Forazoline A: Marine-Derived Polyketide with Antifungal in Vivo Efficacy** Thomas P

Total Page:16

File Type:pdf, Size:1020Kb

Forazoline A: Marine-Derived Polyketide with Antifungal in Vivo Efficacy** Thomas P Angewandte Chemie DOI: 10.1002/anie.201405990 Natural Products Hot Paper Forazoline A: Marine-Derived Polyketide with Antifungal In Vivo Efficacy** Thomas P. Wyche, Jeff S. Piotrowski, Yanpeng Hou, Doug Braun, Raamesh Deshpande, Sean McIlwain, Irene M. Ong, Chad L. Myers, Ilia A. Guzei, William M. Westler, David R. Andes, and Tim S. Bugni* Abstract: Forazoline A, a novel antifungal polyketide with The high mortality rate[2] combined with the continued rise in in vivo efficacy against Candida albicans, was discovered using fungal resistance to current therapeutics[4] demonstrates the LCMS-based metabolomics to investigate marine-invertebrate- ever-present need for new therapeutics. associated bacteria. Forazoline A had a highly unusual and As part of a drug discovery program to discover novel unprecedented skeleton. Acquisition of 13C–13C gCOSY and antifungal therapeutics, we analyzed a collection of marine- 13C–15N HMQC NMR data provided the direct carbon–carbon invertebrate-associated bacteria using LCMS-based metab- and carbon–nitrogen connectivity, respectively. This approach olomics in conjunction with disc diffusion assays. Metabolo- represents the first example of determining direct 13C–15N mics methodology has shown great promise for streamlining connectivity for a natural product. Using yeast chemical the discovery of novel natural products[5] and overcoming genomics, we propose that forazoline A operated through historic barriers such as the high rate of rediscovery of known a new mechanism of action with a phenotypic outcome of compounds.[6] disrupting membrane integrity. Using metabolomics-based strategies which we previously published,[5] we analyzed LCMS profiles of 34 marine-derived Fungal infections result in over 1.5 million deaths annually bacterial extracts by principal component analysis (PCA) and worldwide and cost $12 billion to treat.[1] Candida spp. are the identified the strain WMMB-499, an Actinomadura sp. most common fungal infections, especially in intensive care cultivated from the ascidian Ecteinascidia turbinata (Herd- units, in solid-organ transplant patients, and in blood- and man, 1880), as a metabolic outlier. After fermentation and marrow-transplant patients.[2] Of the more than one hundred subsequent purification, WMMB-499 was found to produce known Candida spp., Candida albicans is the most common three distinct classes of novel compounds. The first class, cause of fungal-born human disease.[2] C. albicans causes halogenated electrophilic polyketides halomadurones A–D various infections, including candidiasis, which affects about which activate the Nrf2-ARE pathway, was recently de- 400000 people per year, with an astonishingly high mortality scribed.[7] Forazoline A (1) and B (2), described herein, rate between 46 and 75%.[2] represented the second novel class. The third class was While amphotericin B has remained the standard for represented by a potent antibiotic, which is still under study. treatment of severe systemic fungal infections, it suffers from Forazoline A (1) was the lead antifungal agent with a highly low solubility and is associated with dose-limiting toxicity.[3] unusual and unprecedented structure. Forazoline A (1) [*] T. P. Wyche, Dr. Y. Hou, D. Braun, Prof. Dr. T. S. Bugni J.P., I.O., and S.M. are funded by the DOE Great Lakes Bioenergy Pharmaceutical Sciences Division Research Center (DOE BER Office of Science DE-FC02-07ER64494). University of Wisconsin-Madison, Madison, WI 53705 (USA) C.M. and R.D. are supported by grants from the National Institutes E-mail: [email protected] of Health (1R01HG005084-01A1, 1R01M104975-01, Dr. J. S. Piotrowski, S. McIlwain, I. M. Ong R01HG005853), a grant from the National Science Foundation (DBI Great Lakes Bioenergy Research Center 0953881), and by the CIFAR Genetic Networks Program. We would University