Hybrid-Phase Native Chemical Ligation Approaches to Overcome the Limitations of Protein Total Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

Hybrid-Phase Native Chemical Ligation Approaches to Overcome the Limitations of Protein Total Synthesis Hybrid-Phase Native Chemical Ligation Approaches to Overcome the Limitations of Protein Total Synthesis DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ruixuan Ryan Yu Graduate Program in the Ohio State Biochemistry Program The Ohio State University 2016 Committee: Jennifer J. Ottesen – Advisor Michael G. Poirier Michael A. Freitas Dennis Bong Copyrighted by Ruixuan Ryan Yu 2016 Abstract Total protein synthesis allows the preparation of proteins with chemically diverse modifications. The numerous advantages of total synthesis are sometimes offset by some major limitations. Protein synthesis is a non-trivial task involving many chemical steps, and these steps increase with the size of the protein. Therefore, larger proteins are difficult to synthesize with high yield. We have developed a strategy which we term hybrid-phase native chemical ligation (NCL) to overcome some of the limitations of size and yield. Hybrid-phase NCL combines ligating peptides on a solid support (solid-phase NCL) and in solution (solution-phase NCL) to maximize synthetic yield. We have successfully used this method to synthesize triple-acetylated histone H4-K5ac,K12ac,K91ac and, for the first time, acetylated centromeric histone CENP-A-K124ac (CpA-K124ac). In order to improve the yield of CENP-A total synthesis, we have incorporated a convergent ligation element in our hybrid-phase strategy. This new approach reduced the number of purification steps, leading to a synthetic yield that was almost triple that of the original approach. Finally, we introduce the convergent solid-phase hybrid NCL approach that allows the preparation of a long peptide segment bearing a masked thioester on a solid support. ii Through a newly developed resin-anchoring strategy, cleavage of the product from solid- phase generated a ligation-compatible segment that could be used directly with no purification. This method has the potential to synthesize large proteins in good yield, effectively overcoming the size and yield limits of protein total synthesis. iii Dedication Alice and Owen. iv Acknowledgments I would like to thank all members of the Ottesen lab for their constant support, assistance, and guidance throughout my graduate career. I would like to thank Dr. Santosh Mahto for mentoring me during the first few years, and pushing me to continue his H4 total synthesis project. Thank you to C.J. Howard for advising me with his broad knowledge of biology. Thank you to Michael Cotten and Mallory Alexander for helping move my project forward. Thank you to Kurt Justus for assisting me with all the problems plaguing the histone peptides. Thank you to Dr. John Shimko for giving me his expert opinions on biochemistry, organic chemistry, and nerd culture. Thank you to Ziyong Hong for assisting me with all of the time-consuming experiments. My project would not have moved forward so efficiently without his assistance. Most of all, I thank my advisor Dr. Jennifer Ottesen for giving me unconditional support both inside and outside the lab. Her confidence in me did not change even during the year when I was starting to drift off from my research. She encouraged me to keep going even during the times when I was ready to give up. Her support even extended to my family, especially after my son was born. In addition, she used all of her available resources to support my decision to attend medical school after graduation. She is a mentor who truly cares about the success of her students. v Vita 2002-2006 ......................................................Adrian Wilcox High School 2010................................................................B.A. Molecular and Cell Biology, University of California, Berkeley 2010................................................................B.A. Practice of Art, University of California, Berkeley 2010-2016 ......................................................Graduate Teaching and Research Associate, The Ohio State University 2013................................................................M.S. Biochemistry, The Ohio State University Publications Ruixuan R. Yu, Santosh K. Mahto, Kurt Justus, Mallory Alexander, Cecil J. Howard, Jennifer J. Ottesen, “Hybrid phase ligation for efficient synthesis of histone proteins”. Organic and Biomolecular Chemistry, 2016, 14:2603-2607 Cecil J. Howard, Ruixuan R. Yu, Miranda L. Gardner, John C. Shimko, Jennifer J. Ottesen, “Chemical and Biological Tools for the preparation of modified histone proteins. Topics in Current Chemistry, 2015. 363:193-226 vi Fields of Study Major Field: The Ohio State Biochemistry Program vii Table of Contents Abstract ............................................................................................................................... ii Dedication .......................................................................................................................... iv Acknowledgments ............................................................................................................... v Vita ..................................................................................................................................... vi Publications ........................................................................................................................ vi Fields of Study .................................................................................................................. vii Table of Contents ............................................................................................................. viii List of Tables .................................................................................................................. xvii List of Figures ................................................................................................................ xviii List of Acronyms ............................................................................................................ xxii Chapter 1: Introduction ...................................................................................................... 1 Protein Total Synthesis ....................................................................................................... 1 Native Chemical Ligation ............................................................................................... 2 Applications of total synthesis ........................................................................................ 