rescue rlin1 lesion mimic phenotype.
    [Show full text]
  • Changes in Physical Properties and Chemical Composition
    Health Benefits and Bioactive Components of the Fruits from Opuntia ficus-indica [L.] Mill.♦ Maria A. Livrea* and Luisa Tesoriere Dipartimento Farmacochimico Tossicologico e Biologico, Università di Palermo Via Michele Cipolla 74, 90128 Palermo. Italy *corresponding author [email protected] ABSTRACT The health-promoting properties of edible fruits from Opuntia ficus-indica have been the object of recent interest. Scientific evidence has been provided about benefits from the consumption of the fruits in humans, with special attention to the non-nutritive components as potentially active antioxidant phytochemicals. Information about bioavailability and bioactivity of betalains, mode of action as antioxidants in cells, and other biological models are now available. The use of cactus pear components as nutraceuticals and functional food is discussed. Keywords: Opuntia ficus-indica, edible cactus, betanin, indicaxanthin, betalains, health benefits, in vivo, in vitro, natural oxidants, free-radical scavengers 1. INTRODUCTION An equilibrated life-style, a balanced diet, no smoking, and moderate physical activity are fundamental for maintaining a healthy status. Importantly, epidemiological evidence has been provided that various age-related pathologies, including cardiovascular diseases, cancer and neurodegenerative disorders have a minor incidence among people usually consuming a traditional Mediterranean-style diet, rich in fruit and vegetables (Ames et al., 1993; Lampe, 1999; Lee et al., 2004; Rice-Evans and Miller, 1985). Since these diseases
    [Show full text]
  • Effects of Spermine and Putrescine Polyamines on Capsaicin Accumula- Tion in Capsicum Annuum L
    doi:10.14720/aas.2020.115.2.1199 Original research article / izvirni znanstveni članek Effects of spermine and putrescine polyamines on capsaicin accumula- tion in Capsicum annuum L. cell suspension cultures Esra KOÇ 1, 2, Cemil İŞLEK 3, Belgizar KARAYİĞİT 1 Received June 25, 2019; accepted April 11, 2020. Delo je prispelo 25. junija 2019, sprejeto 11. aprila 2020 Effects of spermine and putrescine polyamines on capsaicin Učinki poliaminov spermina in putrescina na akumulacijo accumulation in Capsicum annuum L. cell suspension cul- kapsaicina v suspenzijski kulturi celic paprike Capsicum an- tures nuum L. Abstract: This study examined the effects of different con- Izvleček: V raziskavi so bili preučevani učinki različnih centrations of spermine (Spm) and putrescine (Put) elicitors on koncentracij spermina (Spm) in putrescina (Put) kot elicitorjev capsaicin production at different times in cell suspension cul- na tvorbo kapsaicina v različnih časovnih intervalih v suspen- ture of peper (Capsicum annuum L‘Kahramanmaraş Hat-187’.), zijski celični kulturi paprike (Capsicum annuum ‘Kahramanma- raised from pepper seeds. Callus was obtained from hypocotyl raş Hat-187’. Kalus je bil pridobljen iz izsečkov hipokotila kalic explants of pepper seedlings germinated in vitro conditions, paprike, ki je vzkalila v in vitro razmerah, celične suspenzije so and cell suspensions were prepared from calluses. Spm (0.1, 0.2 bile pripravljene iz kalusov. Spm (0,1; 0,2 in 0,4 mg l-1) in Put -1) and Put (0.1, 0.2 and 0.4 mg l-1) elicitors were ap- and 0.4 mg l (0,1; 0,2 in 0,4 mg l-1) sta bila dodajana kor elicitorja v celične plied on cell suspensions, and control groups free from elicitor suspenzije, hkrati so bile vzpostavljene kontrolne celične kul- treatment were created.
    [Show full text]