of Wisconsin-Madison, Madison, WI 53726 (USA) like to thank the Analytical Instrumentation Center at the University of Wisconsin-Madison for the facilities to acquire spectroscopic R. Deshpande, C. L. Myers data. This study made use of the National Magnetic Resonance Department of Computer Science and Engineering, University of Facility at Madison, which is supported by NIH grants P41RR02301 Minnesota-Twin Cities, Minneapolis, MN 55455 (USA) (BRTP/NCRR) and P41M66326 (NIGMS). Additional equipment Dr. I. A. Guzei was purchased with funds from the University of Wisconsin, the Department of Chemistry, University of Wisconsin-Madison NIH (RR02781, RR08438), the NSF (DMB-8415048, OIA-9977486, Madison, WI 53706 (USA) BIR-9214394), and the USDA. We would like to thank D. Demaria for Dr. W. M. Westler assistance with collection and Dr. R. McClain for assistance with Department of Biochemistry, University of Wisconsin-Madison ICP-AES. The yeast deletion collection was kindly provided by Madison, WI 53706 (USA) Charlie Boone. CD data were obtained at the University of Prof. Dr. D. R. Andes Wisconsin-Madison Biophysics Instrumentation Facility, which was School of Medicine, University of Wisconsin-Madison established with support from the University of Wisconsin and Madison, WI 53705 (USA) grants BIR-9512577 (NSF) and S10RR13790 (NIH). [**] We acknowledge financial support from the University of Wisconsin- Supporting information for this article is available on the WWW Madison School of Pharmacy. This work was also funded by the under http://dx.doi.org/10.1002/anie.201405990. NIH, NIGMS Grant R01 GM092009, and in part by R01 GM104192. Angew. Chem. Int. Ed. 2014, 53, 1 – 5 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1 These are not the final page numbers! Ü Ü Angewandte. Communications that N43 (d = 140.2 ppm) was attached to C42 (d = 166.5 ppm) and C38 (d = 76.2 ppm), and N37 (d = 302.6 ppm) was attached to C36 (d = 170.3 ppm) and C34 (d = 76.3 ppm). The spectrum also confirmed the presence of two N-dimethyl groups. The downfield shift of N37 and the downfield shift of C36, combined with the 13C–15N correla- tions, confirmed the thiazoline structure. While analysis of the 13C–13C COSY and 13C–15N HMQC data rapidly provided the majority of the planar structure, additional data were necessary to complete structure eluci- dation. The presence of the sulfoxide was indicated by an absorption in the IR spectrum at 1060 cmÀ1. Additionally, demonstrated in vivo efficacy against the fungal pathogen having accounted for all carbon substituents, logically, the Candida albicans and works by a putative novel mechanism. remaining oxygen atom was likely attached to the sulfur atom. Forazoline B (2), a brominated analogue, was also produced Apratoxin, isolated from the marine cyanobacterium Lyng- to aid in structure elucidation. bya majuscula,[10] had a thiazoline ring. And more recently, Analysis of forazoline A (1) by HRMS supported the apratoxin sulfoxide, which contains a thiazoline moiety with [11] 13 molecular formula of C43H69ClN4O10S2. The MS isotopic a sulfoxide, was isolated. The C NMR shift of the distribution suggested the presence of one chlorine atom thiazoline methylene in apratoxin and apratoxin sulfoxide 13 and two sulfur atoms. HRMS of 1 in CD3OD and D2O was d = 37.6 and 58.3 ppm, respectively. The C NMR shift of revealed the presence of two exchangeable protons. Acquis- the thiazoline methylene (C35) in 1 was d = 38.8 ppm, similar ition of a 1H–15N HSQC allowed us to conclude that one of to that of apratoxin and indicating that the sulfoxide was most the exchangeable protons was on an enamine (dH = likely not part of the thiazoline moiety in 1. To support this 14.58 ppm, dN = 70.3 ppm). To determine the location of the hypothesis, low-energy conformers of the two possible other exchangeable proton, 1 was acetylated.