Comparison of Green and Albino Individuals of the Partially

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Green and Albino Individuals of the Partially Kobe University Repository : Kernel Comparison of green and albino individuals of the partially タイトル mycoheterotrophic orchid Epipactis helleborine on molecular identities Title of mycorrhizal fungi, nutritional modes and gene expression in mycorrhizal roots Suetsugu, Kenji / Yamato, Masahide / Miura, Chihiro / Yamaguchi, 著者 Katsushi / Takahashi, Kazuya / Ida, Yoshiko / Shigenobu, Shuji / Author(s) Kaminaka, Hironori 掲載誌・巻号・ページ Molecular Ecology,26(6):1652-1669 Citation 刊行日 2017-03 Issue date 資源タイプ Journal Article / 学術雑誌論文 Resource Type 版区分 author Resource Version © 2017 John Wiley & Sons This is the peer reviewed version of the following article: [Molecular Ecology, 26(6):1652-1669, 2017], which has 権利 been published in final form at http://dx.doi.org/10.1111/mec.14021. Rights This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. DOI 10.1111/mec.14021 JaLCDOI URL http://www.lib.kobe-u.ac.jp/handle_kernel/90004566 PDF issue: 2021-10-05 1 Comparison of green and albino individuals of the partially mycoheterotrophic 2 orchid Epipactis helleborine on molecular identities of mycorrhizal fungi, nutritional 3 modes, and gene expression in mycorrhizal roots 4 5 Kenji Suetsugu1,†,*, Masahide Yamato2,†, Chihiro Miura3,†, Katsushi Yamaguchi4, Kazuya 6 Takahashi2, Yoshiko Ida5, Shuji Shigenobu4, Hironori Kaminaka3* 7 8 1 Department of Biology, Graduate school of Science, Kobe University, Kobe, Japan 9 2 Faculty of Education, Chiba University, Chiba, Japan 10 3 Faculty of Agriculture, Tottori University, Tottori, Japan 11 4 Functional Genomics Facility, NIBB Core Research Facilities, National Institute for 12 Basic Biology, Okazaki, Japan. 13 5 Graduate School of Agriculture, Tottori University, Tottori, Japan 14 15 †These authors contributed equally to this work. 16 17 Corresponding author 18 19 Kenji Suetsugu 20 E-mail address: [email protected] 21 22 Hironori Kaminaka 23 E-mail address: [email protected] 24 Runing title: Comparison of green and albino Epipactis 1 25 Abstract 26 Some green orchids obtain carbon from their mycorrhizal fungi, as well as from 27 photosynthesis. These partially mycoheterotrophic orchids sometimes produce fully 28 achlorophyllous, leaf-bearing (albino) variants. Comparing green and albino individuals 29 of these orchids will help to uncover the molecular mechanisms associated with 30 mycoheterotrophy. We compared green and albino Epipactis helleborine by molecular 31 barcoding of mycorrhizal fungi, nutrient sources based on 15N and 13C abundances, and 32 gene expression in their mycorrhizae by RNA-seq and cDNA de novo assembly. 33 Molecular identification of mycorrhizal fungi showed that green and albino E. helleborine 34 harbored similar mycobionts, mainly Wilcoxina. Stable isotope analyses indicated that 35 albino E. helleborine plants were fully mycoheterotrophic, whereas green individuals 36 were partially mycoheterotrophic. Gene expression analyses showed that genes involved 37 in antioxidant metabolism were up-regulated in the albino variants, which indicates that 38 these plants experience greater oxidative stress than the green variants, possibly due to a 39 more frequent lysis of intracellular pelotons. It was also found that some genes involved 40 in the transport of some metabolites, including carbon sources from plant to fungus, is 41 higher in albino than in green variants. This result may indicate a bidirectional carbon 42 flow even in the mycoheterotrophic symbiosis. The genes related to mycorrhizal 43 symbiosis in autotrophic orchids and arbuscular mycorrhizal plants were also up- 44 regulated in the albino variants, indicating the existence of common molecular 45 mechanisms among the different mycorrhizal types. 