7 Histones............................................................................................................................. 10 Histone Post-Translational Modification ...................................................................... 13 viii Methods to Prepare Histone PTMs ............................................................................ 13 Genetic mimics .......................................................................................................... 14 Expanded genetic code .............................................................................................. 15 Dehydroalanine .......................................................................................................... 16 Chemical installation through cysteine ...................................................................... 17 Disulfide stapling ....................................................................................................... 18 Chemical Synthesis .................................................................................................... 20 Goals ................................................................................................................................. 20 Outline ........................................................................................................................... 22 Chapter 2: Solid-Phase Ligation vs. Hybrid-Phase Ligation of Histones ......................... 23 Introduction ....................................................................................................................... 23 Solution-Phase NCL ...................................................................................................... 23 Solid-Phase NCL ........................................................................................................... 25 Experimental Methods ...................................................................................................... 28 Materials ........................................................................................................................ 28 RP-HPLC ...................................................................................................................... 29 Mass spectrometry ......................................................................................................... 29 Solid-Phase Peptide Synthesis ...................................................................................... 30 Synthesis of 3-Fmoc-Dbz-OH ................................................................................... 30 ix Automated Solid-Phase Peptide Synthesis ................................................................ 30 Manual peptide synthesis ........................................................................................... 32 Manual synthesis of Dbz(Alloc) resin ....................................................................... 34 Loading the first amino acid on Dbz(Alloc)
Recommended publications
  • Amide-Forming Chemical Ligation Via O-Acyl Hydroxamic Acids
    Amide-forming chemical ligation via O-acyl hydroxamic acids Daniel L. Dunkelmanna,1, Yuki Hirataa,1, Kyle A. Totaroa, Daniel T. Cohena, Chi Zhanga, Zachary P. Gatesa,2, and Bradley L. Pentelutea,2 aDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved February 28, 2018 (received for review October 20, 2017) The facile rearrangement of “S-acyl isopeptides” to native peptide ligation have relied on the use of thiol nucleophiles to form bonds via S,N-acyl shift is central to the success of native chemical S-acyl isopeptides, which undergo rapid S,N-acyl shifts through ligation, the widely used approach for protein total synthesis. small rings. An exception is the use of selenocysteine (23–26) α Proximity-driven amide bond formation via acyl transfer reactions and peptide- selenoesters (27, 28), which exhibit analogous but in other contexts has proven generally less effective. Here, we heightened reactivity. show that under neutral aqueous conditions, “O-acyl isopeptides” We sought to expand the scope of nucleophiles that might be derived from hydroxy-asparagine [aspartic acid-β-hydroxamic acid; employed in acyl transfer-based chemical ligation, and to rein- Asp(β-HA)] rearrange to form native peptide bonds via an O,N-acyl vestigate the possibility of O,N-acyl transfer across medium-size shift. This process constitutes a rare example of an O,N-acyl shift rings. Hydroxamic acids (29) were found to be sufficiently re- that proceeds rapidly across a medium-size ring (t1/2 ∼ 15 min), active to enable the formation of an O-acyl isopeptide from a α and takes place in water with minimal interference from hydroly- peptide- thioester and an N-terminal Asp(β-HA)-peptide at sis.
    [Show full text]
  • Protein Ligation: an Enabling Technology for the Biophysical Analysis of Proteins Vasant Muralidharan & Tom W Muir
    REVIEW Protein ligation: an enabling technology for the biophysical analysis of proteins methods Vasant Muralidharan & Tom W Muir Biophysical techniques such as fluorescence spectroscopy and nuclear magnetic .com/nature e resonance (NMR) spectroscopy provide a window into the inner workings of proteins. These approaches make use of probes that can either be naturally present within the .natur w protein or introduced through a labeling procedure. In general, the more control one has over the type, location and number of probes in a protein, then the more information one can extract from a given biophysical analysis. Recently, two related approaches have http://ww emerged that allow proteins to be labeled with a broad range of physical probes. Expressed oup r protein ligation (EPL) and protein trans-splicing (PTS) are both intein-based approaches G that permit the assembly of a protein from smaller synthetic and/or recombinant pieces. Here we provide some guidelines for the use of EPL and PTS, and highlight how the lishing b dovetailing of these new protein chemistry methods with standard biophysical techniques Pu has improved our ability to interrogate protein function, structure and folding. Nature 6 An intimate understanding of protein structure and studying protein structure and function in vitro. The goal 200 function remains a principal goal of molecular biology. of this review is to provide an overview of these protein- © The seemingly byzantine structure-activity relationships engineering approaches, with a particular eye toward the underlying protein function make this endeavor extreme- nonspecialist interested in using these techniques to gener- ly challenging and one that requires ever more sophistica- ate labeled proteins for biophysical studies.
