Mycodb, a Global Database of Plant Response to Mycorrhizal Fungi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High-Severity Wildfire Reduces Richness and Alters Composition of Ectomycorrhizal Fungi in Low-Severity Adapted Ponderosa Pine Forests
Forest Ecology and Management 485 (2021) 118923 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests M. Fabiola Pulido-Chavez a,c,*, Ernesto C. Alvarado a, Thomas H. DeLuca b, Robert L. Edmonds a, Sydney I. Glassman c a School of Environmental and Forest Sciences, Box 352100, Seattle, WA 98195, United States b College of Forestry, Oregon State University, Corvallis, OR 97331-5704, United States c Department of Microbiology and Plant Pathology, 3401 Watkins Drive, Riverside, CA 92521, United States ARTICLE INFO ABSTRACT Keywords: Ponderosa pine (Pinus ponderosa) forests are increasingly experiencing high-severity, stand-replacing fires. Ectomycorrhizal fungi Whereas alterations to aboveground ecosystems have been extensively studied, little is known about soil fungal Saprobic fungi responses in fire-adaptedecosystems. We implement a chronosequence of four different firesthat varied in time High-severity wildfires since fire,2 years (2015) to 11 years (2006) and contained stands of high severity burned P. ponderosa in eastern Ponderosa pine Washington and compared their soil fungal communities to adjacent unburned plots. Using Illumina Miseq Illumina MiSeq Soil nutrients (ITS1), we examined changes in soil nutrients, drivers of species richness for ectomycorrhizal (plant symbionts) Succession and saprobic (decomposers) fungi, community shifts, and post-fire fungal succession in burned and unburned plots. Ectomycorrhizal richness was 43.4% and saprobic richness 12.2% lower in the burned plots, leading to long-term alterations to the fungal communities that did not return to unburned levels, even after 11 years. -
DNA-Metabarcoding of Belowground Fungal Communities in Bare-Root Forest Nurseries: Focus on Different Tree Species
microorganisms Article DNA-Metabarcoding of Belowground Fungal Communities in Bare-Root Forest Nurseries: Focus on Different Tree Species Diana Marˇciulyniene˙ 1,* , Adas Marˇciulynas 1,Jurat¯ e˙ Lynikiene˙ 1, Migle˙ Vaiˇciukyne˙ 1, Arturas¯ Gedminas 1 and Audrius Menkis 2 1 Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepu˛Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; [email protected] (A.M.); [email protected] (J.L.); [email protected] (M.V.); [email protected] (A.G.) 2 Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden; [email protected] * Correspondence: [email protected] Abstract: The production of tree seedlings in forest nurseries and their use in the replanting of clear-cut forest sites is a common practice in the temperate and boreal forests of Europe. Although conifers dominate on replanted sites, in recent years, deciduous tree species have received more attention due to their often-higher resilience to abiotic and biotic stress factors. The aim of the present study was to assess the belowground fungal communities of bare-root cultivated seedlings of Alnus glutinosa, Betula pendula, Pinus sylvestris, Picea abies and Quercus robur in order to gain a better understanding of the associated fungi and oomycetes, and their potential effects on the seedling performance in forest nurseries and after outplanting. The study sites were at the seven largest bare-root forest nurseries in Lithuania. The sampling included the roots and adjacent soil of 2–3 year old healthy-looking seedlings. -
Occurrence of Glomeromycota Species in Aquatic Habitats: a Global Overview
Occurrence of Glomeromycota species in aquatic habitats: a global overview MARIANA BESSA DE QUEIROZ1, KHADIJA JOBIM1, XOCHITL MARGARITO VISTA1, JULIANA APARECIDA SOUZA LEROY1, STEPHANIA RUTH BASÍLIO SILVA GOMES2, BRUNO TOMIO GOTO3 1 Programa de Pós-Graduação em Sistemática e Evolução, 2 Curso de Ciências Biológicas, and 3 Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil * CORRESPONDENCE TO: [email protected] ABSTRACT — Arbuscular mycorrhizal fungi (AMF) are recognized in terrestrial and aquatic ecosystems. The latter, however, have received little attention from the scientific community and, consequently, are poorly known in terms of occurrence and distribution of this group of fungi. This paper provides a global list on AMF species inhabiting aquatic ecosystems reported so far by scientific community (lotic and lentic freshwater, mangroves, and