Addition Reactions and Photoisomerization of Cis,Trans-1,5-Cyclodecadiene

Total Page:16

File Type:pdf, Size:1020Kb

Addition Reactions and Photoisomerization of Cis,Trans-1,5-Cyclodecadiene Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1970 Addition Reactions and Photoisomerization of Cis,trans-1,5-Cyclodecadiene. Hsin-hsiong Hsieh Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Hsieh, Hsin-hsiong, "Addition Reactions and Photoisomerization of Cis,trans-1,5-Cyclodecadiene." (1970). LSU Historical Dissertations and Theses. 1859. https://digitalcommons.lsu.edu/gradschool_disstheses/1859 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. 71-6579 HSIEH, Hsin-Hsiong, 1936- ADDITION REACTIONS AND PHOTOISOMERIZATION OF CIS,TRANS-1,5-CYCLODECADIENE. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1970 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan ADDITION REACTIONS AND PHOTOISOMERIZATION OF CIS,TRANS-1,5“CYCLODECADIENE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Hsin-Hsiong Hsieh B.S., Taiwan Provincial Chung-Hsing University, i960 M.S., Louisiana State University, 1966 August, 1970 ACKNOWLEDGEMENT I wish to express my deepest appreciation to Professor James G . Traynham for his guidance, inspiration, and encouragement in performing this research and for his many suggestions in the preparation of this dissertation,, The financial support by the National Science Foundation for this research, a special final year graduate fellowship given to the author by the Petroleum Research Fund administered by the American Chemical Society, and the financial assistance for the preparation of this dissertation by the Dr. Charles E„ Coates Memorial Fund of the L.S.Uo Foundation denoted by George H. Coates are gratefully acknowledged. TABLE OF CONTENTS , Page ACKNOWLEDGEMENT . ................................................ ii LIST OF TABLES . ......................... vi LIST OF SCHEMES ................................... vii ABSTRACT ................. viii CHAPTER ........................... .................. I. INTRODUCTION ........................ 1 II. RESULTS AND DISCUSSION .................. ....... 10 Addition Reactions ........................... 10 Ionic Additions ............................ 1 0 Radical Additions..... ........................... 18 Ionic and Radical Additions...................... 30 Carbene Additions . ........................ 37 Photoisomerization of cis,trans-l,5-Cyclodecadiene . 43 Relative Reactivities of cis,trans- and cis,cis-1, 5-Cyclodecadienes..... ............. 49 III. E X P E R I M E N T A L .............. 54 A. Preparation of cis,trans-l,5“Cyclodecadiene .... 54 1. Ethoxydibutylaluminum.......................... 54 2. Nickel-bijs-l,5-Cyclooctadiene................. 55 3 . Preparation of cis,trans-l,5-Cyclodecadiene . 55 B. Ionic Additions of Reagents to cis,trans-1,5- Cyclodecadiene .................................. 56 1. Addition of Trifluoroacetic A c i d ............. 56 iv TABLE OF CONTENTS (Continued) Page 2. Addition of Mercuric Azide .......... 58 3® Addition of Acetonitrile ............. 60 k. Addition of Benzonitrile ........... 6l C. Radical Additions of Reagents to cis,trans-1,5- Cyclodecadiene . 62 1. Radical Addition of Chloroform ........ 62 2. Radical Addition of Bromotrichloromethane . 6k a. In Excess Bromotrichlorome thane ..... 6k b. In Methylene Chloride Solution ...... 6j 3® Radical Addition of Bromoform ............... 68 D. Ionic and Radical Additions of Reagents to cis, trans-l,5-Cyclodecadiene . ...................... 68 1. Additions of Molecular Chlorine ............. 68 a. In the Absence of Oxygen ............ 68 b. In the Presence of O x y g e n .......... 70 2. Additions of Iodobenzene Dichloride ........ 71 a. Iodobenzene Dichloride .......... 71 b. Addition of Iodobenzene Dichloride in the Presence of Oxygen ............... 71 c. Addition of Iodobenzene Dichloride in the Absence of Oxygen ................. J2 3 . Additions of Bromine Azide .......... J2 a. Preparation of Bromine A z i d e ............. J2 b. Ionic Addition of Bromine Azide ..... 73 c. Radical Addition of Bromine Azide .... 73 V TABLE OF CONTENTS (Continued) Page E. Additions of Carbenes to cis, trans-l,5-Cyclo- decadiene . ............................... 7^- 1. Methyleneation by Simmons-Smith Reaction . 7^ 20 Methyleneation by Diazomethane ........ 75 3« Addition of Dibromomethylene ......... 76 4. Addition of .Isopropylidenemethylene ...... 77 F. Photoisomerization of 1,5-Cyclodecadienes ..... 79 1. General Procedure ............... 79 2. Copper(l) Chloride Catalyzed Photoisomerization of cis, trans-l,5-Cyclodecadiene ....... 80 3. Photoisomerization of cis,trans-l,5-Cyclo- decadiene with Xylene Sensitizer .......... 