46 47 Key words: Epipactis, mixotrophy, mycoheterotrophy, mycorrhizae, partial 48 mycoheterotrophy, RNA sequencing, stable isotope, transcriptome analysis 2 49 Introduction 50 51 The largest family in the plant kingdom, the Orchidaceae, comprises approximately 52 25,000 species (Chase et al. 2015). One of the distinctive features of this family is the 53 production of numerous minute seeds that depend on their associations with mycorrhizal 54 fungi for the supply of carbohydrates and other nutrients until they develop into 55 photosynthetic seedlings (Leake 1994). 56 The mycoheterotrophic nature of orchid protocorms makes them particularly 57 predisposed to the evolution of life-long mycoheterotrophy, retaining their 58 achlorophyllous status throughout their entire lifecycle (Leake 1994). Indeed, full 59 mycoheterotrophy is surprisingly common among orchids, with more than 1% of all 60 species having completely lost the ability to photosynthesize (Bidartondo 2005). This 61 strategy probably allows them to colonize the dark forest understory and to occupy niches 62 less accessible by photosynthetic plants (Bidartondo et al. 2004). Though the vast 63 majority of orchids develop photosynthetic pigmentation with putative full autotrophy at 64 adulthood (Cameron et al. 2006), several linages of orchids appear to adopt a partially 65 mycoheterotrophic strategy that allows them to obtain carbon from their mycorrhizal 66 fungi, as well as from their own photosynthesis (Gebauer & Meyer 2003). The trophic 67 status of a plant appears to be an important factor determining the type of mycorrhizae 68 they harbor. The majority of putatively autotrophic orchids form associations with fungi 69 belonging to the anamorphic-form genus Rhizoctonia in the Basidiomycota (Roberts 70 1999). This is in contrast to most fully mycoheterotrophic and partially 71 mycoheterotrophic species, which interact mainly with ectomycorrhiza-forming fungi, 72 such as the Sebacinales, Russulaceae, and Thelephoraceae, suggesting that their ultimate 3 73 source of carbon is the photosynthate produced by nearby trees (Selosse & Roy 2009 but 74 also see Ogura-Tsujita et al. 2009; Lee et al. 2015; Gebauer et al. 2016). 75 The partially mycoheterotrophic state is often considered to be an intermediate 76 evolutionary step toward full mycoheterotrophy because phylogenetic analyses have 77 shown that full mycoheterotrophy evolves after the establishment of partial 78 mycoheterotrophy, rather than through a direct shift from autotrophy to 79 mycoheterotrophy (Selosse & Roy 2009; Motomura et al. 2010). Some partially 80 mycoheterotrophic orchids, such as Epipactis and Cephalanthera species, produce fully 81 achlorophyllous leaf-bearing variants that can reach almost the same size as their green 82 counterparts (Selosse & Roy 2009). The genetic basis for this albinism remains unknown, 83 but such albinism could result from permanent mutations, as suggested by the stability of 84 this phenotype over a period of years (Tranchida-Lombardo et al. 2010; Roy et al. 2013). 85 Notably, these albinos exhibit a physiological ecology distinct from that of their green 86 counterparts but the same as that of fully mycoheterotrophic plants, having a highly 87 elevated 13C: 12C ratio (Abadie et al. 2004; Julou et al. 2005; Stöckel et al. 2011). 88 Therefore, examining mixed populations of green and albino variants in species 89 that usually adopt a partially mycoheterotrophic lifestyle provides a unique opportunity 90 to investigate the physiological differences between partial mycoheterotrophy and full 91 mycoheterotrophy (Roy et al. 2013). Evolutionary shifts from autotrophy to 92 mycoheterotrophy are usually accompanied by the coevolution of a broad range of other 93 phenotypes, including a reduction of vegetative structures, degeneration of the stomata, 94 changes in the pattern of dormancy, and the development of novel defenses against 95 herbivores (reviewed by Imhof et al. 2013; Hynson et al. 2013; Waterman et al. 2013). 