wetlands). A total of 82 species belonging to 5 orders, 11 families, and 22 genera were reported in 8 countries. Lentic ecosystems have greater species richness. Most studies of the occurrence of AMF in aquatic ecosystems were conducted in the United States and India, which constitute 45% and 78% reports coming from temperate and tropical regions, respectively. KEY WORDS — checklist, flooded areas, mycorrhiza, taxonomy Introduction Aquatic ecosystems comprise about 77% of the planet surface (Rebouças 2006) and encompass a diversity of habitats favorable to many species from marine (ocean), transitional estuaries to continental (wetlands, lentic and lotic) environments (Reddy et al. 2018). Despite this territorial representativeness and biodiversity already recorded, there are gaps when considering certain types of organisms, e.g. fungi. Fungi are considered a common and important component of almost all trophic levels. -
Coordinated Changes in the Accumulation of Metal Ions in Maize (Zea Mays Ssp. Mays L.) in Response to Inoculation with the Arbus
bioRxiv preprint doi: https://doi.org/10.1101/135459; this version posted June 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coordinated changes in the accumulation of metal ions in maize (Zea mays ssp. mays L.) in response to inoculation with the arbuscular mycorrhizal fungus Funneliformis mosseae Running title: Ionome of mycorrhizal maize Corresponding Author: Dr. R.J.H. Sawers Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV-IPN), Irapuato C.P. 36821, Guanajuato, México tel: +52 462 1663012 fax: +52 462 6078246 e-mail: [email protected] Subject areas: 2) environmental and stress responses Figures and Tables: 6 color figures; 2 tables; supplemental PDF containing two figures; supplementary data as csv bioRxiv preprint doi: https://doi.org/10.1101/135459; this version posted June 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coordinated changes in the accumulation of metal ions in maize (Zea mays ssp. mays L.) in response to inoculation with the arbuscular mycorrhizal fungus Funneliformis mosseae Running title: Ionome of mycorrhizal maize M. Rosario Ramirez-Flores1, Ruben Rellan-Alvarez2, Barbara Wozniak3, Mesfin-Nigussie Gebreselassie3, Iver Jakobsen4, Victor Olalde-Portugal1, Ivan Baxter5, Uta Paszkowski3, 6 and Ruairidh J. -
Epipactis Helleborine Shows Strong Mycorrhizal Preference Towards Ectomycorrhizal Fungi with Contrasting Geographic Distributions in Japan
Mycorrhiza (2008) 18:331–338 DOI 10.1007/s00572-008-0187-0 ORIGINAL PAPER Epipactis helleborine shows strong mycorrhizal preference towards ectomycorrhizal fungi with contrasting geographic distributions in Japan Yuki Ogura-Tsujita & Tomohisa Yukawa Received: 10 April 2008 /Accepted: 1 July 2008 /Published online: 26 July 2008 # Springer-Verlag 2008 Abstract Epipactis helleborine (L.) Crantz, one of the Keywords Wilcoxina . Pezizales . Habitat . most widespread orchid species, occurs in a broad range of Plant colonization habitats. This orchid is fully myco-heterotrophic in the germination stage and partially myco-heterotrophic in the adult stage, suggesting that a mycorrhizal partner is one of Introduction the key factors that determines whether E. helleborine successfully colonizes a specific environment. We focused on The habitats of plants range widely even within a single the coastal habitat of Japanese E. helleborine and surveyed species, and plants use various mechanisms to colonize and the mycorrhizal fungi from geographically different coastal survive in a specific environment (Daubenmire 1974; populations that grow in Japanese black pine (Pinus Larcher 2003). Since mycorrhizal fungi enable plants to thunbergii Parl.) forests of coastal sand dunes. Mycorrhizal access organic and inorganic sources of nutrition that are fungi and plant haplotypes were then compared with those difficult for plants to gain by themselves (Smith and Read from inland populations. Molecular phylogenetic analysis of 1997; Aerts 2002), mycorrhizal associations are expected to large subunit rRNA sequences of fungi from its roots play a crucial role in plant colonization. Although it seems revealed that E. helleborine is mainly associated with several certain that the mycorrhizal association is one of the key ectomycorrhizal taxa of the Pezizales, such as Wilcoxina, mechanisms for plants to colonize a new environment, our Tuber,andHydnotrya. -
Methods to Control Ectomycorrhizal Colonization: Effectiveness of Chemical and Physical Barriers