[8] Two major regioisomers were determined with Spartan10,[12] and DFT products, mono- and bis(acetyl) analogues were formed, and NMR calculations (Gaussian09[13]) of the low energy con- acquisition of one-dimensional (1D) and two-dimensional formers were analyzed with the DP4 probability method. The (2D) NMR spectra determined that the other exchangeable DP4 method uses a mathematical algorithm to compare proton was an OH at C11. calculated and experimental NMR shifts and determine Extensive 1D and 2D NMR data[8] (see Table S14 in the which structure fits the experimental data better.[14] It Supporting Information) were analyzed to establish the should be noted that these modeling studies were done after majority of the planar structure. However, the structure much of the configuration had been established as outlined elucidation presented several challenges. Therefore, we below. Each of the two possible sulfoxide diastereomers was unambiguously determined the carbon backbone by fermen- also investigated using Spartan10 and Gaussian09.[8] After tation with uniformly labeled 13C glucose and acquisition of comparing the calculated 13C chemical shifts of the two a 13C–13C gCOSY spectra, an approach we previously structures and the corresponding set of diastereomers with demonstrated as useful for determining carbon–carbon con- the observed chemical shifts of 1, the DP4 probability method nectivity.[9] Fermentation of WMMB-499 with 13C-labeled predicted a 100.0% probability that the sulfoxide was glucose yielded 1 with approximately 75% 13C incorporation. attached to C40 and C42. Notably, for the structure with the The 13C–13C gCOSY spectra was acquired in 30 minutes on sulfoxide in the thiazoline moiety, DFT calculations resulted 7.0 mg of 1 and allowed complete assignment of the carbon in a 13C chemical shift of d = 58.6 ppm for C35, which is nearly backbone. identical to the methylene in apratoxin sulfoxide (Figure 1). To help confirm the location of the chlorine atom, the Meanwhile, DFT calculations for 1 predicted a 13C chemical amount of KBr in the fermentation medium ASW-A was shift of d = 43.3 ppm at C35. Thus, the location of the increased from 0.1 glÀ1 to 10 glÀ1 to produce the brominated sulfoxide in 1 was supported by both chemical shifts of analogue 2.
Recommended publications
  • Polyketide Biosynthesis Beyond the Type I, II and III Polyketide Synthase Paradigms Ben Shen
    285 Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms Ben Shen Recent literature on polyketide biosynthesis suggests that Three types of bacterial PKSs are known to date. First, polyketide synthases have much greater diversity in both type I PKSs are multifunctional enzymes that are orga- mechanism and structure than the current type I, II and III nized into modules, each of which harbors a set of distinct, paradigms. These examples serve as an inspiration for searching non-iteratively acting activities responsible for the cata- novel polyketide synthases to give new insights into polyketide lysis of one cycle of polyketide chain elongation, as biosynthesis and to provide new opportunities for combinatorial exemplified by the 6-deoxyerythromycin B synthase biosynthesis. (DEBS) for the biosynthesis of reduced polyketides (i.e. macrolides, polyethers and polyene) such as erythro- Addresses mycin A (1)(Figure 1a) [1]. Second, type II PKSs are Division of Pharmaceutical Sciences and Department of Chemistry, multienzyme complexes that carry a single set of iteratively University of Wisconsin, Madison, WI 53705, USA acting activities, as exemplified by the tetracenomycin e-mail: [email protected] PKS for the biosynthesis of aromatic polyketides (often polycyclic) such as tetracenomycin C (2)(Figure 1b) [2]. Current Opinion in Chemical Biology 2003, 7:285–295 Third, type III PKSs, also known as chalcone synthase- like PKSs, are homodimeric enzymes that essentially are This review comes from a themed section on iteratively acting condensing enzymes, as exemplified by Biocatalysis and biotransformation Edited by Tadhg Begley and Ming-Daw Tsai the RppA synthase for the biosynthesis of aromatic poly- ketides (often monocyclic or bicyclic), such as flavolin (3) 1367-5931/03/$ – see front matter (Figure 1c) [3].