81 4. Photoisomerization of cis,cis-l,5-Cyclodeca- diene with Xylene Sensitizer .............. 82 G. Thermal Rearrangement of cis,trans- and cis,cis-1,- 5-Cyclodecadienes .... .................. 82 H. Addition of Trifluoroacetic Acid to cis,cis-1,5- Cyclodecadiene ........ ...... .......... 82 I. Relative Rates of Additions of Trifluoroacetic Acid to cis, trans- and cis,cis-l,5-Cyclodecadiene . 83 IV. CONCLUSIONS ................. 8^ REFERENCES ..................... .......... 86 SELECTED BIBLIOGRAPHY ...................... 90 APPENDIX ........... .................................... 91 VITA .................................................... .. 92 LIST OF TABLES Table Page I. Thermodynamic Stabilities of Medium Ring Olefins ......... 2 II. Substituted cis-Decalins from Ionic Reactions of cis, - trans-l,5-Cyclodecadiene ................... 11 III. Product Distributions from the Reactions of Iodobenzene Dichloride with cis, trans-l,5-Cyclodecadiene jh IV. Product Distributions in Reactions Yielding 1,2-Addition Products with cis,trans-l,5-Cyclodecadiene............ 38 V. Product Distributions in Xylene-Sensitized Photoisomeri­ zation of cis, trans-l,5-Cyclodecadiene ............... ^7 VI. Product Distributions of the Thermal Rearrangement of cis,trans- and cis,cis-l,5-Cyclodecadiene to cis-1,2- Divinylcyclohexane . „ . .............. 50 vi LIST OF SCHEMES Scheme Page 1. (Mechanism of the addition of trifluoroacetic acid to cis, trans-l,5-cyclodecadiene)............ 12 2. (Mechanism of the addition of mercuric azide to cis, trans-1.5-cvclodecadiene) .... ................... 16 3. (Mechanism of the addition of alkylnitrile to cis,trans- 1 .5-cyclodecadiene . ............. ........ 18 4. (Radical addition of chloroform to cis,trans-l,5-cyclo- decadiene) ...... ................................ 20 5. (Mechanism of the radical additions of bromotrichloro- methane to cis,trans-l,5-cyclodecadiene) ....... 28 6. (Radical addition of iodobenzene dichloride to cis, trans-l,5-cyclodecadjene) . .......................... 36 7. (Addition of carbenes to cis,trans-l,5-cyclodecadiene) . yj 8. (Photoisomerization of c_is,trans-l,5-cyclod.ecadiene) . 48 9. (Thermal rearrangements of cis,trans- and cis,cjs- 1 .5-cyclodecadiene to cis-l,2 -divinylcyclohexane) . 50 10. (Mechanisms of the addition of trifluoroacetic acid to cis,trans- and cis,cis-l,5-cyclodecadiene) .... $2 vii ABSTRACT Ionic additions of reagents, such as trifluoroacetic acid, mer­ curic azide, acetonitrile, benzonitrile, molecular chlorine, iodobenzene dichloride, and bromine azide, to cis, trans-l,5-cyclodecadiene result in transannular cycloadditions to form substituted cis-decalins as products. The products from these reactions are consistent with stepwise or con­ certed mechanisms. The products obtained from the radical additions of halomethanes, molecular chlorine, iodobenzene dichloride, and bromine azide, which add to the diene by a stepwise mechanism, depend on the reagents and the conditions employed for the reactions. For poor trans­ fer agents such as chloroform, and under very dilute conditions, the addition occurs exclusively by transannular (1,6) G-C bond formation. However, when a large excess of bromoform was used,some 1,2-addition product was also isolated. Carbenes generated from diazomethane, bro­ moform, and 5 ,5-dimethyl-N-nitrosooxazolidone also added to the diene. In each case, the carbene added to the trans double bond in the diene in preference to the cis double bond. The stereochemistry of some of these adducts, and the mechanistic implications of these results are discussed. Finally, the cis,trans-1,5 -diene was photoisomerized to cis,cis-l,5-diene. The relative reactivities of these two isomeric dienes were compared by the Cope rearrangment and the addition of tri­ fluoroacetic acid. The differences between the thermal stabilities and the reactivities of these two isomers are discussed in terms of confor­ mational control of the transition states leading to the products. CHAPTER I INTRODUCTION This study deals with ionic, radical, and carbene additions to cis,trans-1 ,5-cyclodecadiene (i) and with the photoisomerization of the diene. lo 6 4 Interest in these reactions derives from observations reported in the recent literature. For example, ionic addition of reagents to the diene I resulted in the formation of mono- or disubstituted cis-deca-
Recommended publications
  • Decalin Dehydrogenation for In-Situ Hydrogen Production To
