molecules Review Review AmideAmide BondBond ActivationActivation of Biological Molecules Molecules Sriram Mahesh, Kuei-Chien Tang and Monika Raj * Sriram Mahesh, Kuei-Chien Tang and Monika Raj * Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA;
[email protected] of Chemistry (S.M.); and kzt0026@ti Biochemistry,germail.auburn.edu Auburn University, (K.-C.T.) Auburn, AL 36849, USA;
[email protected]* Correspondence:
[email protected]; (S.M.);
[email protected] Tel.: +1-334-844-6986 (K.-C.T.) * Correspondence:
[email protected]; Tel.: +1-334-844-6986 Academic Editor: Michal Szostak AcademicReceived: Editor:7 September Michal 2018; Szostak Accepted: 9 October 2018; Published: date Received: 7 September 2018; Accepted: 9 October 2018; Published: 12 October 2018 Abstract: Amide bonds are the most prevalent structures found in organic molecules and various Abstract: Amide bonds are the most prevalent structures found in organic molecules and various biomolecules such as peptides, proteins, DNA, and RNA. The unique feature of amide bonds is their biomolecules such as peptides, proteins, DNA, and RNA. The unique feature of amide bonds ability to form resonating structures, thus, they are highly stable and adopt particular three- is their ability to form resonating structures, thus, they are highly stable and adopt particular dimensional structures, which, in turn, are responsible for their functions. The main focus of this three-dimensionalreview article is to structures, report the which, methodologies in turn, are for responsible the activation for their of functions.the unactivated The main amide focus bonds of this reviewpresent article in biomolecules, is to report thewhich methodologies includes the for enzy thematic activation approach, of the metal unactivated complexes, amide and bonds non-metal present inbased biomolecules, methods.