    [Show full text]
  • Keto Acid Dehydrogenase Gene Cluster
    JOURNAL OF BACTERIOLOGY, June 1995, p. 3504–3511 Vol. 177, No. 12 0021-9193/95/$04.0010 Copyright q 1995, American Society for Microbiology A Second Branched-Chain a-Keto Acid Dehydrogenase Gene Cluster (bkdFGH) from Streptomyces avermitilis: Its Relationship to Avermectin Biosynthesis and the Construction of a bkdF Mutant Suitable for the Production of Novel Antiparasitic Avermectins CLAUDIO D. DENOYA,* RONALD W. FEDECHKO, EDMUND W. HAFNER, HAMISH A. I. MCARTHUR, MARGARET R. MORGENSTERN, DEBORAH D. SKINNER, KIM STUTZMAN-ENGWALL, RICHARD G. WAX, AND WILLIAM C. WERNAU Bioprocess Research, Central Research Division, Pfizer Inc., Groton, Connecticut 06340 Received 22 February 1995/Accepted 10 April 1995 A second cluster of genes encoding the E1a,E1b, and E2 subunits of branched-chain a-keto acid dehydro- genase (BCDH), bkdFGH, has been cloned and characterized from Streptomyces avermitilis, the soil microor- ganism which produces anthelmintic avermectins. Open reading frame 1 (ORF1) (bkdF, encoding E1a), would encode a polypeptide of 44,394 Da (406 amino acids). The putative start codon of the incompletely sequenced ORF2 (bkdG, encoding E1b) is located 83 bp downstream from the end of ORF1. The deduced amino acid sequence of bkdF resembled the corresponding E1a subunit of several prokaryotic and eukaryotic BCDH complexes. An S. avermitilis bkd mutant constructed by deletion of a genomic region comprising the 5* end of bkdF is also described. The mutant exhibited a typical Bkd2 phenotype: it lacked E1 BCDH activity and had lost the ability to grow on solid minimal medium containing isoleucine, leucine, and valine as sole carbon sources. Since BCDH provides an a-branched-chain fatty acid starter unit, either S(1)-a-methylbutyryl coenzyme A or isobutyryl coenzyme A, which is essential to initiate the synthesis of the avermectin polyketide backbone in S.
    [Show full text]
  • Metabolic Engineering for Unusual Lipid Production in Yarrowia Lipolytica
    microorganisms Review Metabolic Engineering for Unusual Lipid Production in Yarrowia lipolytica Young-Kyoung Park * and Jean-Marc Nicaud Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)1-74-07-16-92 Received: 14 November 2020; Accepted: 2 December 2020; Published: 6 December 2020 Abstract: Using microorganisms as lipid-production factories holds promise as an alternative method for generating petroleum-based chemicals. The non-conventional yeast Yarrowia lipolytica is an excellent microbial chassis; for example, it can accumulate high levels of lipids and use a broad range of substrates. Furthermore, it is a species for which an array of efficient genetic engineering tools is available. To date, extensive work has been done to metabolically engineer Y. lipolytica to produce usual and unusual lipids. Unusual lipids are scarce in nature but have several useful applications. As a result, they are increasingly becoming the targets of metabolic engineering. Unusual lipids have distinct structures; they can be generated by engineering endogenous lipid synthesis or by introducing heterologous enzymes to alter the functional groups of fatty acids. In this review, we describe current metabolic engineering strategies for improving lipid production and highlight recent researches on unusual lipid production in Y. lipolytica. Keywords: Yarrowia lipolytica; oleochemicals; lipids; unusual lipids; metabolic engineering 1. Introduction Microbial lipids are promising alternative fuel sources given growing concerns about climate change and environmental pollution [1–4]. They offer multiple advantages over plant oils and animal fats. For example, the production of microbial lipids does not result in resource competition with food production systems; is largely independent of environmental conditions; can be based on diverse substrates; and allows product composition to be customized based on the desired application [3,4].
