Polyketide Biosynthesis Beyond the Type I, II and III Polyketide Synthase Paradigms Ben Shen

Total Page:16

File Type:pdf, Size:1020Kb

Polyketide Biosynthesis Beyond the Type I, II and III Polyketide Synthase Paradigms Ben Shen 285 Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms Ben Shen Recent literature on polyketide biosynthesis suggests that Three types of bacterial PKSs are known to date. First, polyketide synthases have much greater diversity in both type I PKSs are multifunctional enzymes that are orga- mechanism and structure than the current type I, II and III nized into modules, each of which harbors a set of distinct, paradigms. These examples serve as an inspiration for searching non-iteratively acting activities responsible for the cata- novel polyketide synthases to give new insights into polyketide lysis of one cycle of polyketide chain elongation, as biosynthesis and to provide new opportunities for combinatorial exemplified by the 6-deoxyerythromycin B synthase biosynthesis. (DEBS) for the biosynthesis of reduced polyketides (i.e. macrolides, polyethers and polyene) such as erythro- Addresses mycin A (1)(Figure 1a) [1]. Second, type II PKSs are Division of Pharmaceutical Sciences and Department of Chemistry, multienzyme complexes that carry a single set of iteratively University of Wisconsin, Madison, WI 53705, USA acting activities, as exemplified by the tetracenomycin e-mail: [email protected] PKS for the biosynthesis of aromatic polyketides (often polycyclic) such as tetracenomycin C (2)(Figure 1b) [2]. Current Opinion in Chemical Biology 2003, 7:285–295 Third, type III PKSs, also known as chalcone synthase- like PKSs, are homodimeric enzymes that essentially are This review comes from a themed section on iteratively acting condensing enzymes, as exemplified by Biocatalysis and biotransformation Edited by Tadhg Begley and Ming-Daw Tsai the RppA synthase for the biosynthesis of aromatic poly- ketides (often monocyclic or bicyclic), such as flavolin (3) 1367-5931/03/$ – see front matter (Figure 1c) [3]. Type I and II PKSs use acyl carrier protein ß 2003 Elsevier Science Ltd. All rights reserved. (ACP) to activate the acyl CoA substrates and to channel DOI 10.1016/S1367-5931(03)00020-6 the growing polyketide intermediates, whereas type III PKSs, independent of ACP, act directly on the acyl CoA substrates. Despite structural and mechanistic differ- Abbreviations ACP acyl carrier protein ences, all types of PKSs biosynthesize polyketides by AT acyl transferase sequential decarboxylative condensation of the acyl CoA DEBS 6-deoxyerythromycin B synthase precursors, and the ketoacyl synthase (KS) domain (for DH dehydratase type I PKSs) or subunit (for type II and III PKSs) KR ketoreductase KS ketoacyl synthase catalyzes the C–C bond-forming step. NRPS nonribosomal peptide synthetase PKS polyketide synthase Since the first reports of bacterial type I PKS in 1990 [4,5], TD terminal domain type II PKS in 1984 [6,7], and type III PKS in 1999 [8], the PKS paradigms have served the scientific community beyond the call of duty, providing the molecular basis Introduction to explain the vast structural diversity observed with Polyketides are a large family of natural products found in polyketide natural products, and the biotechnological bacteria, fungi and plants, and include many clinically platform to produce ‘unnatural’ natural products by com- important drugs such as tetracycline, daunorubicin, ery- binatorial biosynthesis methods with engineered PKSs. thromycin, rapamycin and lovastatin. They are biosynthe- As the field stumbles into its adolescence, how much do sized from acyl CoA precursors by polyketide synthases we really know about polyketide biosynthesis? Here, (PKSs). Much of the current research on polyketide selected examples from recent literature are presented biosynthesis is driven by: first, the unparalleled biological to