96 However, albino mutants of partially mycoheterotrophic orchids do not possess some of 4 97 the characteristics associated with the usual mycoheterotrophic evolution because some 98 traits are inherited intact from photosynthetic individuals. This indicates that the transition 99 to full mycoheterotrophy requires the progressive coevolution of these additional traits, 100 while the sudden loss of photosynthesis (i.e., albinism) leads to the production of unfit 101 plants, even though they can parasitize their fungal partners throughout their entire 102 lifecycle (Roy et al. 2013). 103 Albino variants of partially mycoheterotrophic species undoubtedly show 104 increased dependence on their mycorrhizal fungi as a source of carbon. Therefore, green 105 and albino variants of partially mycoheterotrophic orchids provide a fascinating model 106 for comparing the physiological changes that occur in the mycorrhizae of partially 107 mycoheterotrophic and mycoheterotrophic orchids that share similar genetic backgrounds 108 (Selosse & Roy 2009). Although some studies have investigated the spectrum of green 109 and albino variants of mycorrhizal fungi using molecular identification (Selosse & Roy 110 2009), no previous studies have conducted a detailed assessment of the molecular 111 physiology of the two variants. Indeed, the molecular mechanisms underlying orchid 112 mycorrhizal symbiosis remain poorly understood (Selosse 2014; Zhao et al. 2014). Since 113 previous studies have only focused on putative autotrophic orchids that form associations 114 with fungi belonging to Rhizoctonia (Perotto et al. 2014; Valadares 2014; Zhao et al. 115 2014), further investigations are needed. 116 In the current study, we focused on the coastal orchid Epipactis
Recommended publications
  • High-Severity Wildfire Reduces Richness and Alters Composition of Ectomycorrhizal Fungi in Low-Severity Adapted Ponderosa Pine Forests
    Forest Ecology and Management 485 (2021) 118923 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests M. Fabiola Pulido-Chavez a,c,*, Ernesto C. Alvarado a, Thomas H. DeLuca b, Robert L. Edmonds a, Sydney I. Glassman c a School of Environmental and Forest Sciences, Box 352100, Seattle, WA 98195, United States b College of Forestry, Oregon State University, Corvallis, OR 97331-5704, United States c Department of Microbiology and Plant Pathology, 3401 Watkins Drive, Riverside, CA 92521, United States ARTICLE INFO ABSTRACT Keywords: Ponderosa pine (Pinus ponderosa) forests are increasingly experiencing high-severity, stand-replacing fires. Ectomycorrhizal fungi Whereas alterations to aboveground ecosystems have been extensively studied, little is known about soil fungal Saprobic fungi responses in fire-adaptedecosystems. We implement a chronosequence of four different firesthat varied in time High-severity wildfires since fire,2 years (2015) to 11 years (2006) and contained stands of high severity burned P. ponderosa in eastern Ponderosa pine Washington and compared their soil fungal communities to adjacent unburned plots. Using Illumina Miseq Illumina MiSeq Soil nutrients (ITS1), we examined changes in soil nutrients, drivers of species richness for ectomycorrhizal (plant symbionts) Succession and saprobic (decomposers) fungi, community shifts, and post-fire fungal succession in burned and unburned plots. Ectomycorrhizal richness was 43.4% and saprobic richness 12.2% lower in the burned plots, leading to long-term alterations to the fungal communities that did not return to unburned levels, even after 11 years.
    [Show full text]
  • Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
    insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil.