    DECALIN DEHYDROGENATION FOR IN-SITU HYDROGEN PRODUCTION TO INCREASE CATALYTIC CRACKING RATE OF N-DODECANE Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemical Engineering By Christopher Bruening Dayton, Ohio May, 2018 DECALIN DEHYDROGENATION FOR IN-SITU HYDROGEN PRODUCTION TO INCREASE CATALYTIC CRACKING RATE OF N-DODECANE Name: Bruening, Christopher Robbins APPROVED BY: Matthew J. DeWitt, Ph.D. Donald K. Phelps, Ph.D. Advisory Committee Chairman Committee Member Distinguished Research Engineer Senior Research Chemist University of Dayton Research Institute Air Force Research Laboratory Michael Elsass, Ph.D. Kevin Myers, D.Sc., P.E. Committee Member Committee Member Lecturer Professor Department of Chemical and Materials Department of Chemical and Materials Engineering Engineering Robert J. Wilkens, Ph.D., P.E. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering School of Engineering ii ABSTRACT DECALIN DEHYDROGENATION FOR IN-SITU HYDROGEN PRODUCTION TO INCREASE CATALYTIC CRACKING RATE OF N-DODECANE Name: Bruening, Christopher Robbins University of Dayton Advisor: Dr. Matthew J. DeWitt Catalytic cracking of paraffinic hydrocarbons is a widely utilized industrial process, but catalyst deactivation over time requires regeneration or replacement of the catalyst bed. A gaseous hydrogen co-feed can be used to promote hydrocracking and decrease deactivation of the catalyst due to coke formation or active site poisoning. One potential alternative approach to extend the lifetime of a cracking catalyst is to generate molecular hydrogen in-situ via catalytic dehydrogenation of a cycloparaffin.
    [Show full text]
  • Dibasic Acids for Nylon Manufacture
    - e Report No. 75 DIBASIC ACIDS FOR NYLON MANUFACTURE by YEN-CHEN YEN October 1971 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA CONTENTS INTRODUCTION, ....................... 1 SUMMARY .......................... 3 General Aspects ...................... 3 Technical Aspects ..................... 7 INDUSTRY STATUS ...................... 15 Applications and Consumption of Sebacic Acid ........ 15 Applications and Consumption of Azelaic Acid ........ 16 Applications of Dodecanedioic and Suberic Acids ...... 16 Applications of Cyclododecatriene and Cyclooctadiene .... 17 Producers ......................... 17 Prices ........................... 18 DIBASIC ACIDS FOR MANUFACTURE OF POLYAMIDES ........ 21 CYCLOOLIGOMERIZATIONOF BUTADIENE ............. 29 Chemistry ......................... 29 Ziegler Catalyst ..................... 30 Nickel Catalyst ..................... 33 Other Catalysts ..................... 34 Co-Cyclooligomerization ................. 34 Mechanism ........................ 35 By-products and Impurities ................ 37 Review of Processes .................... 38 A Process for Manufacture of Cyclododecatriene ....... 54 Process Description ................... 54 Process Discussion .................... 60 Cost Estimates ...................... 60 A Process for Manufacture of Cyclooctadiene ........ 65 Process Description ................... 65 Process Discussion .................... 70 Cost Estimates ...................... 70 A Process for Manufacture of Cyclodecadiene
    [Show full text]
  • A COORDINATION and REDOX CHEMISTRY of ANTIMONY-BASED LIGANDS and APPLICATIONS in ORGANOMETALLIC CATALYSIS a Dissertation by YING
    COORDINATION AND REDOX CHEMISTRY OF ANTIMONY-BASED LIGANDS AND APPLICATIONS IN ORGANOMETALLIC CATALYSIS A Dissertation by YING-HAO LO Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, François P. Gabbaï Committee Members, Michael B. Hall Michael Nippe Hung-Jen Wu Head of Department, Simon W. North December 2019 Major Subject: Chemistry Copyright 2019 Ying-Hao Lo a ABSTRACT The use of Z-ligands to modulate the electronic property of transition metal centers is a powerful strategy in catalyst design. Our group has shown that antimony- based ambiphilic ligand, accept electron density from adjacent metal centers by the σ* orbital of the antimony (V) center and thus increasing the electrophilic reactivity of the trancition metal center. In this thesis, we were eager to determine if the charge of the Z- type ligand can be used to further enhance this effect. To this end, we synthesized a 2+ 2+ dicationic gold complex [46] ([(o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuCl] ) featuring a dicationic antimony (V) ligand with a phosphine oxide arm coordinating to the antimony center. Both experimental and computational results show that the gold complex possess a strong Au→Sb interaction reinforced by the dicationic character of the antimony center. The gold‐bound chloride anion of this complex is rather inert and necessitates the addition of excess AgNTf2 to undergo activation. The activated complex, referred to as 2+ 2+ [47] ([((o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuNTf2] ) readily catalyzes both the polymerization and the hydroamination of styrene.