Mycorrhiza (2006) 17:51–65 DOI 10.1007/s00572-006-0083-4 ORIGINAL PAPER Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers François P. Teste & Justine Karst & Melanie D. Jones & Suzanne W. Simard & Daniel M. Durall Received: 19 January 2006 /Accepted: 25 August 2006 / Published online: 15 November 2006 # Springer-Verlag 2006 Abstract We conducted greenhouse experiments using ecological question of interest, Topas\ or the employment Douglas-fir (Pseudotsuga menziesii var. glauca) seedlings of mesh with pore sizes <1 μm are suitable for restricting where chemical methods (fungicides) were used to prevent mycorrhization in the field. ectomycorrhizal colonization of single seedlings or physical methods (mesh barriers) were used to prevent formation of Keywords Ectomycorrhizal colonization . mycorrhizal connections between neighboring seedlings. Common mycorrhizal networks . Hyphal restriction . These methods were chosen for their ease of application in Fungicides . Mesh barriers the field. We applied the fungicides, Topas\ (nonspecific) and Senator\ (ascomycete specific), separately and in combination at different concentrations and application Introduction frequencies to seedlings grown in unsterilized forest soils. Additionally, we assessed the ability of hyphae to penetrate In mycorrhizal research, evaluation of mycorrhizal effects μ mesh barriers of various pore sizes (0.2, 1, 20, and 500 m) to on plant performance often requires comparisons between form mycorrhizas on roots of neighboring seedlings. Ecto- mycorrhizal and non-mycorrhizal plants. Creating effective, mycorrhizal colonization was reduced by approximately 55% yet feasible methods to control mycorrhizal colonization in \ −1 with the application of Topas at 0.5 g l . Meshes with pore the field has become of utmost importance as there has μ sizes of 0.2 and 1 m were effective in preventing the been a recent demand to increase the ecological relevance formation of mycorrhizas via hyphal growth across the of mycorrhizal research (Read 2002). -
Ectomycorrhizal Fungal Assemblages of Nursery-Grown Scots Pine Are Influenced by Age of the Seedlings
Article Ectomycorrhizal Fungal Assemblages of Nursery-Grown Scots Pine are Influenced by Age of the Seedlings Maria Rudawska * and Tomasz Leski Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; [email protected] * Correspondence: [email protected] Abstract: Scots pine (Pinus sylvestris L.) is the most widely distributed pine species in Europe and is relevant in terms of planted areas and harvest yields. Therefore, each year the demand for planting stock of Scots pine is exceedingly high, and large quantities of seedlings are produced annually throughout Europe to carry out reforestation and afforestation programs. Abundant and diverse ectomycorrhizal (ECM) symbiosis is critical for the success of seedlings once planted in the field. To improve our knowledge of ECM fungi that inhabit bare-root nursery stock of Scots pine and understand factors that influence their diversity, we studied the assemblages of ECM fungi present across 23 bare-root forest nurseries in Poland. Nursery stock samples were characterized by a high level of ECM colonization (nearly 100%), and a total of 29 ECM fungal taxa were found on 1- and 2- year-old seedlings. The diversity of the ECM community depended substantially on the nursery and age of the seedlings, and species richness varied from 3–10 taxa on 1-year-old seedlings and 6–13 taxa on 2-year-old seedlings. The ECM fungal communities that developed on the studied nursery stock were characterized by the prevalence of Ascomycota over Basidiomycota members on 1-year-old seedlings. All ecological indices (diversity, dominance, and evenness) were significantly affected by age of the seedlings, most likely because dominant ECM morphotypes on 1-year-old seedlings (Wilcoxina mikolae) were replaced by other dominant ones (e.g., Suillus luteus, Rhizopogon roseolus, Thelephora terrestris, Hebeloma crustuliniforme), mostly from Basidiomycota, on 2-year-old seedlings. -
Arbuscular Mycorrhizal Fungal Community Assembly in the Brazilian Tropical Seasonal Dry Forest Tancredo Augusto Feitosa De Souza* and Helena Freitas