    [Show full text]
  • Hexachlorocyclohexane Dehydrochlorinase Lina
    PROTEINS:Structure,Function,andGenetics45:471–477(2001) IdentificationofProteinFoldandCatalyticResiduesof␥- HexachlorocyclohexaneDehydrochlorinaseLinA YujiNagata,1* KatsukiMori,2 MasamichiTakagi,2 AlexeyG.Murzin,3 andJirˇı´Damborsky´ 4 1GraduateSchoolofLifeSciences,TohokuUniversity,Sendai,Japan 2DepartmentofBiotechnology,TheUniversityofTokyo,Tokyo,Japan 3 CentreforProteinEngineering,MedicalResearchCouncilCentre,Cambridge,UnitedKingdom 4NationalCentreforBiomolecularResearch,MasarykUniversity,Brno,CzechRepublic ABSTRACT ␥-Hexachlorocyclohexanedehy- tion.Infact,wehaverevealedthatthreedifferenttypesof drochlorinase(LinA)isauniquedehydrochlorinase dehalogenases,dehydrochlorinaseLinA,4,5 halidohydro- thathasnohomologoussequenceattheaminoacid- laseLinB,6,7 andreductivedehalogenaseLinD,8 arese- sequencelevelandforwhichtheevolutionaryori- quentiallyinvolvedinthedegradationof␥-HCHinUT26.9 ginisunknown.WehereproposethatLinAisa Amongthesethreedehalogenases,LinAisthoughttobea memberofanovelstructuralsuperfamilyofpro- uniquedehydrochlorinase,basedonthefailureofFASTA 5 teinscontainingscytalonedehydratase,3-oxo-⌬ - andBLASTdatabasesearchestofindanysignificantly steroidisomerase,nucleartransportfactor2,and homologoussequencestothelinAgene.4 Thus,theorigin the␤-subunitofnaphthalenedioxygenase—all ofthelinAgeneisofgreatinterest,butisstillunknown. knownstructureswithdifferentfunctions.Thecat- LinAcatalyzestwostepsofdehydrochlorinationfrom alyticandtheactivesiteresiduesofLinAarepre- ␥-HCHto1,3,4,6-tetrachloro-1,4-cyclohexadiene(1,4- dictedonthebasisofitshomologymodel.Ninemu-
    [Show full text]
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • DNA-Metabarcoding of Belowground Fungal Communities in Bare-Root Forest Nurseries: Focus on Different Tree Species
    microorganisms Article DNA-Metabarcoding of Belowground Fungal Communities in Bare-Root Forest Nurseries: Focus on Different Tree Species Diana Marˇciulyniene˙ 1,* , Adas Marˇciulynas 1,Jurat¯ e˙ Lynikiene˙ 1, Migle˙ Vaiˇciukyne˙ 1, Arturas¯ Gedminas 1 and Audrius Menkis 2 1 Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepu˛Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; [email protected] (A.M.); [email protected] (J.L.); [email protected] (M.V.); [email protected] (A.G.) 2 Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden; [email protected] * Correspondence: [email protected] Abstract: The production of tree seedlings in forest nurseries and their use in the replanting of clear-cut forest sites is a common practice in the temperate and boreal forests of Europe. Although conifers dominate on replanted sites, in recent years, deciduous tree species have received more attention due to their often-higher resilience to abiotic and biotic stress factors. The aim of the present study was to assess the belowground fungal communities of bare-root cultivated seedlings of Alnus glutinosa, Betula pendula, Pinus sylvestris, Picea abies and Quercus robur in order to gain a better understanding of the associated fungi and oomycetes, and their potential effects on the seedling performance in forest nurseries and after outplanting. The study sites were at the seven largest bare-root forest nurseries in Lithuania. The sampling included the roots and adjacent soil of 2–3 year old healthy-looking seedlings.