    [Show full text]
  • Organic Contaminant Analytical Methods of the National Status and Trends Program: 2000-2006
    Organic Contaminant Analytical Methods of the National Status and Trends Program: 2000-2006 NOAA Technical Memorandum NOS NCCOS 30 Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government. Cover photograph of shrimping fleet, Palacios, TX Citation for this Report Kimbrough, K. L., G. G. Lauenstein and W. E. Johnson (Editors). 2006. Organic Contaminant Analytical Methods of the National Status and Trends Program: Update 2000-2006. NOAA Technical Memorandum NOS NCCOS 30. 137 pp. Organic Contaminant Analytical Methods of the National Status and Trends Program: Update 2000-2006 K. L. Kimbrough, G. G. Lauenstein and W. E. Johnson (Editors) Center for Coastal Monitoring and Assessment NOAA/NOS/NCCOS 1305 East-West Highway Silver Spring, Maryland 20910 NOAA Technical Memorandum NOS NCCOS 30 June 2007 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Carlos M. Gutierrez Conrad C. Lautenbacher, Jr. John H. Dunnigan Secretary Administrator Assistant Administrator TABLE OF CONTENTS TABLE OF CONTENTS ..................................................................................................I LIST OF TABLES ..........................................................................................................III LIST OF FIGURES ........................................................................................................IV CHAPTER 1. INTRODUCTION...................................................................................
    [Show full text]
  • Research on Crystal Growth and Characterization at the National Bureau of Standards January to June 1964
    NATL INST. OF STAND & TECH R.I.C AlllDS bnSflb *^,; National Bureau of Standards Library^ 1*H^W. Bldg Reference book not to be '^sn^ t-i/or, from the library. ^ecknlccil v2ote 251 RESEARCH ON CRYSTAL GROWTH AND CHARACTERIZATION AT THE NATIONAL BUREAU OF STANDARDS JANUARY TO JUNE 1964 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS tiona! Bureau of Standards NOV 1 4 1968 151G71 THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national stand- ards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particu- larly for government agencies; cooperation in the establishment of standard practices for incorpora- tion in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, tech- nical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units.
    [Show full text]
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • United States Patent Office Patented
    2,826,604 United States Patent Office Patented. Mar. 11, 1958 2 (130-140 C.), the decalyl acetate being recoverable from the reaction mixture by distillation of the neutralized re 2,826,604 action liquid. The recovered product was a straw-colored PREPARATION OF DECAHYDRONAPHTHYL fragrant oil, which was established to be 1-decallyl acetate. ACETATE 5 The position of the acetoxy group was determined by William E. Erner, Wilmington, Del, assignor to Houdry hydrolysis of the ester to the alcohol and subsequent Process Corporation, Wilmington, Del, a corporation conversion to decalone-1 by chromic acid-acetic acid oxi of Delaware dation. - The aceto-oxidation of Decalin can be carried out No Drawing. Application June 2, 1955 10 in the presence of oxidation catalysts of the type em Serial No. 512,853 bodied in the metal salts of the lower fatty acids. Cobalt 2 Claims. (C. 260-488) acetate proved outstanding among the metallic-soap oxi dation catalysts studied. The use of benzoyl peroxide at the start of the process has been found advantageous The present invention relates to the preparation of 1 5 in decreasing the induction period and in giving uni decahydronaphthyl alcohols and the corresponding acetic formly high yields. acid ester and ketone derivatives of Said alcohols. The ratios of Decalin - to acetic anhydride in the oper More particularly the invention is concerned with the ation of the process are not critical, but practical con production of saturated polynuclear carbocyclic com siderations favor the use of at least one-half mol of pounds of the type 20 acetic anhydride per mol of Decalin.
    [Show full text]
  • Cycloalkanes, Cycloalkenes, and Cycloalkynes
    CYCLOALKANES, CYCLOALKENES, AND CYCLOALKYNES any important hydrocarbons, known as cycloalkanes, contain rings of carbon atoms linked together by single bonds. The simple cycloalkanes of formula (CH,), make up a particularly important homologous series in which the chemical properties change in a much more dramatic way with increasing n than do those of the acyclic hydrocarbons CH,(CH,),,-,H. The cyclo- alkanes with small rings (n = 3-6) are of special interest in exhibiting chemical properties intermediate between those of alkanes and alkenes. In this chapter we will show how this behavior can be explained in terms of angle strain and steric hindrance, concepts that have been introduced previously and will be used with increasing frequency as we proceed further. We also discuss the conformations of cycloalkanes, especially cyclo- hexane, in detail because of their importance to the chemistry of many kinds of naturally occurring organic compounds. Some attention also will be paid to polycyclic compounds, substances with more than one ring, and to cyclo- alkenes and cycloalkynes. 12-1 NOMENCLATURE AND PHYSICAL PROPERTIES OF CYCLOALKANES The IUPAC system for naming cycloalkanes and cycloalkenes was presented in some detail in Sections 3-2 and 3-3, and you may wish to review that ma- terial before proceeding further. Additional procedures are required for naming 446 12 Cycloalkanes, Cycloalkenes, and Cycloalkynes Table 12-1 Physical Properties of Alkanes and Cycloalkanes Density, Compounds Bp, "C Mp, "C diO,g ml-' propane cyclopropane butane cyclobutane pentane cyclopentane hexane cyclohexane heptane cycloheptane octane cyclooctane nonane cyclononane "At -40". bUnder pressure. polycyclic compounds, which have rings with common carbons, and these will be discussed later in this chapter.
    [Show full text]
  • Decalin Dissolving Method for Recover of Styrene –Butadiene Rubber from Scrap Tires
    American Journal of Environmental Sciences Original Research Paper Decalin Dissolving Method for Recover of Styrene –Butadiene Rubber from Scrap Tires Aeppa M.T. Sultan and Fawzi Habeeb Jabrail Polymer Research Lab., Department of Chemistry, College of Science, University of Mosul, Iraq Article history Abstract: Decalin, a hydrocarbon industrial solvent was used for the Received: 18-08-2019 recovery of Styrene- Butadiene Rubber (SBR) from grind scrap truck tires Revised: 10-09-2019 using chemical dissolving method. The applied technique is easy, simple Accepted: 11-10-2019 and depends on available materials. The method depends mainly on Corresponding Author: steeping the scrap tires grind into decalin at 50C for one month. Then the Fawzi Habeeb Jabrail process was followed by boiling of the formed thick black solution Polymer Research Lab., (198°C) for two hours. The formed elastic rubber material will be Department of Chemistry, reclaimed by precipitation in methanol. The recovered rubber was College of Science, University characterized using FTIR spectroscopy and XRD analyses. The pattern of of Mosul, Iraq the recovered material shows broad maxima of SBR with the absence of Tel: +9647703336282 XRD peaks of carbon black and almost all the other tire manufacturing E-mail: [email protected] additives. The thermal characteristics of the reclaimed rubber have been investigated by TGA, DTG and DSC analyses and were found to be close to those of thermal properties of SBR polymer. The SEM image has shown non-crystalline morphological surface of the recovered rubber with cohesive elastomeric properties. Keywords: SBR Reclaims, Decalin Dissolving Method, Scrap Tires, Steeping Method, Recycling Introduction Vehicle tires are made of rubber after vulcanization with sulfur to render it crosslinked and after adding The world consumes 4.5 million tons of tires, in several additives, like fillers, steel wires, plasticizers, addition to billions of tires of different types are to be extenders accelerators, curing agents and others in order to disposed of in the USA.
    [Show full text]
  • Potentially Explosive Chemicals*
    Potentially Explosive Chemicals* Chemical Name CAS # Not 1,1’-Diazoaminonaphthalene Assigned 1,1-Dinitroethane 000600-40-8 1,2,4-Butanetriol trinitrate 006659-60-5 1,2-Diazidoethane 000629-13-0 1,3,5-trimethyl-2,4,6-trinitrobenzene 000602-96-0 1,3-Diazopropane 005239-06-5 Not 1,3-Dinitro-4,5-dinitrosobenzene Assigned Not 1,3-dinitro-5,5-dimethyl hydantoin Assigned Not 1,4-Dinitro-1,1,4,4-tetramethylolbutanetetranitrate Assigned Not 1,7-Octadiene-3,5-Diyne-1,8-Dimethoxy-9-Octadecynoic acid Assigned 1,8 –dihydroxy 2,4,5,7-tetranitroanthraquinone 000517-92-0 Not 1,9-Dinitroxy pentamethylene-2,4,6,8-tetramine Assigned 1-Bromo-3-nitrobenzene 000585-79-5 Not 2,2',4,4',6,6'-Hexanitro-3,3'-dihydroxyazobenzene Assigned 2,2-di-(4,4,-di-tert-butylperoxycyclohexyl)propane 001705-60-8 2,2-Dinitrostilbene 006275-02-1 2,3,4,6- tetranitrophenol 000641-16-7 Not 2,3,4,6-tetranitrophenyl methyl nitramine Assigned Not 2,3,4,6-tetranitrophenyl nitramine Assigned Not 2,3,5,6- tetranitroso nitrobenzene Assigned Not 2,3,5,6- tetranitroso-1,4-dinitrobenzene Assigned 2,4,6-Trinitro-1,3,5-triazo benzene 029306-57-8 Not 2,4,6-trinitro-1,3-diazabenzene Assigned Not 2,4,6-Trinitrophenyl trimethylol methyl nitramine trinitrate Assigned Not 2,4,6-Trinitroso-3-methyl nitraminoanisole Assigned 2,4-Dinitro-1,3,5-trimethyl-benzene 000608-50-4 2,4-Dinitrophenylhydrazine 000119-26-6 2,4-Dinitroresorcinol 000519-44-8 2,5-dimethyl-2,5-diydroperoxy hexane 2-Nitro-2-methylpropanol nitrate 024884-69-3 3,5-Dinitrosalicylic acid 000609-99-4 Not 3-Azido-1,2-propylene glycol dinitrate
    [Show full text]
  • United States Patent (19) 11) 4,183,924 Green Et Al
    United States Patent (19) 11) 4,183,924 Green et al. 45 Jan. 15, 1980 (54) 17a-CHLORO-179-HYDROCARBONSULFI 58) Field of Search .................... 260/239.55 R, 397.3, NYL-1,4-ANDROSTADENES AND THE 260/.397.45; 424/242; Steroids MS File/ CORRESPONDING 176-HYDROCARBONSULFONYL 56 References Cited DERVATIVES AND THEIR USE AS U.S. PATENT DOCUMENTS ANT-ACNE AGENTS 4,091,036 5/1978 Varma ........................... 260/.397.3 X 75 Inventors: Michael J. Green, Kendall Park; Primary Examiner-Ethel G. Love Robert Tiberi, Englishtown, both of Attorney, Agent, or Firm-Elizabeth A. Bellamy; Mary N.J. S. King 73 Assignee: Schering Corporation, Kenilworth, N.J. 57 ABSTRACT Novel 17a-chloro-1743-hydrocarbonsulfinyl and 17a 21) Appl. No.: 881,217 chloro-17 (3-hydrocarbonsulfonyl derivatives of 3-oxo (22 Filed: Feb. 27, 1978 1,4-androstadienes and their use as anti-acne agents are 51) Int. C.? ...................... A61K 31/565; C07J 31/00 described. 52 U.S.C. ........................... 424/242; 260/239.55 R; 260/.397.3; 260/.397.45 18 Claims, No Drawings 4,183,924 1. 2 Preferred compounds of our invention are those de 17a-CHLORO-176-HYDROCARBONSULFINYL fined by the following formula II: 1,4-ANDROSTADIENES AND THE CORRESPONDING II 176-HYDROCARBONSULFONYL DERIVATIVES 5 AND THER USE AS ANT-ACNE AGENTS FIELD OF THE INVENTION This invention relates to novel compositions-of-mat ter, to methods for their manufacture and methods for 10 their use as anti-acne agents. Specifically, this invention relates to novel 17a chloro-176-hydrocarbonsulfinyl and 17a-chloro-1718 hydrocarbonsulfonyl derivatives of 3-oxo-1,4-andros 15 tadienes useful as anti-acne agents.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]