    [Show full text]
  • Rapid Flow-Based Peptide Synthesis
    Rapid Flow-Based Peptide Synthesis The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Simon, Mark D., Patrick L. Heider, Andrea Adamo, Alexander A. Vinogradov, Surin K. Mong, Xiyuan Li, Tatiana Berger, et al. “Rapid Flow-Based Peptide Synthesis.” ChemBioChem 15, no. 5 (March 11, 2014): 713–720. As Published http://dx.doi.org/10.1002/cbic.201300796 Publisher Wiley Blackwell Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/96181 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ NIH Public Access Author Manuscript Chembiochem. Author manuscript; available in PMC 2015 March 21. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Chembiochem. 2014 March 21; 15(5): 713–720. doi:10.1002/cbic.201300796. Rapid Flow-Based Peptide Synthesis Mark D. Simona, Patrick L. Heiderb, Andrea Adamob, Alexander A. Vinogradova, Surin K. Monga, Xiyuan Lia, Tatiana Bergera, Rocco L. Policarpoa, Chi Zhanga, Yekui Zoua, Xiaoli Liaoa, Alexander M. Spokoynya, Prof Klavs F. Jensenb, and Prof Bradley L. Pentelutea Bradley L. Pentelute: [email protected] aDepartment of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States bDepartment of Chemical Engeneering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States Abstract A flow-based solid phase peptide synthesis methodology that enables the incorporation of an amino acid residue every 1.8 minutes under automatic control, or every three minutes under manual control, is described.
    [Show full text]
  • Synthesis of Peptide and Protein Thioesters Through an N→S Acyl Shift
    Native Chemical Thioesterification: Synthesis of Peptide and Protein Thioesters through an N→S Acyl Shift Jaskiranjit Kang A thesis submitted in partial fulfilment of the requirements for the degree award of: Doctor of Philosophy University College London Department of Chemistry 2010 Native Chemical Thioesterification: Synthesis of Peptide and Protein Thioesters through an N→S Acyl Shift Declaration I, Jaskiranjit Kang, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Native Chemical Thioesterification: Synthesis of Peptide and Protein Thioesters through an N→S Acyl Shift Abstract The total chemical synthesis of a protein provides atomic-level control over its covalent structure, however polypeptides prepared by solid phase peptide synthesis are limited to approximately fifty amino acid residues. This limitation has been overcome by 'Native Chemical Ligation‘, which involves amide bond formation between two unprotected polypeptides: a peptide with a C-terminal thioester and an N-terminal cysteinyl peptide. Synthesis of the required peptide thioester is difficult, particularly by Fmoc-chemistry. During our studies towards the semisynthesis of erythropoietin, we discovered reaction conditions that reversed Native Chemical Ligation and generated peptide and protein thioesters through an N→S acyl transfer. O HS H3N O O O + H3O RSH N S SR H O A peptide with both a Gly-Cys and an Ala-Cys-Pro-glycolate ester sequence was selectively thioesterified between the Gly-Cys sequence upon microwave-heating at 80 °C with 30 % v/v 3-mercaptopropionic acid (MPA), to afford the peptide-Gly-MPA thioester (84 % yield).