    [Show full text]
  • Legionella Genus Genome Provide Multiple, Independent Combinations for Replication in Human Cells
    Supplemental Material More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells Laura Gomez-Valero1,2, Christophe Rusniok1,2, Danielle Carson3, Sonia Mondino1,2, Ana Elena Pérez-Cobas1,2, Monica Rolando1,2, Shivani Pasricha4, Sandra Reuter5+, Jasmin Demirtas1,2, Johannes Crumbach1,2, Stephane Descorps-Declere6, Elizabeth L. Hartland4,7,8, Sophie Jarraud9, Gordon Dougan5, Gunnar N. Schroeder3,10, Gad Frankel3, and Carmen Buchrieser1,2,* Table S1: Legionella strains analyzed in the present study Table S2: Type IV secretion systems predicted in the genomes analyzed Table S3: Eukaryotic like domains identified in the Legionella proteins analyzed Table S4: Small GTPases domains detected in the genus Legionella as defined in the CDD ncbi domain database Table S5: Eukaryotic like proteins detected in the Legionella genomes analyzed in this study Table S6: Aminoacid identity of the Dot/Icm components in Legionella species with respect to orthologous proteins in L. pneumophila Paris Table S7: Distribution of seventeen highly conserved Dot/Icm secreted substrates Table S8: Comparison of the effector reperotoire among strains of the same Legionella species Table S9. Number of Dot/Icm secreted proteins predicted in each strain analyzed Table S10: Replication capacity of the different Legionella species analyzed in this study and collection of literature data on Legionella replication Table S11: Orthologous table for all genes of the 80 analyzed strains based on PanOCT. The orthologoss where defined with the program PanOCT using the parameters previously indicated in material and methods.) Figure S1: Distribution of the genes predicted to encode for the biosynthesis of flagella among all Legionella species.
    [Show full text]
  • Epipactis Helleborine Shows Strong Mycorrhizal Preference Towards Ectomycorrhizal Fungi with Contrasting Geographic Distributions in Japan
    Mycorrhiza (2008) 18:331–338 DOI 10.1007/s00572-008-0187-0 ORIGINAL PAPER Epipactis helleborine shows strong mycorrhizal preference towards ectomycorrhizal fungi with contrasting geographic distributions in Japan Yuki Ogura-Tsujita & Tomohisa Yukawa Received: 10 April 2008 /Accepted: 1 July 2008 /Published online: 26 July 2008 # Springer-Verlag 2008 Abstract Epipactis helleborine (L.) Crantz, one of the Keywords Wilcoxina . Pezizales . Habitat . most widespread orchid species, occurs in a broad range of Plant colonization habitats. This orchid is fully myco-heterotrophic in the germination stage and partially myco-heterotrophic in the adult stage, suggesting that a mycorrhizal partner is one of Introduction the key factors that determines whether E. helleborine successfully colonizes a specific environment. We focused on The habitats of plants range widely even within a single the coastal habitat of Japanese E. helleborine and surveyed species, and plants use various mechanisms to colonize and the mycorrhizal fungi from geographically different coastal survive in a specific environment (Daubenmire 1974; populations that grow in Japanese black pine (Pinus Larcher 2003). Since mycorrhizal fungi enable plants to thunbergii Parl.) forests of coastal sand dunes. Mycorrhizal access organic and inorganic sources of nutrition that are fungi and plant haplotypes were then compared with those difficult for plants to gain by themselves (Smith and Read from inland populations. Molecular phylogenetic analysis of 1997; Aerts 2002), mycorrhizal associations are expected to large subunit rRNA sequences of fungi from its roots play a crucial role in plant colonization. Although it seems revealed that E. helleborine is mainly associated with several certain that the mycorrhizal association is one of the key ectomycorrhizal taxa of the Pezizales, such as Wilcoxina, mechanisms for plants to colonize a new environment, our Tuber,andHydnotrya.
    [Show full text]
  • Methods to Control Ectomycorrhizal Colonization: Effectiveness of Chemical and Physical Barriers
    Mycorrhiza (2006) 17:51–65 DOI 10.1007/s00572-006-0083-4 ORIGINAL PAPER Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers François P. Teste & Justine Karst & Melanie D. Jones & Suzanne W. Simard & Daniel M. Durall Received: 19 January 2006 /Accepted: 25 August 2006 / Published online: 15 November 2006 # Springer-Verlag 2006 Abstract We conducted greenhouse experiments using ecological question of interest, Topas\ or the employment Douglas-fir (Pseudotsuga menziesii var. glauca) seedlings of mesh with pore sizes <1 μm are suitable for restricting where chemical methods (fungicides) were used to prevent mycorrhization in the field. ectomycorrhizal colonization of single seedlings or physical methods (mesh barriers) were used to prevent formation of Keywords Ectomycorrhizal colonization . mycorrhizal connections between neighboring seedlings. Common mycorrhizal networks . Hyphal restriction . These methods were chosen for their ease of application in Fungicides . Mesh barriers the field. We applied the fungicides, Topas\ (nonspecific) and Senator\ (ascomycete specific), separately and in combination at different concentrations and application Introduction frequencies to seedlings grown in unsterilized forest soils. Additionally, we assessed the ability of hyphae to penetrate In mycorrhizal research, evaluation of mycorrhizal effects μ mesh barriers of various pore sizes (0.2, 1, 20, and 500 m) to on plant performance often requires comparisons between form mycorrhizas on roots of neighboring seedlings. Ecto- mycorrhizal and non-mycorrhizal plants. Creating effective, mycorrhizal colonization was reduced by approximately 55% yet feasible methods to control mycorrhizal colonization in \ −1 with the application of Topas at 0.5 g l . Meshes with pore the field has become of utmost importance as there has μ sizes of 0.2 and 1 m were effective in preventing the been a recent demand to increase the ecological relevance formation of mycorrhizas via hyphal growth across the of mycorrhizal research (Read 2002).
    [Show full text]
  • Structure-Function Studies of Iron-Sulfur Enzyme Systems
    Structure-Function Studies of Iron-Sulfur Enzyme Systems Rosmarie Friemann Department of Molecular Biology Uppsala Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2005 1 Acta Universitatis Agriculturae Sueciae Agraria 504 ISSN 1401-6249 ISBN 91-576-6783-7 © 2004 Rosmarie Friemann, Uppsala Tryck: SLU Service/Repro, Uppsala 2004 2 Abstract Friemann, R., 2005, Structure-Function Studies of Iron-Sulfur Enzyme Systems. Doctorial dissertation. ISSN 1401-6249, ISBN 91-576-6783-7 Iron-sulfur clusters are among the most ancient of metallocofactors and serve a variety of biological functions in proteins, including electron transport, catalytic, and structural roles. Two kinds of multicomponent enzyme systems have been investigated by X-ray crystallography, the ferredoxin/thioredoxin system and bacterial Rieske non- heme iron dioxygenase (RDO) systems. The ferredoxin/thioredoxin system is a light sensitive system controlling the activities of key enzymes involved in the assimilatory (photosynthetic) and dissimilatory pathways in chloroplasts and photosynthetic bacteria. The system consists of a ferredoxin, ferredoxin:thioredoxin reductase (FTR), and two thioredoxins, Trx-m and Trx-f. In light, photosystem I reduces ferredoxin that reduces Trx-m and Trx- f. This two-electron reduction is catalyzed by FTR that contains a [4Fe-4S] center and a proximal disulfide bridge. When the first electron is delivered by the ferredoxin, an intermediate is formed where one thiol of the proximal disulfide attacks the disulfide bridge of thioredoxin. This results in a transient protein-protein complex held together by a mixed disulfide between FTR and Trx-m. This complex is stabilized by using a C40S mutant Trx-m and its structure have been determined.
    [Show full text]
  • Supporting Information High-Throughput Virtual Screening
    Supporting Information High-Throughput Virtual Screening of Proteins using GRID Molecular Interaction Fields Simone Sciabola, Robert V. Stanton, James E. Mills, Maria M. Flocco, Massimo Baroni, Gabriele Cruciani, Francesca Perruccio and Jonathan S. Mason Contents Table S1 S2-S21 Figure S1 S22 * To whom correspondence should be addressed: Simone Sciabola, Pfizer Research Technology Center, Cambridge, 02139 MA, USA Phone: +1-617-551-3327; Fax: +1-617-551-3117; E-mail: [email protected] S1 Table S1. Description of the 990 proteins used as decoy for the Protein Virtual Screening analysis. PDB ID Protein family Molecule Res. (Å) 1n24 ISOMERASE (+)-BORNYL DIPHOSPHATE SYNTHASE 2.3 1g4h HYDROLASE 1,3,4,6-TETRACHLORO-1,4-CYCLOHEXADIENE HYDROLASE 1.8 1cel HYDROLASE(O-GLYCOSYL) 1,4-BETA-D-GLUCAN CELLOBIOHYDROLASE I 1.8 1vyf TRANSPORT PROTEIN 14 KDA FATTY ACID BINDING PROTEIN 1.85 1o9f PROTEIN-BINDING 14-3-3-LIKE PROTEIN C 2.7 1t1s OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.4 1t1r OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.3 1q0q OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 1.9 1jcy LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.9 1fww LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.85 1uk7 HYDROLASE 2-HYDROXY-6-OXO-7-METHYLOCTA-2,4-DIENOATE 1.7 1v11 OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.95 1x7w OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.73 1d0l TRANSFERASE 35KD SOLUBLE LYTIC TRANSGLYCOSYLASE 1.97 2bt4 LYASE 3-DEHYDROQUINATE DEHYDRATASE
    [Show full text]
  • Ectomycorrhizal Fungal Assemblages of Nursery-Grown Scots Pine Are Influenced by Age of the Seedlings
    Article Ectomycorrhizal Fungal Assemblages of Nursery-Grown Scots Pine are Influenced by Age of the Seedlings Maria Rudawska * and Tomasz Leski Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; [email protected] * Correspondence: [email protected] Abstract: Scots pine (Pinus sylvestris L.) is the most widely distributed pine species in Europe and is relevant in terms of planted areas and harvest yields. Therefore, each year the demand for planting stock of Scots pine is exceedingly high, and large quantities of seedlings are produced annually throughout Europe to carry out reforestation and afforestation programs. Abundant and diverse ectomycorrhizal (ECM) symbiosis is critical for the success of seedlings once planted in the field. To improve our knowledge of ECM fungi that inhabit bare-root nursery stock of Scots pine and understand factors that influence their diversity, we studied the assemblages of ECM fungi present across 23 bare-root forest nurseries in Poland. Nursery stock samples were characterized by a high level of ECM colonization (nearly 100%), and a total of 29 ECM fungal taxa were found on 1- and 2- year-old seedlings. The diversity of the ECM community depended substantially on the nursery and age of the seedlings, and species richness varied from 3–10 taxa on 1-year-old seedlings and 6–13 taxa on 2-year-old seedlings. The ECM fungal communities that developed on the studied nursery stock were characterized by the prevalence of Ascomycota over Basidiomycota members on 1-year-old seedlings. All ecological indices (diversity, dominance, and evenness) were significantly affected by age of the seedlings, most likely because dominant ECM morphotypes on 1-year-old seedlings (Wilcoxina mikolae) were replaced by other dominant ones (e.g., Suillus luteus, Rhizopogon roseolus, Thelephora terrestris, Hebeloma crustuliniforme), mostly from Basidiomycota, on 2-year-old seedlings.
    [Show full text]
  • WO 2013/150015 Al 10 October 2013 (10.10.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/150015 Al 10 October 2013 (10.10.2013) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07D 209/54 (2006.01) A01N 43/38 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07D 471/10 (2006.01) A01N 43/90 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/EP2013/056915 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 2 April 2013 (02.04.2013) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (25) Filing Language: English ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 12162982.8 3 April 2012 (03.04.2012) EP GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: SYNGENTA PARTICIPATIONS AG TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).
    [Show full text]