de Souza and Freitas Ecological Processes (2017) 6:2 DOI 10.1186/s13717-017-0072-x RESEARCH Open Access Arbuscular mycorrhizal fungal community assembly in the Brazilian tropical seasonal dry forest Tancredo Augusto Feitosa de Souza* and Helena Freitas Abstract Introduction: Here, we compare the arbuscular mycorrhizal fungal (AMF) community composition in soils from the root zone of the exotic invasive species Prosopis juliflora (EXO soils) and soils from the root zone of the native species Mimosa tenuiflora (NAT soils) from five locations in the Brazilian tropical seasonal dry forest, Paraíba, Brazil, using morphological analyses. Results: AMF community composition in EXO and NAT soils were dissimilar. Available phosphorus, diversity index, spore abundance, and species richness were the main factors differing between the EXO and NAT soils. In general, the most dominant order present in the soils were Glomerales (44.8%) and Gigasporales (41.4%). The most abundant AMF genus in all studied soils was Funneliformis. Conclusions: Differences in AMF community composition were associated with (1) differences in the dominant plant species (P. juliflora vs. M. tenuiflora) and (2) changes in soil chemical factors (soil, pH, total organic carbon, total nitrogen, and available P) in EXO soils. These results contribute to a deeper view of the AMF communities in exotic soils and open new perspectives for ecological processes involving AMF species and exotic plant species in the Brazilian tropical seasonal dry forest. Keywords: Glomeromycota, AMF community, AMF diversity, Native plant species, Exotic plant species, Caatinga Introduction diversity (Pegado et al. 2006; Andrade et al. 2008; The Brazilian tropical seasonal dry forest, also referred Andrade et al. -
SUGARCANE BAGASSE: a NOVEL SUBSTRATE for MASS MULTIPLICATION of FUNNELIFORMIS MOSSEAE with ONION AS HOST Anju TANWAR 1, Ashok AGGARWAL 2* and Vipin PARKASH 3
Journal of Central European Agriculture, 2013, 14(4), p.1502-1511 DOI: 10.5513/JCEA01/14.4.1386 SUGARCANE BAGASSE: A NOVEL SUBSTRATE FOR MASS MULTIPLICATION OF FUNNELIFORMIS MOSSEAE WITH ONION AS HOST Anju TANWAR 1, Ashok AGGARWAL 2* and Vipin PARKASH 3 1Mycology and Plant Pathology Laboratory, Department of Botany, Kurukshetra University, Kurukshetra- 136119, Haryana, India, E-mail: [email protected] 2Professor, Department of Botany, Kurukshetra University, Kurukshetra-136119, Haryana, India, E-mail: [email protected] *Correspondence 3Scientist-D, Rain Forest Research Institute (ICFRE), Autonomous council of Ministry of Environment and Forests, Govt. of India, Jorhat-785001, Assam, India, E-mail: [email protected] ABSTRACT A pot experiment was conducted to test the influence of sugarcane bagasse (fibrous waste left over after sugarcane juice) as a substrate for the inoculum production of Funneliformis mosseae in terms of AM root colonization, spore number and AM colonization pattern using onion as host plant. Their effect on growth performance of onion was also recorded in terms of increase in plant height, above ground fresh and dry weight, root length, root fresh and dry weight. The experiment was a 3×4 factorial design employing three forms of bagasse (fresh, dry and compost) and their four different concentrations (without substrate, 25 g/pot, 50 g/pot and 100 g/pot). The results showed that the compost bagasse promoted higher AM root colonization and sporulation, followed by dry and fresh bagasse. Maximum AM spores, vesicles, arbuscules and 100 per cent colonized roots were detected in onion plants supplemented with 25 g compost bagasse. This treatment also influenced significant increase in plant growth. -
Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome
H OH metabolites OH Review Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome Sukhmanpreet Kaur and Vidya Suseela * Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; [email protected] * Correspondence: [email protected] Received: 18 June 2020; Accepted: 12 August 2020; Published: 18 August 2020 Abstract: Arbuscular mycorrhizal fungi (AMF) is among the most ubiquitous plant mutualists that enhance plant growth and yield by facilitating the uptake of phosphorus and water. The countless interactions that occur in the rhizosphere between plants and its AMF symbionts are mediated through the plant and fungal metabolites that ensure partner recognition, colonization, and establishment of the symbiotic association. The colonization and establishment of AMF reprogram the metabolic pathways of plants, resulting in changes in the primary and secondary metabolites, which is the focus of this review. During initial colonization, plant–AMF interaction is facilitated through the