    [Show full text]
  • Racemization Ages (Radiocarbon Dating/Fossil Bones) JEFFREY L
    Proc. Nat. Acad. Sci. USA Vol. 71, No. 3, pp. 914-917, March, 1974 Concordance of Collagen-Based Radiocarbon and Aspartic-Acid Racemization Ages (radiocarbon dating/fossil bones) JEFFREY L. BADA*t, ROY A. SCHROEDERt, REINER PROTSCHt, AND RAINER BERGERt tScripps Institution of Oceanography, University of California, San Diego, La Jolla, Calif. 92037; and tDepartments of Anthropology and Geography and Institute of Geophysics & Planetary Physics, University of California, Los Angeles, Los Angeles, Calif. 90024 Communicated by William A. Nierenberg, October 19, 1973 ABSTRACT By determining the extent of racemization racemization reaction. The only assumption required, in using of aspartic acid in a well-dated bone, it is possible to calcu- this approach, is that the average temperature experienced by late the in situ first-order rate constant for the intercon- version of the L and D enantiomers of aspartic acid. the "calibration" sample is representative of the average Collagen-based radiocarbon-dated bones are shown to be temperature experienced by other samples from the deposit. suitable samples for use in "calibrating" the racemization Many radiocarbon dates suitable for calibrating the aspar- reaction. Once the aspartic-acid racemization reaction has tic-acid racemization reaction have been derived from colla- been "calibrated" for a site, the reaction can be used to date other bones from the deposit. Ages deduced by this gen. However, it is important to show the dependability of method are in good agreement with radiocarbon ages. collagen dates by comparison with measurements made on These results provide evidence that the aspartic-acid charcoal or other organic materials. racemization reaction is an important chronological tool In this study we establish the dependability of radiocarbon for dating bones either too old or too small for radiocarbon collagen dates and then show the equivalence of collagen and dating.
    [Show full text]
  • Phenylalanine Post Translational Modifications
    Phenylalanine Post Translational Modifications Pilous and unseparable Fitzgerald never abreacts faultlessly when Kenn producing his shorelines. Exciting Simmonds reproves almostunfearfully gloriously, while Smith though always Barnard japes earwigged his krone his gusset magnetrons glancingly, disbudding. he malleates so yesteryear. Inofficious and septimal Raimund tariff Modified proteins of this type cannot be sequenced by the Edman method, they are blocked. The acetylation of proteins is mainly a cotranslational and posttranslational process. Furthermore, these biocontained cells will grow more rapidly than first generation biocontained cells, which can accelerate the rate of industrial production of metabolites or proteins. Results showed highly efficient incorporation at both positions. All work on the mice was performed at a sterile workbench in the same room. Advanced glycation endproducts: what is their relevance to diabetic complications? Protein posttranslational modifications: the chemistry of proteome diversifications. Tekle E, Wang T, Stadtman ER, Yang DCH, Chock PB: Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Synonyms: racemization, epimerisation, stereoinversion. Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. Zhang Q, Monroe ME, Schepmoes AA, Clauss TRW, Gritsenko MA, Meng D, Petyuk VA, Smith RD, Metz TO: Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: Respiration, apoptosis, and human disease. Mitochondrial Pathophysiology, Reactive Oxygen Species, and Cardiovascular Diseases. Raise the profile of a research area by leading a Special Issue. PTMs are then immunodetected using fluorescence tagging. The carbamido diacetyl reaction: a test for citrulline.
    [Show full text]
  • An Explorative Study Towards the Chemical Synthesis of the Immunoglobulin G1 Fc CH3 Domain
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Paris Lodron University of Salzburg Received: 10 June 2018 Revised: 26 August 2018 Accepted: 6 September 2018 DOI: 10.1002/psc.3126 RESEARCH ARTICLE An explorative study towards the chemical synthesis of the immunoglobulin G1 Fc CH3 domain Luigi Grassi1,2 | Cornelia Roschger2 | Vesna Stanojlović2 | Chiara Cabrele1,2 1 Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, Monoclonal antibodies, fusion proteins including the immunoglobulin fragment c (Ig Fc) University of Salzburg, Hellbrunner Strasse 34, CH2‐CH3 domains, and engineered antibodies are prominent representatives of an 5020 Salzburg, Austria 2 Department of Biosciences, University of important class of drugs and drug candidates, which are referred to as biotherapeutics Salzburg, Billrothstrasse 11, 5020 Salzburg, or biopharmaceuticals. These recombinant proteins are highly heterogeneous due to Austria their glycosylation pattern. In addition, enzyme‐independent reactions, like Correspondence Chiara Cabrele, Department of Biosciences, deamidation, dehydration, and oxidation of sensitive side chains, may contribute to University of Salzburg, Billrothstrasse 11, their heterogeneity in a minor amount. To investigate the biological impact of a spon- 5020 Salzburg, Austria. Email: [email protected] taneous chemical modification, especially if found to be recurrent in a biotherapeutic, Funding information it would be necessary to reproduce it in a homogeneous manner. Herein, we undertook Austrian Federal Ministry of Science, an explorative study towards the chemical synthesis of the IgG1 Fc CH3 domain, which Research, and Economy; Land Salzburg; Start‐ up Grant of the State of Salzburg; University has been shown to undergo spontaneous changes like succinimide formation and of Salzburg methionine oxidation.