    [Show full text]
  • Synthesis and Biosynthesis of Polyketide Natural Products
    Syracuse University SURFACE Chemistry - Dissertations College of Arts and Sciences 12-2011 Synthesis and Biosynthesis of Polyketide Natural Products Atahualpa Pinto Syracuse University Follow this and additional works at: https://surface.syr.edu/che_etd Part of the Chemistry Commons Recommended Citation Pinto, Atahualpa, "Synthesis and Biosynthesis of Polyketide Natural Products" (2011). Chemistry - Dissertations. 181. https://surface.syr.edu/che_etd/181 This Dissertation is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Chemistry - Dissertations by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract Traditionally separate disciplines of a large and broad chemical spectrum, synthetic organic chemistry and biochemistry have found in the last two decades a fertile common ground in the area pertaining to the biosynthesis of natural products. Both disciplines remain indispensable in providing unique solutions on numerous questions populating the field. Our contributions to this interdisciplinary pursuit have been confined to the biosynthesis of polyketides, a therapeutically and structurally diverse class of natural products, where we employed both synthetic chemistry and biochemical techniques to validate complex metabolic processes. One such example pertained to the uncertainty surrounding the regiochemistry of dehydration and cyclization in the biosynthetic pathway of the marine polyketide spiculoic acid A. The molecule's key intramolecular cyclization was proposed to occur through a linear chain containing an abnormally dehydrated polyene system. We synthesized a putative advanced polyketide intermediate and tested its viability to undergo a mild chemical transformation to spiculoic acid A. In addition, we applied a synthetic and biochemical approach to elucidate the biosynthetic details of thioesterase-catalyzed macrocyclizations in polyketide natural products.
    [Show full text]
  • Bio-Based Production of Fuels and Industrial Chemicals by Repurposing Antibiotic-Producing Type I Modular Polyketide Synthases: Opportunities and Challenges
    The Journal of Antibiotics (2017) 70, 378–385 & 2017 Japan Antibiotics Research Association All rights reserved 0021-8820/17 www.nature.com/ja REVIEW ARTICLE Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges Satoshi Yuzawa1, Jay D Keasling1,2,3,4,5,6 and Leonard Katz2 Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. We have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals. The Journal of Antibiotics (2017) 70, 378–385; doi:10.1038/ja.2016.136; published online 16 November 2016 INTRODUCTION complex polyketide is programmed by its cognate PKS, by the number Complex polyketides represent a family of natural products that and composition of modules. possess a wide variety of pharmacological or biological activities. Since the concept of modular polyketide biosynthesis was initially Numerous polyketides and their semisynthetic derivatives have been report by Katz and colleagues2 more than 25 years
    [Show full text]
  • Investigation and Engineering of Polyketide Biosynthetic Pathways
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2017 Investigation and Engineering of Polyketide Biosynthetic Pathways Lei Sun Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biological Engineering Commons Recommended Citation Sun, Lei, "Investigation and Engineering of Polyketide Biosynthetic Pathways" (2017). All Graduate Theses and Dissertations. 6903. https://digitalcommons.usu.edu/etd/6903 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INVESTIGATION AND ENGINEERING OF POLYKETIDE BIOSYNTHETIC PATHWAYS by Lei Sun A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPHY in Biological Engineering Approved: ______________________ ____________________ Jixun Zhan, Ph.D. David W. Britt, Ph.D. Major Professor Committee Member ______________________ ____________________ Dong Chen, Ph.D. Jon Takemoto, Ph.D. Committee Member Committee Member ______________________ ____________________ Elizabeth Vargis, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright© Lei Sun 2017 All Rights Reserved iii ABSTRACT Investigation and engineering of polyketide biosynthetic pathways by Lei Sun, Doctor of Philosophy Utah State University, 2017 Major Professor: Jixun Zhan Department: Biological Engineering Polyketides are a large family of natural products widely found in bacteria, fungi and plants, which include many clinically important drugs such as tetracycline, chromomycin, spirolaxine, endocrocin and emodin.
    [Show full text]
  • An Iterative Type I Polyketide Synthase Initiates the Biosynthesis of the Antimycoplasma Agent Micacocidin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Chemistry & Biology Article An Iterative Type I Polyketide Synthase Initiates the Biosynthesis of the Antimycoplasma Agent Micacocidin Hirokazu Kage,1 Martin F. Kreutzer,1 Barbara Wackler,2 Dirk Hoffmeister,2 and Markus Nett1,* 1Junior Research Group ‘‘Secondary Metabolism of Predatory Bacteria’’, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Kno¨ ll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany 2Department of Pharmaceutical Biology at the Hans-Kno¨ ll-Institute, Friedrich Schiller Universita¨ t Jena, 07745 Jena, Germany *Correspondence: [email protected] http://dx.doi.org/10.1016/j.chembiol.2013.04.010 SUMMARY under macrolide therapy have been described (Averbuch et al., 2011; Cardinale et al., 2011; Itagaki et al., 2013). Micacocidin is a thiazoline-containing natural pro- Micacocidin is a new antibiotic that exerts strong inhibitory duct from the bacterium Ralstonia solanacearum effects in the nanomolar range against several Mycoplasma that shows significant activity against Mycoplasma species, including M. pneumoniae (Kobayashi et al., 1998). pneumoniae. The presence of a pentylphenol moiety In vivo efficacy after oral administration was demonstrated in distinguishes micacocidin from the structurally chicken that had been infected with M. gallisepticum (Kobayashi related siderophore yersiniabactin, and this residue et al., 2000). The thiazoline-containing natural product micaco- cidin is structurally closely related to the siderophore yersinia- also contributes to the potent antimycoplasma bactin (Drechsel et al., 1995), and cellular uptake studies effects. The biosynthesis of the pentylphenol moiety, suggest that it might also be involved in iron acquisition of the as deduced from bioinformatic analysis and stable producing bacterium Ralstonia solanacearum (Kreutzer et al., isotope feeding experiments, involves an iterative 2011).
    [Show full text]
  • Biosynthesis of Natural Products
    Biosynthesis of Natural Products Biosynthesis of Fatty Acids & Polyketides Alan C. Spivey [email protected] Nov 2015 Format & Scope of Lectures • What are fatty acids? – 1° metabolites: fatty acids; 2° metabolites: their derivatives – biosynthesis of the building blocks: acetyl CoA & malonyl CoA • Fatty acid synthesis by Fatty Acid Synthases (FASs) – the chemistry involved – the FAS protein complex & the dynamics of the iterative synthesis process • Fatty acid secondary metabolites – eiconasiods: prostaglandins, thromboxanes & leukotrienes • What are polyketides? – definitions & variety • Polyketide synthesis by PolyKetide Synthases (PKSs) – the chemistry involved – the PKS protein complexes & the dynamics of the iterative synthesis process • Polyketide secondary metabolites – Type I modular metabolites: macrolides – e.g. erythromycin – Type I iterative metabolites: e.g. mevinolin (=lovastatin®) – Type II iterative metabolites: aromatic compounds and polyphenols: e.g. actinorhodin Fatty Acid Primary Metabolites OH OH • Primary metabolites: OH glycerol – fully saturated, linear carboxylic acids & derived (poly)unsaturated derivatives: 3x fatty acids • constituents of essential natural waxes, seed oils, glycerides (fats) & phospholipids • structural role – glycerides & phospholipids are essential constituents of cell membranes OCOR1 • energy storage – glycerides (fats) can also be catabolised into acetate → citric acid cycle OCOR2 OCOR3 • biosynthetic precursors – for elaboration to secondary metabolites glycerides SATURATED ACIDS [MeCH2(CH2CH2)nCH2CO2H (n=2-8)] e.g. CO2H caprylic acid (C8, n = 2) CO2H myristic acid (C14, n = 5) 8 1 14 1 CO H CO2H capric acid (C8, n = 3) 2 palmitic acid (C16, n = 6) 1 10 1 16 CO2H lauric acid (C12, n = 4) CO2H stearic acid (C18, n = 7) 12 1 18 1 MONO-UNSATURATED ACID DERIVATIVES (MUFAs) e.g.
    [Show full text]
  • Chapter 4 Erythronolide B and the Erythromycins
    124 Chapter 4 Erythronolide B and the Erythromycins Isolation and Structure Isolated in 1952 from the soil bacteria actinomycetes,1 the erythromycins are a distinguished family of natural products by virtue of their clinically useful antibacterial properties and complex structures. Soon after their discovery, scientists elucidated the structure of erythromycin A (1),2 and then erythromycin B (2),3,4 through extensive degradation studies (Figure 1).5 X-ray crystallography studies have established the three dimensional structure of these natural products.6 The erythromycins are characterized by 14-membered macrolactones with glycosidic linkages at C(3) and C(5) to 6-deoxysugars, L-cladinose and D-desosamine, respectively. The name “erythronolide” refers to the polyketide derived-aglycone (e.g., 3 and 4, Figure 1), while the letter codes (i.e., A, B, etc.) reflect each isomer and its order of discovery. In contrast to erythronolide A (3), erythronolide B (4) is a natural product and more importantly, the biogenic precursor of all the erythromycin isomers. 125 O O Me Me Me Me 9 Me Me Me 11 7 OH Me OH R OH R OH NMe 13 Me 5 HO 2 Me O O O Me O OH Me 1 3 Me O O OMe O OH Me Me Me O OH Me 1 R = OH erythromycin A 3 R = OH erythronolide A 2 R = H erythromycin B 4 R = H erythronolide B Figure 1. Representative members of the erythromycin macrolide family of antibiotics Biosynthesis of Erythronolide B Our understanding on the biosynthesis of polyketides derives mainly from extensive studies conducted on the biosynthetic mechanism of the erythromycins.7 The first polyketide synthase genome sequenced was that of 6-deoxyerythronolide B synthase (DEBS).8 Many Streptomyces polyketide synthases sequenced thereafter proved similar in structure and function to DEBS.
    [Show full text]
  • Comparative Genome-Centric Analysis Reveals Seasonal Variation in the Function of Coral Reef Microbiomes
    The ISME Journal (2020) 14:1435–1450 https://doi.org/10.1038/s41396-020-0622-6 ARTICLE Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes 1,2,3 4 5 1,2,3 1 Bettina Glasl ● Steven Robbins ● Pedro R. Frade ● Emma Marangon ● Patrick W. Laffy ● 1,2,3 1,3,4 David G. Bourne ● Nicole S. Webster Received: 8 October 2019 / Revised: 16 February 2020 / Accepted: 19 February 2020 / Published online: 2 March 2020 © The Author(s) 2020. This article is published with open access Abstract Microbially mediated processes contribute to coral reef resilience yet, despite extensive characterisation of microbial community variation following environmental perturbation, the effect on microbiome function is poorly understood. We undertook metagenomic sequencing of sponge, macroalgae and seawater microbiomes from a macroalgae-dominated inshore coral reef to define their functional potential and evaluate seasonal shifts in microbially mediated processes. In total, 125 high-quality metagenome-assembled genomes were reconstructed, spanning 15 bacterial and 3 archaeal phyla. Multivariate analysis of the genomes relative abundance revealed changes in the functional potential of reef microbiomes in fl 1234567890();,: 1234567890();,: relation to seasonal environmental uctuations (e.g. macroalgae biomass, temperature). For example, a shift from Alphaproteobacteria to Bacteroidota-dominated seawater microbiomes occurred during summer, resulting in an increased genomic potential to degrade macroalgal-derived polysaccharides. An 85% reduction of Chloroflexota was observed in the sponge microbiome during summer, with potential consequences for nutrition, waste product removal, and detoxification in the sponge holobiont. A shift in the Firmicutes:Bacteroidota ratio was detected on macroalgae over summer with potential implications for polysaccharide degradation in macroalgal microbiomes.
    [Show full text]
  • Polyketide Synthases
    ACTA SCIENTIFIC MICROBIOLOGY (ISSN: 2581-3226) Volume 2 Issue 11 November 2019 Short Communication Polyketide Synthases Sulagna Roy* R and D Microbiologist, CBL, Ahmedabad, Gujarat, India *Corresponding Author: Sulagna Roy, R and D Microbiologist, CBL, Ahmedabad, Gujarat, India. Received: October 09, 2019; Published: October 16, 2019 DOI: 10.31080/ASMI.2019.02.0403 Introduction Polyketide Biosynthesis Antibiotics are substances produced by microorganisms, which The biosynthesis of polyketides is modular at many levels and inhibit the growth of or kill other microorganisms at very low con- closely resembles fatty acid biosynthesis. First, the genes respon- centrations [1]. Amongst these substances, polyketides are a large sible for polyketide biosynthesis are typically clustered in the class of secondary metabolites, in bacteria, fungi, plants, and a few genome, forming a biosynthetic gene cluster (BGC). Each BGC en- animal lineages. They are used in medicine mainly as immunosup- codes the Polyketide Synthases (PKS) responsible for the forma- pressants, antibiotics and cholesterol-lowering, antitumour or tion of the carbon backbone, together with the tailoring enzymes anti-parasitic agents, and they are primarily derived from acetic required for primary tailoring events, for example cyclization and acid, one of the simplest building blocks available in nature. Their biosynthesis shares with fatty acids, not only the chemical mecha- - dimerization of the β-keto-acyl carbon chain, subsequent tailoring nisms involved in chain extension but also the pool of precursors coding the regulation of the BGC and resistance to the end prod- events to form the final polyketide structure as well as genes en used as acetyl coenzyme A and malonyl-CoA [2].
    [Show full text]
  • Combinatorial Biosynthesis of Reduced Polyketides
    REVIEWS COMBINATORIAL BIOSYNTHESIS OF REDUCED POLYKETIDES Kira J. Weissman and Peter F. Leadlay Abstract | The bacterial multienzyme polyketide synthases (PKSs) produce a diverse array of products that have been developed into medicines, including antibiotics and anticancer agents. The modular genetic architecture of these PKSs suggests that it might be possible to engineer the enzymes to produce novel drug candidates, a strategy known as ‘combinatorial biosynthesis’. So far, directed engineering of modular PKSs has resulted in the production of more than 200 new polyketides, but key challenges remain before the potential of combinatorial biosynthesis can be fully realized. 3,4 SCAFFOLD Polyketide natural products are among the most polyketide antibiotic erythromycin A . By mixing The backbone atoms of a important microbial metabolites in human medicine, and matching some of the actinorhodin PKS genes molecule, on which targeting both acute and degenerative diseases. They with their counterparts from other aromatic-antibiotic functionality is displayed. are in clinical use as antibiotics (erythromycin A, gene clusters, hybrid molecules were often produced5,6, rifamycin S), anticancer drugs (doxorubicin, epothi- giving rise to the concept now known as ‘combinatorial lone), cholesterol-lowering agents (lovastatin), anti- biosynthesis’7. Given the modular organization within parasitics (avermectin), antifungals (amphotericin B), the giant PKS proteins that catalyse erythro mycin insecticides (spinosyn A) and immunosuppressants biosynthesis, simple mixing and matching of these (rapamycin) (FIG. 1). Polyketide-derived pharma- intact proteins would be of limited interest. However, ceuticals comprise 20% of the top-selling drugs, with once methods were devised to ‘cut and paste’ portions combined worldwide revenues of over UK£10 billion of these giant genes to produce chimaeric genes, in a per year.
    [Show full text]