argue that PKSs have much greater diversity in both activities and enormous commercial value of these natural mechanism and structure than the currently well appre- products, which remain the most successful candidates for ciated type I, II and III paradigms. These examples serve new drug discovery; second, the extraordinary structure, as an inspiration in searching for novel PKSs, both to give mechanism and catalytic reactivity of PKSs that provide new insights into polyketide biosynthesis and to provide an unprecedented opportunity to investigate the mole- new opportunities for combinatorial biosynthesis. cular mechanisms of enzyme catalysis, molecular recog- nition and protein–protein interaction; and third, the Iterative type I PKSs for aromatic polyketide remarkable versatility and amenability of PKSs that allow biosynthesis the generation of novel compounds, difficult to access by Although aromatic polyketide biosyntheses in fungi are other means, by combinatorial biosynthesis methods. catalyzed by iterative type I PKSs, as exemplified by the www.current-opinion.com Current Opinion in Chemical Biology 2003, 7:285–295 286 Biocatalysis and biotransformation Figure 1 (a) Type I PKS (noniterative) Loading PKS PKS PKS PKS (module-1) (module-2) (module-3) (module-4) (module-4) AT ACP KS AT KR ACP KS AT ACP KS AT KR DH ACP KS AT KR DH ACP S S S S O O O O S R R O O O OH O O O O O O O O CoAS OH DEBS OH OH + N OO HO HO − CoA (7 x) O OH O O O CoAS O − CO2 (6 x) OOH OOOCH3 (10 x) OH O 1 (b) Type II PKS (iterative) KSα KSβ ACP KSα KSβ ACP x y x y S S SH S O O O R z O O O R O O O OH O OO O O HO OH OH TcmKLM H3CCHOO3 CoAS O S-Enz OH OCH3 (10 x) − O − CO CoA OOOCHO 2 OH OH OH CH O OH 3 − 3 O O OH CH O − CO2 H2O 3 (10 x) (4 x) 2 (c) Type III PKS (ACP-independent & iterative) CoA CoA KS KS n n S S S O SH O O m O O O O O O S-Enz O OH OH OH O O OO RppA O CoAS O O O HO OH HO OH − O − CO (5 x) CoA (5 x) 2 O − − CO2 (4 x) H2O 3 Current Opinion in Chemical Biology Current Opinion in Chemical Biology 2003, 7:285–295 www.current-opinion.com Polyketide biosynthesis beyond the current paradigms Shen 287 6-methylsalicyclic acid synthase, the paradigm for aro- finding of NcsB from the neocarzinostatin (7) biosyn- matic polyketide biosyntheses in bacteria is the iterative thetic gene cluster suggests that bacterial iterative type I type II PKS (Figure 1b) [2]. However, because most of PKSs are not limited to monocyclic aromatic polyketide the type II PKSs studied so far were cloned according to biosynthesis and could catalyse the biosynthesis of the type II PKS paradigm, caution has to be taken to higher-order aromatic polyketides, such as the naphtha- generalize type II PKSs for aromatic polyketide biosynth- linic acid moiety of 7 (hexaketide) (Figure 2a). In fact, esis in bacteria. Bechthold and co-workers cloned the first early attempts to clone the ncs biosynthetic gene cluster iterative type I PKS, AviM, for aromatic polyketide for 7 on the assumption that its naphthalinic acid moiety is biosynthesis in bacteria in 1997 [9]. The aviM gene biosynthesized by a type II PKS failed, and, retrospec- was discovered from the avilamycin (4; Figure 2a) bio- tively, this approach cannot be successful because the ncs synthetic gene cluster that was cloned from Streptomyces cluster harbors no type II PKS gene. We succeeded in viridochromogens Tu¨ 57 using a deoxysugar biosynthetic cloning the ncs gene cluster by chromosomal walking from gene as a probe. AviM has the characteristic type I PKS the ncsA gene that encodes the neocarzinostatin apo- domains of KS, acyl transferase (AT), dehydratatse (DH), protein [12]. Two PKS genes were identified within and ACP (Figure 2b). Because the orsellinic acid moiety the ncs gene cluster. One of them, ncsB, encodes a type I is the only structural element in 4 that could be of PKS consisting of the characteristic KS, AT, DH, ketor- polyketide origin (Figure 2a), Bechthold and co-workers eductase (KR) and ACP domains (Figure 2d). In a expressed aviM in Streptomyces lividans TK24 and Strep- mechanistic analogy to AviM and CalO5, NcsB could tomyces coelicolour CH999 to verify if AviM can catalyzes be envisaged as catalysing the biosynthesis of naphtha- orsellinic acid (5) biosynthesis in vivo. Production of 5 was linic acid (8) from the acyl CoA precursors in an iterative observed in both hosts, confirming AviM as an orsellinic process, with an exception of regiospecific reduction at acid synthase that catalyzes aromatic polyketide bio- C-6 by the KR domain (Figure 2e). This hypothesis is synthesis from the acyl CoA precursors in an iterative consistent with the remarkable homology in both amino process (Figure 2c). Ironically, AviM was treated more as acid sequence and domain organization among NcsB, an exception to the type II PKS paradigm than as an AviM and CalO5. NcsB, therefore, represents the third indication that aromatic polyketide biosynthesis in bac- example of bacterial iterative type I PKSs for aromatic teria could be catalyzed by iterative type I PKS. polyketide biosynthesis. Thorson and co-workers [10] recently cloned the cali- Iterative type I PKSs for enediyne cheamicin (6) biosynthetic gene cluster from Micromonos- biosynthesis pora echinospora ssp. calichensis by screening for genes The enediyne family of antibiotics is structurally char- conferring 6 resistance and subsequently sequenced acterized by the enediyne core, a unit consisting of two and characterized the cal cluster [11]. Two PKS genes, acetylenic groups conjugated to a double bond or inci- calE8 and calO5, were identified within the cluster, each pient double bond within a nine-membered ring (e.g. 7 of which is characteristic of type I PKS. There are two and C-1027 (9)) or ten-membered ring (e.g. 6)(Figure 2a). structural elements within 6 that are of polyketide origin: Although feeding experiments with 13C-labeled precur- the enediyne core and the orsellinic acid moiety sors unambiguously established that both the nine- and (Figure 2a).
Recommended publications
  • Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics
    toxins Article Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics Bryan John J. Subong 1,2,* , Arturo O. Lluisma 1, Rhodora V. Azanza 1 and Lilibeth A. Salvador-Reyes 1,* 1 Marine Science Institute, University of the Philippines- Diliman, Velasquez Street, Quezon City 1101, Philippines; [email protected] (A.O.L.); [email protected] (R.V.A.) 2 Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-8654, Japan * Correspondence: [email protected] (B.J.J.S.); [email protected] (L.A.S.-R.) Abstract: Alexandrium minutum and Alexandrium tamutum are two closely related harmful algal bloom (HAB)-causing species with different toxicity. Using isobaric tags for relative and absolute quantita- tion (iTRAQ)-based quantitative proteomics and two-dimensional differential gel electrophoresis (2D-DIGE), a comprehensive characterization of the proteomes of A. minutum and A. tamutum was performed to identify the cellular and molecular underpinnings for the dissimilarity between these two species. A total of 1436 proteins and 420 protein spots were identified using iTRAQ-based proteomics and 2D-DIGE, respectively. Both methods revealed little difference (10–12%) between the proteomes of A. minutum and A. tamutum, highlighting that these organisms follow similar cellular and biological processes at the exponential stage. Toxin biosynthetic enzymes were present in both organisms. However, the gonyautoxin-producing A. minutum showed higher levels of osmotic growth proteins, Zn-dependent alcohol dehydrogenase and type-I polyketide synthase compared to the non-toxic A. tamutum. Further, A. tamutum had increased S-adenosylmethionine transferase that may potentially have a negative feedback mechanism to toxin biosynthesis.
    [Show full text]
  • N-Carbamoylation of 2,4-Diaminobutyrate Reroutes the Outcome in Padanamide Biosynthesis
    Chemistry & Biology Article N-Carbamoylation of 2,4-Diaminobutyrate Reroutes the Outcome in Padanamide Biosynthesis Yi-Ling Du,1 Doralyn S. Dalisay,1 Raymond J. Andersen,1,2 and Katherine S. Ryan1,* 1Department of Chemistry 2Department of Earth, Ocean and Atmospheric Sciences University of British Columbia, Vancouver, BC V6T 1Z1, Canada *Correspondence: [email protected] http://dx.doi.org/10.1016/j.chembiol.2013.06.013 SUMMARY literature. It is interesting that a compound identical to padana- mide A, named actinoramide A (Nam et al., 2011), was indepen- Padanamides are linear tetrapeptides notable for the dently reported from Streptomyces sp. CNQ-027. This actinomy- absence of proteinogenic amino acids in their struc- cete strain was isolated from sediment on the opposite side of the tures. In particular, two unusual heterocycles, (S)- Pacific Ocean, near San Diego, CA, suggesting a potentially wide 3-amino-2-oxopyrrolidine-1-carboxamide (S-Aopc) distribution of the padanamides/actinoramides. It is intriguing and (S)-3-aminopiperidine-2,6-dione (S-Apd), are that, whereas padanamide A and actinoramide A are identical, found at the C-termini of padanamides A and B, the minor compounds (actinoramides B and C) co-isolated from Streptomyces sp. CNQ-027 are unique (Figure 1A). Total respectively. Here we identify the padanamide synthesis of padanamides A and B was recently reported (Long biosynthetic gene cluster and carry out systematic et al., 2013), confirming the previous structural elucidations. gene inactivation studies. Our results show that The padanamides attracted our attention for their many padanamides are synthesized by highly dissociated unusual chemical features.
    [Show full text]
  • Keto Acid Dehydrogenase Gene Cluster
    JOURNAL OF BACTERIOLOGY, June 1995, p. 3504–3511 Vol. 177, No. 12 0021-9193/95/$04.0010 Copyright q 1995, American Society for Microbiology A Second Branched-Chain a-Keto Acid Dehydrogenase Gene Cluster (bkdFGH) from Streptomyces avermitilis: Its Relationship to Avermectin Biosynthesis and the Construction of a bkdF Mutant Suitable for the Production of Novel Antiparasitic Avermectins CLAUDIO D. DENOYA,* RONALD W. FEDECHKO, EDMUND W. HAFNER, HAMISH A. I. MCARTHUR, MARGARET R. MORGENSTERN, DEBORAH D. SKINNER, KIM STUTZMAN-ENGWALL, RICHARD G. WAX, AND WILLIAM C. WERNAU Bioprocess Research, Central Research Division, Pfizer Inc., Groton, Connecticut 06340 Received 22 February 1995/Accepted 10 April 1995 A second cluster of genes encoding the E1a,E1b, and E2 subunits of branched-chain a-keto acid dehydro- genase (BCDH), bkdFGH, has been cloned and characterized from Streptomyces avermitilis, the soil microor- ganism which produces anthelmintic avermectins. Open reading frame 1 (ORF1) (bkdF, encoding E1a), would encode a polypeptide of 44,394 Da (406 amino acids). The putative start codon of the incompletely sequenced ORF2 (bkdG, encoding E1b) is located 83 bp downstream from the end of ORF1. The deduced amino acid sequence of bkdF resembled the corresponding E1a subunit of several prokaryotic and eukaryotic BCDH complexes. An S. avermitilis bkd mutant constructed by deletion of a genomic region comprising the 5* end of bkdF is also described. The mutant exhibited a typical Bkd2 phenotype: it lacked E1 BCDH activity and had lost the ability to grow on solid minimal medium containing isoleucine, leucine, and valine as sole carbon sources. Since BCDH provides an a-branched-chain fatty acid starter unit, either S(1)-a-methylbutyryl coenzyme A or isobutyryl coenzyme A, which is essential to initiate the synthesis of the avermectin polyketide backbone in S.
    [Show full text]
  • Metabolic Engineering for Unusual Lipid Production in Yarrowia Lipolytica
    microorganisms Review Metabolic Engineering for Unusual Lipid Production in Yarrowia lipolytica Young-Kyoung Park * and Jean-Marc Nicaud Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)1-74-07-16-92 Received: 14 November 2020; Accepted: 2 December 2020; Published: 6 December 2020 Abstract: Using microorganisms as lipid-production factories holds promise as an alternative method for generating petroleum-based chemicals. The non-conventional yeast Yarrowia lipolytica is an excellent microbial chassis; for example, it can accumulate high levels of lipids and use a broad range of substrates. Furthermore, it is a species for which an array of efficient genetic engineering tools is available. To date, extensive work has been done to metabolically engineer Y. lipolytica to produce usual and unusual lipids. Unusual lipids are scarce in nature but have several useful applications. As a result, they are increasingly becoming the targets of metabolic engineering. Unusual lipids have distinct structures; they can be generated by engineering endogenous lipid synthesis or by introducing heterologous enzymes to alter the functional groups of fatty acids. In this review, we describe current metabolic engineering strategies for improving lipid production and highlight recent researches on unusual lipid production in Y. lipolytica. Keywords: Yarrowia lipolytica; oleochemicals; lipids; unusual lipids; metabolic engineering 1. Introduction Microbial lipids are promising alternative fuel sources given growing concerns about climate change and environmental pollution [1–4]. They offer multiple advantages over plant oils and animal fats. For example, the production of microbial lipids does not result in resource competition with food production systems; is largely independent of environmental conditions; can be based on diverse substrates; and allows product composition to be customized based on the desired application [3,4].
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Synthesis and Biosynthesis of Polyketide Natural Products
    Syracuse University SURFACE Chemistry - Dissertations College of Arts and Sciences 12-2011 Synthesis and Biosynthesis of Polyketide Natural Products Atahualpa Pinto Syracuse University Follow this and additional works at: https://surface.syr.edu/che_etd Part of the Chemistry Commons Recommended Citation Pinto, Atahualpa, "Synthesis and Biosynthesis of Polyketide Natural Products" (2011). Chemistry - Dissertations. 181. https://surface.syr.edu/che_etd/181 This Dissertation is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Chemistry - Dissertations by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract Traditionally separate disciplines of a large and broad chemical spectrum, synthetic organic chemistry and biochemistry have found in the last two decades a fertile common ground in the area pertaining to the biosynthesis of natural products. Both disciplines remain indispensable in providing unique solutions on numerous questions populating the field. Our contributions to this interdisciplinary pursuit have been confined to the biosynthesis of polyketides, a therapeutically and structurally diverse class of natural products, where we employed both synthetic chemistry and biochemical techniques to validate complex metabolic processes. One such example pertained to the uncertainty surrounding the regiochemistry of dehydration and cyclization in the biosynthetic pathway of the marine polyketide spiculoic acid A. The molecule's key intramolecular cyclization was proposed to occur through a linear chain containing an abnormally dehydrated polyene system. We synthesized a putative advanced polyketide intermediate and tested its viability to undergo a mild chemical transformation to spiculoic acid A. In addition, we applied a synthetic and biochemical approach to elucidate the biosynthetic details of thioesterase-catalyzed macrocyclizations in polyketide natural products.
    [Show full text]
  • Bio-Based Production of Fuels and Industrial Chemicals by Repurposing Antibiotic-Producing Type I Modular Polyketide Synthases: Opportunities and Challenges
    The Journal of Antibiotics (2017) 70, 378–385 & 2017 Japan Antibiotics Research Association All rights reserved 0021-8820/17 www.nature.com/ja REVIEW ARTICLE Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges Satoshi Yuzawa1, Jay D Keasling1,2,3,4,5,6 and Leonard Katz2 Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. We have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals. The Journal of Antibiotics (2017) 70, 378–385; doi:10.1038/ja.2016.136; published online 16 November 2016 INTRODUCTION complex polyketide is programmed by its cognate PKS, by the number Complex polyketides represent a family of natural products that and composition of modules. possess a wide variety of pharmacological or biological activities. Since the concept of modular polyketide biosynthesis was initially Numerous polyketides and their semisynthetic derivatives have been report by Katz and colleagues2 more than 25 years
    [Show full text]
  • Investigation and Engineering of Polyketide Biosynthetic Pathways
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2017 Investigation and Engineering of Polyketide Biosynthetic Pathways Lei Sun Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biological Engineering Commons Recommended Citation Sun, Lei, "Investigation and Engineering of Polyketide Biosynthetic Pathways" (2017). All Graduate Theses and Dissertations. 6903. https://digitalcommons.usu.edu/etd/6903 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INVESTIGATION AND ENGINEERING OF POLYKETIDE BIOSYNTHETIC PATHWAYS by Lei Sun A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPHY in Biological Engineering Approved: ______________________ ____________________ Jixun Zhan, Ph.D. David W. Britt, Ph.D. Major Professor Committee Member ______________________ ____________________ Dong Chen, Ph.D. Jon Takemoto, Ph.D. Committee Member Committee Member ______________________ ____________________ Elizabeth Vargis, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright© Lei Sun 2017 All Rights Reserved iii ABSTRACT Investigation and engineering of polyketide biosynthetic pathways by Lei Sun, Doctor of Philosophy Utah State University, 2017 Major Professor: Jixun Zhan Department: Biological Engineering Polyketides are a large family of natural products widely found in bacteria, fungi and plants, which include many clinically important drugs such as tetracycline, chromomycin, spirolaxine, endocrocin and emodin.
    [Show full text]
  • An Iterative Type I Polyketide Synthase Initiates the Biosynthesis of the Antimycoplasma Agent Micacocidin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Chemistry & Biology Article An Iterative Type I Polyketide Synthase Initiates the Biosynthesis of the Antimycoplasma Agent Micacocidin Hirokazu Kage,1 Martin F. Kreutzer,1 Barbara Wackler,2 Dirk Hoffmeister,2 and Markus Nett1,* 1Junior Research Group ‘‘Secondary Metabolism of Predatory Bacteria’’, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Kno¨ ll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany 2Department of Pharmaceutical Biology at the Hans-Kno¨ ll-Institute, Friedrich Schiller Universita¨ t Jena, 07745 Jena, Germany *Correspondence: [email protected] http://dx.doi.org/10.1016/j.chembiol.2013.04.010 SUMMARY under macrolide therapy have been described (Averbuch et al., 2011; Cardinale et al., 2011; Itagaki et al., 2013). Micacocidin is a thiazoline-containing natural pro- Micacocidin is a new antibiotic that exerts strong inhibitory duct from the bacterium Ralstonia solanacearum effects in the nanomolar range against several Mycoplasma that shows significant activity against Mycoplasma species, including M. pneumoniae (Kobayashi et al., 1998). pneumoniae. The presence of a pentylphenol moiety In vivo efficacy after oral administration was demonstrated in distinguishes micacocidin from the structurally chicken that had been infected with M. gallisepticum (Kobayashi related siderophore yersiniabactin, and this residue et al., 2000). The thiazoline-containing natural product micaco- cidin is structurally closely related to the siderophore yersinia- also contributes to the potent antimycoplasma bactin (Drechsel et al., 1995), and cellular uptake studies effects. The biosynthesis of the pentylphenol moiety, suggest that it might also be involved in iron acquisition of the as deduced from bioinformatic analysis and stable producing bacterium Ralstonia solanacearum (Kreutzer et al., isotope feeding experiments, involves an iterative 2011).
    [Show full text]
  • Biosynthesis of Natural Products
    Biosynthesis of Natural Products Biosynthesis of Fatty Acids & Polyketides Alan C. Spivey [email protected] Nov 2015 Format & Scope of Lectures • What are fatty acids? – 1° metabolites: fatty acids; 2° metabolites: their derivatives – biosynthesis of the building blocks: acetyl CoA & malonyl CoA • Fatty acid synthesis by Fatty Acid Synthases (FASs) – the chemistry involved – the FAS protein complex & the dynamics of the iterative synthesis process • Fatty acid secondary metabolites – eiconasiods: prostaglandins, thromboxanes & leukotrienes • What are polyketides? – definitions & variety • Polyketide synthesis by PolyKetide Synthases (PKSs) – the chemistry involved – the PKS protein complexes & the dynamics of the iterative synthesis process • Polyketide secondary metabolites – Type I modular metabolites: macrolides – e.g. erythromycin – Type I iterative metabolites: e.g. mevinolin (=lovastatin®) – Type II iterative metabolites: aromatic compounds and polyphenols: e.g. actinorhodin Fatty Acid Primary Metabolites OH OH • Primary metabolites: OH glycerol – fully saturated, linear carboxylic acids & derived (poly)unsaturated derivatives: 3x fatty acids • constituents of essential natural waxes, seed oils, glycerides (fats) & phospholipids • structural role – glycerides & phospholipids are essential constituents of cell membranes OCOR1 • energy storage – glycerides (fats) can also be catabolised into acetate → citric acid cycle OCOR2 OCOR3 • biosynthetic precursors – for elaboration to secondary metabolites glycerides SATURATED ACIDS [MeCH2(CH2CH2)nCH2CO2H (n=2-8)] e.g. CO2H caprylic acid (C8, n = 2) CO2H myristic acid (C14, n = 5) 8 1 14 1 CO H CO2H capric acid (C8, n = 3) 2 palmitic acid (C16, n = 6) 1 10 1 16 CO2H lauric acid (C12, n = 4) CO2H stearic acid (C18, n = 7) 12 1 18 1 MONO-UNSATURATED ACID DERIVATIVES (MUFAs) e.g.
    [Show full text]
  • Rewiring Yarrowia Lipolytica Toward Triacetic Acid Lactone for Materials Generation
    Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation Kelly A. Markhama,1, Claire M. Palmerb,1, Malgorzata Chwatkoa, James M. Wagnera, Clare Murraya, Sofia Vazqueza, Arvind Swaminathana, Ishani Chakravartya, Nathaniel A. Lynda, and Hal S. Alpera,b,2 aMcKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712; and bInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 Edited by Sang Yup Lee, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, and approved January 22, 2018 (received for review December 6, 2017) Polyketides represent an extremely diverse class of secondary me- or challenging syntheses, this is not an option for any larger-scale tabolites often explored for their bioactive traits. These molecules are chemistry application. also attractive building blocks for chemical catalysis and polymeriza- Here, we focus on the interesting, yet simple, polyketide, tri- tion. However, the use of polyketides in larger scale chemistry acetic acid lactone (TAL) as it is derived from two common applications is stymied by limited titers and yields from both microbial polyketide precursors, acetyl–CoA and malonyl–CoA. TAL has and chemical production. Here, we demonstrate that an oleaginous been demonstrated as a platform chemical that can be converted organism (specifically, Yarrowia lipolytica) can overcome such produc- into a variety of valuable products traditionally derived from tion limitations owing to a natural propensity for high flux through fossil fuels including sorbic acid, a common food preservative acetyl–CoA. By exploring three distinct metabolic engineering strate- with a global demand of 100,000 t (1, 15–18).
    [Show full text]
  • Substrate Channeling in Proline Metabolism Benjamin W
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biochemistry -- Faculty Publications Biochemistry, Department of 2012 Substrate channeling in proline metabolism Benjamin W. Arentson University of Nebraska-Lincoln, [email protected] Nikhilesh Sanyal University of Nebraska-Lincoln, [email protected] Donald F. Becker University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biochemfacpub Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons Arentson, Benjamin W.; Sanyal, Nikhilesh; and Becker, Donald F., "Substrate channeling in proline metabolism" (2012). Biochemistry -- Faculty Publications. 303. http://digitalcommons.unl.edu/biochemfacpub/303 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NIH Public Access Author Manuscript Front Biosci. Author manuscript; available in PMC 2013 January 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Front Biosci. ; 17: 375–388. Substrate channeling in proline metabolism Benjamin W. Arentson1, Nikhilesh Sanyal1, and Donald F. Becker1 1Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA Abstract Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism.
    [Show full text]