    [Show full text]
  • The Investigation of Peptide and Protein-Glycosaminoglycan Binding
    The Investigation of Peptide and Protein-Glycosaminoglycan Binding Interactions using Fluorescent Probes By Anthony F. Rullo A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Chemistry University of Toronto Copyright by Anthony F. Rullo 2012 Abstract The Investigation of Peptide and Protein-Glycosaminoglycan Binding Interactions using Fluorescent Probes Doctor of Philosophy Graduate Department of Chemistry University of Toronto Anthony F. Rullo 2012 The structural complexity of glycosaminoglycans (GAGs) such as heparin and heparan sulfate (HS) and their numerous biological roles, brings forth the need to develop new methods, capable of studying GAGs and their interactions with peptides and proteins under native settings. This thesis explores the development of chemical tools to study heparin/HS binding interactions under physiologically relevant conditions using fluorescence. In chapter 2, we designed peptide-based quinolinium probes to study the structural requirements of cationic peptides required for high affinity peptide-heparin interactions. These fluorescent probes enabled the study of peptide- heparin interactions at nM concentrations allowing the calculation of peptide-heparin binding constants. It was observed that peptides with positive charge displayed on one face of an α-helix in a continuous arrangement bound to heparin with the highest affinity and that heparin likely prefers to bind to these peptides while remaining in an extended conformation. In chapter 3, we set out to study an important biological role of HS which involves the binding and sequestering of proteins at the cell surface, facilitating endocytosis. HS has been implicated ii in the mechanism of cell penetrating peptide (CPP) cell uptake, with different CPPs showing different degrees of HS dependence on uptake as well as different mechanisms of entry.
    [Show full text]
  • Characterization of Asparagine Deamidation in Immunodominant
    International Journal of Molecular Sciences Article Characterization of Asparagine Deamidation in Immunodominant Myelin Oligodendrocyte Glycoprotein Peptide Potential Immunotherapy for the Treatment of Multiple Sclerosis Maria-Eleni Androutsou 1, Agathi Nteli 2, Areti Gkika 2, Maria Avloniti 3, Anastasia Dagkonaki 3, Lesley Probert 3 , Theodore Tselios 2,* and Simona GoliˇcGrdadolnik 4,* 1 Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, 14671 Athens, Greece; [email protected] 2 Department of Chemistry, University of Patras, 26504 Patras, Greece; [email protected] (A.N.); [email protected] (A.G.) 3 Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece; [email protected] (M.A.); [email protected] (A.D.); [email protected] (L.P.) 4 Laboratory for Molecular Structural Dynamics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia * Correspondence: [email protected] (T.T.); [email protected] (S.G.G.); Tel.: +30-26-1099-7905 (T.T.); +38-61-4760-409 (S.G.G.) Received: 7 August 2020; Accepted: 6 October 2020; Published: 13 October 2020 Abstract: Mannan (polysaccharide) conjugated with a myelin oligodendrocyte glycoprotein (MOG) peptide, namely (KG)5MOG35–55, represents a potent and promising new approach for the immunotherapy of Multiple Sclerosis (MS). The MOG35–55 epitope conjugated with the oxidized form of mannan (poly-mannose) via a (KG)5 linker was found to inhibit the symptoms of MOG35–55-induced experimental autoimmune encephalomyelitis (EAE) in mice using prophylactic and therapeutic vaccinated protocols. Deamidation is a common modification in peptide and protein sequences, especially for Gln and Asn residues.
    [Show full text]
  • Strategies Toward Optimizing Automated On-Resin Disulfide Bond Formation in Disulfide Rich Peptides
    Strategies Toward Optimizing Automated On-Resin Disulfide Bond Formation in Disulfide Rich Peptides Elizabeth Denton1, Amit Mehrotra2, Cedric Rentier3 1Biotage, 10430 Harris Oakes Blvd., Suite C, Charlotte, North Carolina 28269, USA 2Biotage, Vimpelgatan 5, 753 18 Uppsala, Sweden 3Biotage, 2nd Mantomi Bldg 6F, 1-14-4 Kameido, Koto-ku, