Ester Coupling Reactions – an Enduring Challenge in the Chemical Synthesis of Bioactive Natural Products

Total Page:16

File Type:pdf, Size:1020Kb

Ester Coupling Reactions – an Enduring Challenge in the Chemical Synthesis of Bioactive Natural Products Natural Product Reports Ester Coupling Reactions – an Enduring Challenge in the Chemical Synthesis of Bioactive Natural Products Journal: Natural Product Reports Manuscript ID: NP-REV-08-2014-000106.R2 Article Type: Review Article Date Submitted by the Author: 30-Nov-2014 Complete List of Authors: Tsakos, Michail; Aarhus University, Chemistry Schaffert, Eva; Aarhus University, Chemistry Clement, Lise; Aarhus University, Chemistry Villadsen, Nikolaj; Aarhus University, Chemistry Poulsen, Thomas; Aarhus University, Chemistry Page 1 of 25Journal Name Natural Product Reports Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Ester Coupling Reactions– an Enduring Challenge in the Chemical Synthesis of Bioactive Natural Products Michail Tsakos, a Eva S. Schaffert, a Lise L. Clement,a Nikolaj L. Villadsen a and Thomas B. Poulsen a* Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 5 DOI: 10.1039/b000000x Covering: up to 2014 In this review we investigate the use of complex ester fragment couplings within natural product total synthesis campaigns. We first outline the different biosynthetic and chemical strategies for performing complex ester couplings and on this mechanistic background we then present and discuss a collection of 10 successful examples from the literature. 1 Introduction 1. Introduction 2 Biosynthesis of Esters For many, the first encounter with organic chemistry is in the 2.1 Polyketide and non-Ribosomal Peptide Biosynthesis teaching laboratories in high school or junior years at university, 2.2 Chain Release 50 where one of the favorite experiments involves the formation of ‡ 15 2.2.1 Condensation and Thioesterase Domains low molecular weight carboxylate esters, compounds with a 2.2.2 Thioesterase Catalytic Mechanism distinctive panel of smells. Albeit simple from a synthetic 2.3 Ester Fragment Couplings during Biosynthesis perspective, such experiments carry the potential for important 2.4 Baeyer-Villiger Monooxygenases molecular insights as concerns an understanding of how very 3 Classic Activation Modes 55 small changes in structure can drastically impact the biology, i.e. our perception, of molecules. How do a few extra methyl groups 20 3.1 Acyl Halides 3.2 Carbodiimides change the smell of a compound from glue-like to strawberry or banana? 3.3 Yamaguchi Anhydrides Ester bonds are present in biological molecules, but they are 3.4 Mitsunobu Couplings 60 notably absent from information-storing (DNA/RNA) and 3.5 Ketene Intermediates functional (proteins) biopolymers. The evolutionary logic may 25 4 Representative Complex Ester Couplings in Total have favored, above all, stability in these biomolecules and thus Synthesis of Natural Products weeded out the presence of ester functionalities as a consequence 4.1 Steglich Variants of their potential hydrolytic lability.1 The domain of biology 4.1.1 Ramoplanin A2 65 dominated by ester bonds is the metabolites. In particular, esters 4.1.2 Pipecolidepsin A are key linking groups in many primary lipid metabolites, but 30 4.1.3 Iriomoteolide-3a they also constitute a class-defining functionality in many 4.2 Acyl Halide Approach secondary metabolites, notably macrocyclic lactones belonging to 4.2.1 Halipeptin A the cyclodepsipeptide and polyketide classes. 4.2.2 Cruentaren A 70 In spite of the apparent simplicity, the construction of ester bonds 4.3 Alternative Coupling Reagents often constitutes the most challenging synthetic operation in 35 4.3.1 MA026 efforts aimed at preparing such complex natural products. Nature 4.3.2 Daptomycin has developed her own synthetic logic for constructing 4.3.3 FK228 ester/lactone linkages mainly as the final transformation along 4.4 Yamaguchi Method 75 complex enzymatic assembly lines and this strategy has been 4.4.1 (+)-Migrastatin mimicked by organic chemists in the form of macrolactonization 40 4.4.2 (-)-Laulimalide reactions. This area has recently been reviewed. 