regulation of signaling and carotenoid pathways. After the establishment, the AMF symbiotic association influences the primary metabolism of the plant, thus facilitating the sharing of photosynthates with the AMF. The carbon supply to AMF leads to the transport of a significant amount of sugars to the roots, and also alters the tricarboxylic acid cycle. Apart from the nutrient exchange, the AMF imparts abiotic stress tolerance in host plants by increasing the abundance of several primary metabolites. Although AMF initially suppresses the defense response of the host, it later primes the host for better defense against biotic and abiotic stresses by reprogramming the biosynthesis of secondary metabolites. Additionally, the influence of AMF on signaling pathways translates to enhanced phytochemical content through the upregulation of the phenylpropanoid pathway, which improves the quality of the plant products. -
Hoffmannoscypha, a Novel Genus of Brightly Coloured, Cupulate Pyronemataceae Closely Related to Tricharina and Geopora
Mycol Progress DOI 10.1007/s11557-012-0875-1 ORIGINAL ARTICLE Hoffmannoscypha, a novel genus of brightly coloured, cupulate Pyronemataceae closely related to Tricharina and Geopora Benjamin Stielow & Gunnar Hensel & Dirk Strobelt & Huxley Mae Makonde & Manfred Rohde & Jan Dijksterhuis & Hans-Peter Klenk & Markus Göker Received: 7 July 2012 /Revised: 11 November 2012 /Accepted: 25 November 2012 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2012 Abstract The rare apothecial, cupulate fungus Geopora comprising Phaeangium, Picoa, the majority of the pellita (Pyronemataceae) is characterized by a uniquely Tricharina species, and the remaining Geopora species. bright yellow-orange excipulum. We here re-examine its Based on its phylogenetic position and its unique combina- affiliations by use of morphological, molecular phylogenetic tion of morphological characters, we assign G. pellita to and ultrastructural analyses. G. pellita appears as phyloge- Hoffmannoscypha, gen. nov., as H. pellita, comb. nov. As in netically rather isolated, being the sister group of a clade a previous study, analyses of both large subunit (LSU) and internal transcribed spacer (ITS) ribosomal DNA suggest that the remaining genus Geopora is paraphyletic, with the Electronic supplementary material The online version of this article hypogeous, ptychothecial type species more closely related (doi:10.1007/s11557-012-0875-1) contains supplementary material, to Picoa and Phaeangium than to the greyish-brownish which is available to authorized users. cupulate and apothecial Geopora spp., indicating that the : B. Stielow J. Dijksterhuis latter should be reassigned to the genus Sepultaria. The Centraalbureau voor Schimmelcultures, current study also shows that ITS confirm LSU data regard- Uppsalalaan 8, ing the polyphyly of Tricharina. -
2 Pezizomycotina: Pezizomycetes, Orbiliomycetes
2 Pezizomycotina: Pezizomycetes, Orbiliomycetes 1 DONALD H. PFISTER CONTENTS 5. Discinaceae . 47 6. Glaziellaceae. 47 I. Introduction ................................ 35 7. Helvellaceae . 47 II. Orbiliomycetes: An Overview.............. 37 8. Karstenellaceae. 47 III. Occurrence and Distribution .............. 37 9. Morchellaceae . 47 A. Species Trapping Nematodes 10. Pezizaceae . 48 and Other Invertebrates................. 38 11. Pyronemataceae. 48 B. Saprobic Species . ................. 38 12. Rhizinaceae . 49 IV. Morphological Features .................... 38 13. Sarcoscyphaceae . 49 A. Ascomata . ........................... 38 14. Sarcosomataceae. 49 B. Asci. ..................................... 39 15. Tuberaceae . 49 C. Ascospores . ........................... 39 XIII. Growth in Culture .......................... 50 D. Paraphyses. ........................... 39 XIV. Conclusion .................................. 50 E. Septal Structures . ................. 40 References. ............................. 50 F. Nuclear Division . ................. 40 G. Anamorphic States . ................. 40 V. Reproduction ............................... 41 VI. History of Classification and Current I. Introduction Hypotheses.................................. 41 VII. Growth in Culture .......................... 41 VIII. Pezizomycetes: An Overview............... 41 Members of two classes, Orbiliomycetes and IX. Occurrence and Distribution .............. 41 Pezizomycetes, of Pezizomycotina are consis- A. Parasitic Species . ................. 42 tently shown