2 In the absence of 4.5 Mitsunobu Method Natures amazing small molecule factories, macrolactonization is 4.5.1 Leucascandrolide A unfortunately not a general synthetic solution. Nature also 4.5.2 Pochonin C 80 constructs ester bonds in complex settings through e.g. Bayer- 4.6 Overview and Analysis Villiger type oxidations of ketone functionalities and despite the 45 5 Emerging Methods alternative retrosynthetic disconnections enabled by the synthetic 6 Conclusion This journal is © The Royal Society of Chemistry [year] [journal] , [year], [vol] , 00–00 | 1 Natural Product Reports Page 2 of 25 version of this type of reaction, the applications in complex odorants of the teaching laboratories, important neurotransmitters molecule synthesis remains relatively rare, especially in the case 35 such as acetylcholine, lipids of all kinds, to complex terpenoids of macrocyclic targets. Whether the impetus being strategic (Taxol), polyketides (Erythromycin) and cyclodepsipeptides considerations or a lack of alternative options, intermolecular (FK228 and Rapamycin, Fig. 1). In this section we will outline 5 ester coupling reactions remain a recurrent transformation within the enzymatic mechanisms employed during biosyntheses of natural product total synthesis campaigns, however in the ester-containing metabolites and discuss the different activation crowded and functionality-rich molecular environment of 40 strategies that Nature has developed. Focus will remain on the complex natural products, such couplings can present formidable complex secondary metabolites. This section will also include a challenges. In this review we will refer to these reactions as short introduction to the logic of assembly-line biosynthesis. 10 “complex ester couplings” in order to differentiate them from e.g. 2.1 Polyketide and non-Ribosomal Peptide Biosynthesis acetylations or other simple ester formations. 3 Our agenda is an analysis of the area of complex ester fragment The biosyntheses of macrocyclic lactones are performed by coupling reactions. As most of the examples fall within the 45 polyketide synthase (PKS), non-ribosomal peptide synthase classes of macrocyclic lactones, a large part of the review is (NRPS), or PKS-NRPS-hybrid assembly lines, where a cluster of 15 devoted to this class of molecules, but other examples will be enzymes catalyze the connection of simple building blocks in a included as appropriate. A key intention is to point out techniques linear fashion. 4 Recent authoritative reviews are available that and procedures (the small tricks) that allow for boosting cover this area in high detail.4,5,6 In short, for PKS the building reactivity within the classic modes of activation. Curiously, as the 50 blocks consist of malonyl, methylmalonyl and acetyl, activated introduction of new synthetic methodology in many areas of via a thioester linkage to coenzyme A. Units are iteratively 20 organic chemistry has expanded dramatically, the methods incorporated via a Claisen condensation followed by optional employed for performing (complex) ester couplings have seen reduction(s) and elimination to give rise to a variety of different much less development. Considering the importance of this two-carbon extensions of the chain, as is exemplified by the functionality, this testifies to a problem that is not easy to 55 macrocyclic precursor, 6-deoxyerythronolide B, of the antibiotic address. In the end of the review, we will present a number of Erythromycin (Scheme 1). 25 new approaches to the synthesis of ester/lactone bonds that hold NRPS incorporate amino acids, both proteinogenic and non- potential for further development into mechanistically novel and proteinogenic, and to a lesser extent other small carboxylic acids. reliable methods for performing challenging ester fragment Amino acids are activated by adenylation followed by chain couplings. 60 extension through amide bond formation. Several modifications can then occur to the amino acid unit, giving rise to an enormous O structural diversity from the shuffling of relatively few different O Me Me types of enzymes ordered in a specific assembly line. Many O Me HO OH Me O Me Me O NH O OH NMe 2 natural product macrocyclic lactones are synthesized by PKS- OH Me HO O O O O Me 65 NRPS hybrid assembly lines ( e.g. Rapamycin, Fig 1). Throughout OH H Me the biosynthesis a thioester bond links the growing linear HO O O OMe O O O Me Me molecule to the assembly line until the last unit releases the chain Taxol Erythromycin O OH O (Scheme 1). OMe Me Me HO O Me N Me O Me Me Me 70 2.2 Chain Release MeO Me H Acetylcholine O O 2.2.1 Condensation and Thioesterase Domains Me N Me 7,8 O O OH O NH H Three different termination strategies are known (Scheme 2). N Me O Reductive cleavage through an NAD(P)H-coupled reaction O H O O O O MeO HO NH results in formation of an aldehyde. The aldehyde will normally Me NH 8 O OMe Me S O 75 undergo further modification. A condensation domain can use a S Me Me nucleophile, intra- or intermolecularly, to cleave the thioester Me Me bond, releasing the assembly product. Condensation reactions are Rapamycin FK228 most common in chain elongation, but can also function as chain Me Me O O O termination. One role of the condensation enzymes is to position N P Me 80 the thioester and the nucleophile in close proximity. A histidine Me O O O O Me residue is situated close to the reaction site and is believed to O function as a proton acceptor/donor to promote the coupling 9,10 1,2-dipalmitoyl-sn -glycero-3-phosphocholine reaction. The most common releasing units are thioesterases (TEs) 30 Figure 1 Examples of ester-containing natural products. 85 (Scheme 1-2), resulting in either macrocyclization or hydrolytic cleavage. The mechanism of hydrolysis and cyclization is the 2. Biosynthesis of Esters same, the essential deviation is the substrate binding pocket. A As mentioned in the introduction, many classes of metabolites binding pocket that favors cyclization needs to be hydrophobic in contain ester functionalities.
Recommended publications
  • Chiral Proton Catalysis: Design and Development of Enantioselective Aza-Henry and Diels-Alder Reactions
    CHIRAL PROTON CATALYSIS: DESIGN AND DEVELOPMENT OF ENANTIOSELECTIVE AZA-HENRY AND DIELS-ALDER REACTIONS Ryan A. Yoder Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Chemistry, Indiana University June 2008 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee _____________________________ Jeffrey N. Johnston, Ph.D. _____________________________ Daniel J. Mindiola, Ph.D. _____________________________ David R. Williams, Ph.D. _____________________________ Jeffrey Zaleski, Ph.D. April 24, 2008 ii © 2008 Ryan A. Yoder ALL RIGHTS RESERVED iii DEDICATION This work is dedicated to my parents, David and Doreen Yoder, and my sister, LeeAnna Loudermilk. Their unwavering love and support provided the inspiration for me to pursue my dreams. The sacrifices they have made and the strength they have shown continue to motivate me to be a better person each and every day. Thank you mom, dad, and little sis for being the rocks that I can lean on and the foundation that allowed me to find the happiness I have today. Without you, none of this would have been possible. iv ACKNOWLEDGEMENTS First and foremost I want to thank my research advisor, Professor Jeffrey N. Johnston. I am incredibly grateful for his mentoring and guidance throughout my time in the Johnston group. He has instilled in me a solid foundation in the fundamentals of organic chemistry and at the same time has taught me how to apply innovative and creative solutions to complex problems.
    [Show full text]
  • (+)-Obafluorin, a B-Lactone Antibiotic
    Illinois Wesleyan University Digital Commons @ IWU Honors Projects Chemistry 4-26-1996 Pursuit of a Chiral Amino Aldehyde Intermediate in the Synthesis of (+)-Obafluorin, a B-Lactone Antibiotic Jim Cwik '96 Illinois Wesleyan University Follow this and additional works at: https://digitalcommons.iwu.edu/chem_honproj Part of the Chemistry Commons Recommended Citation Cwik '96, Jim, "Pursuit of a Chiral Amino Aldehyde Intermediate in the Synthesis of (+)- Obafluorin, a B-Lactone Antibiotic" (1996). Honors Projects. 15. https://digitalcommons.iwu.edu/chem_honproj/15 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact [email protected]. ©Copyright is owned by the author of this document. Pursuit of a Chiral Amino Aldehyde Intermediate in the Synthesis of (+)-Obafluorin, a p-Lactone Antibiotic Jim Cwik Dr. Jeffrey A. Frick, Research Advisor Submitted in Partial Fulfillment of the Requirement for Research Honors in Chemistry and Chemistry 499 Illinois Wesleyan University April 26, 1996 - Table of Contents I. List of Spectral Data , 2 II. Abstract. 3 III. Background 4 IV. Introduction 6 V.
    [Show full text]
  • Experiment 4
    Experiment Limiting Reactant 5 A limiting reactant is the reagent that is completely consumed during a chemical reaction. Once this reagent is consumed the reaction stops. An excess reagent is the reactant that is left over once the limiting reagent is consumed. The maximum theoretical yield of a chemical reaction is dependent upon the limiting reagent thus the one that produces the least amount of product is the limiting reagent. For example, if a 2.00 g sample of ammonia is mixed with 4.00 g of oxygen in the following reaction, use stoichiometry to determine the limiting reagent. 4NH3 + 5O2 4NO + 6H2O Since the 4.00 g of O2 produced the least amount of product, O2 is the limiting reagent. In this experiment you will be given a mixture of two ionic solids, AgNO3 and K2CrO4, that are both soluble in water. When the mixture is dissolved into water they will react to form an insoluble compound, Ag2CrO4, which can be collected and weighed. The reaction is the following: 2 AgNO3(aq) + K2CrO4(aq) Ag2CrO4(s) + 2 KNO3(aq) Colorless Yellow Red colorless Precipitate Precipitate is the term used for an insoluble solid which is produced by mixing two solutions. Often the solid particles are so fine that they will pass right through the pores of a filter. Heating the solution for a while causes the particles to clump together, a process called digesting. The precipitate coagulates upon cooling and eventually settles to the bottom of a solution container. The clear liquid above the precipitate is called the supernatant.
    [Show full text]
  • Review of Calculations for Organic Reactions (Assignment #1B)
    Review of Calculations for Organic Reactions (Assignment #1b) In your experiments the quantities of many reactants are given in mass or volume, though chemicals react in mole ratios, because it is not possible to measure a quantity in moles easily. You will have to convert mass or volume (mass = volume x density) to moles before beginning an experiment. You will also have to recognize stoichiometric relationships between reactants and products, which is based on mole ratio, in order to be able to calculate the theoretical yield of product you expect to isolate. You will apply the knowledge from this session to complete the theoretical yield calculation in your prelab reports and postlab reports. In this lab you are expected to be able to differentiate between a limiting reagent and excess reagents, solvents and catalysts which are crucial for the reaction to occur and go to completion. A limiting reagent is a reactant that has the lowest number of moles of all reactants in the chemical reaction and once it is completely consumed the reaction terminates. An excess reagent is a reactant that has a higher number of moles and therefore is not used up when a reaction goes to completion. Solvents and catalysts are not involved in the determination of limiting reagent. An example of calculations that you will be expected to perform is shown using the reaction of phenol with nitric acid. Preparation of picric acid requires the nitration of phenol. Given 5.00 grams of phenol and 15.0 mL concentrated nitric acid (15.9 M), one can determine the MAXIMUM theoretical amount of picric acid formed.
    [Show full text]
  • UNITED STATES PATENT Office PREPARATION of BETA-Akoxy MONO Carboxylcacds Frederick E
    Patented July 4, 1944 UNITED STATES PATENT office PREPARATION OF BETA-AKOxY MONO CARBOXYLCACDs Frederick E. King, Akron, Ohio, assignor to The B. F. Goodrich Company, New corporation of New York . York, N. Y., a No Drawing. Application August 5, 1941, Sera No. 405,512 4 Claims. (CL 260-535) This invention relates to a novel process for at least one hydrogen atom on the alpha carbon the preparation of beta-alkoxy derivatives of atom, for example, beta-lactones of saturated monocarboxylic acids, particularly beta-alkoxy aliphatic monocarboxylic acids such as beta-hy derivatives of saturated aliphatic monocarboxylic droxypropionic acid lactone, commonly known as acids such as beta-alkoxy proponic acids, and to 5 hydracrylic acid lactone, beta-hydroxy butyric the conversion of such acids into alkyl esters of acid lactone, alpha-methyl hydracrylic acid lac alpha beta unsaturated monocarboxylic acids tone, beta-hydroxy n-valeric acid actone, beta such as the alkyl esters of acrylic and meth hydroxy alpha-methyl butyric acid lactone, al acrylic acids. - - pharethyl hydracrylic acid lactone, beta-hydroxy In a copending application Serial No. 393,671, 0 isovaleric acid lactone, beta-hydroxy n-caproic filed May 15, 1941, an economical method of pre acid lactone, beta-hydroxy alpha-methyl valeric paring lactones of beta-hydroxy Carboxylic acids acid lactone, beta-methyl beta-ethyl hydracrylic from the reaction of a ketene with a carbonyl acid lactone, alpha-methyl beta-ethylhydracrylic compound such as an aldehyde or ketone has acid lactone, alpha-propyl
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • Photoremovable Protecting Groups Used for the Caging of Biomolecules
    1 1 Photoremovable Protecting Groups Used for the Caging of Biomolecules 1.1 2-Nitrobenzyl and 7-Nitroindoline Derivatives John E.T. Corrie 1.1.1 Introduction 1.1.1.1 Preamble and Scope of the Review This chapter covers developments with 2-nitrobenzyl (and substituted variants) and 7-nitroindoline caging groups over the decade from 1993, when the author last reviewed the topic [1]. Other reviews covered parts of the field at a similar date [2, 3], and more recent coverage is also available [4–6]. This chapter is not an exhaustive review of every instance of the subject cages, and its principal focus is on the chemistry of synthesis and photocleavage. Applications of indi- vidual compounds are only briefly discussed, usually when needed to put the work into context. The balance between the two cage types is heavily slanted to- ward the 2-nitrobenzyls, since work with 7-nitroindoline cages dates essentially from 1999 (see Section 1.1.3.2), while the 2-nitrobenzyl type has been in use for 25 years, from the introduction of caged ATP 1 (Scheme 1.1.1) by Kaplan and co-workers [7] in 1978. Scheme 1.1.1 Overall photolysis reaction of NPE-caged ATP 1. Dynamic Studies in Biology. Edited by M. Goeldner, R. Givens Copyright © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30783-4 2 1 Photoremovable Protecting Groups Used for the Caging of Biomolecules 1.1.1.2 Historical Perspective The pioneering work of Kaplan et al. [7], although preceded by other examples of 2-nitrobenzyl photolysis in synthetic organic chemistry, was the first to apply this to a biological problem, the erythrocytic Na:K ion pump.
    [Show full text]
  • Nomenclature of Carboxylic Acids • Select the Longest Carbon Chain Containing the Carboxyl Group
    Chapter 5 Carboxylic Acids and Esters Carboxylic Acids • Carboxylic acids are weak organic acids which Chapter 5 contain the carboxyl group (RCO2H): Carboxylic Acids and Esters O C O H O RCOOH RCO2H Chapter Objectives: O condensed ways of • Learn to recognize the carboxylic acid, ester, and related functional groups. RCOH writing the carboxyl • Learn the IUPAC system for naming carboxylic acids and esters. group a carboxylic acid C H • Learn the important physical properties of the carboxylic acids and esters. • Learn the major chemical reaction of carboxylic acids and esters, and learn how to O predict the products of ester synthesis and hydrolysis reactions. the carboxyl group • Learn some of the important properties of condensation polymers, especially the polyesters. Mr. Kevin A. Boudreaux • The tart flavor of sour-tasting foods is often caused Angelo State University CHEM 2353 Fundamentals of Organic Chemistry by the presence of carboxylic acids. Organic and Biochemistry for Today (Seager & Slabaugh) www.angelo.edu/faculty/kboudrea 2 Nomenclature of Carboxylic Acids • Select the longest carbon chain containing the carboxyl group. The -e ending of the parent alkane name is replaced by the suffix -oic acid. • The carboxyl carbon is always numbered “1” but the number is not included in the name. • Name the substituents attached to the chain in the Nomenclature of usual way. • Aromatic carboxylic acids (i.e., with a CO2H Carboxylic Acids directly connected to a benzene ring) are named after the parent compound, benzoic acid. O C OH 3
    [Show full text]
  • Chiral Phosphorus Containing Calix[4]Arenes for Asymmetric Catalysis Andrii Karpus
    Chiral phosphorus containing calix[4]arenes for asymmetric catalysis Andrii Karpus To cite this version: Andrii Karpus. Chiral phosphorus containing calix[4]arenes for asymmetric catalysis. Catalysis. Uni- versité Paul Sabatier - Toulouse III, 2017. English. NNT : 2017TOU30045. tel-01811136 HAL Id: tel-01811136 https://tel.archives-ouvertes.fr/tel-01811136 Submitted on 8 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Cotutelle internationale avec Université nationale Taras-Chevtchenko de Kiev 1SÏTFOUÏFFUTPVUFOVFQBS KARPUS Andrii le mardi 24 janvier 2017 5JUSF Calix[4]arènes chiraux contenant des groupes phosphine comme ligands pour la catalyse ²DPMF EPDUPSBMF et discipline ou spécialité ED SDM : Chimie organométallique de coordination - CO 043 6OJUÏEFSFDIFSDIF CNRS - UPR 8241 - Laboratoire de Chimie de Coordination (LCC) %JSFDUFVSUSJDF T EFʾÒTF Dr. MANOURY Eric Pr. VOITENKO Zoia Jury : Dr. MANOURY Eric, Directeur de thèse Pr. VOITENKO Zoia, Co-directrice de thèse Dr. SEMERIL David, Rapporteur Pr. KOROTKIKH Nikolay, Rapporteur Pr. GENISSON YVES, Examinateur Dr. SMOLII Oleg, Examinateur Université Toulouse III Paul Sabatier (UT3 Paul Sabatier) Andrii O.
    [Show full text]
  • Discovery, Synthesis and Structure-Activity Relationship Study
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Fall 12-18-2020 Antiparasitic Peptide from the Ocean: Discovery, Synthesis and Structure-Activity Relationship Study Kh Tanvir Ahmed Follow this and additional works at: https://dsc.duq.edu/etd Part of the Medicinal Chemistry and Pharmaceutics Commons Recommended Citation Ahmed, K. (2020). Antiparasitic Peptide from the Ocean: Discovery, Synthesis and Structure-Activity Relationship Study (Master's thesis, Duquesne University). Retrieved from https://dsc.duq.edu/etd/1924 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. ANTIPARASITIC PEPTIDE FROM THE OCEAN: DISCOVERY, SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIP STUDY A Thesis Submitted to the Graduate School of Pharmaceutical Sciences Duquesne University In partial fulfillment of the requirements for the degree of Master of Science By Kh Tanvir Ahmed December 2020 Copyright by Kh Tanvir Ahmed 2020 ANTIPARASITIC PEPTIDE FROM THE OCEAN: DISCOVERY, SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIP STUDY By Kh Tanvir Ahmed Approved August 21, 2020 ________________________________ ________________________________ Kevin J. Tidgewell, Ph.D. Aleem Gangjee, Ph.D. Associate Professor of Medicinal Professor of Medicinal Chemistry Chemistry (Committee Member) (Committee Chair) ________________________________ ________________________________
    [Show full text]
  • Downloaded, Instead, and Converted to 3D Using Obabel (O’Boyle Et Al., 2011)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.225821; this version posted July 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 New tyrosinases with a broad spectrum of action against contaminants of emerging 2 concern: Insights from in silico analyses 3 4 Marcus V. X. Senra† & Ana Lúcia Fonseca 5 6 Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas 7 Gerais – Brazil 8 †Corresponding author – [email protected]; Orcid - 0000-0002-3866-8837 9 10 Abstract 11 Tyrosinases (EC 1.14.18.1) are type-3 copper metalloenzymes with strong oxidative capacities 12 and low allosteric selectivity to phenolic and non-phenolic aromatic compounds that have been 13 used as biosensors and biocatalysts to mitigate the impacts of environmental contaminants over 14 aquatic ecosystems. However, the widespread use of these polyphenol oxidases is limited by 15 elevated production costs and restricted knowledge on their spectrum of action. Here, six 16 tyrosinase homologs were identified and characterized from the genomes of 4 widespread 17 freshwater ciliates using bioinformatics. Binding energies between 3D models of these 18 homologs and ~1000 contaminants of emerging concern (CECs), including fine chemicals, 19 pharmaceuticals, personal care products, illicit drugs, natural toxins, and pesticides were 20 estimated through virtual screening, suggesting their spectrum of action and potential uses in 21 environmental biotechnology might be considerably broader than previously thought.
    [Show full text]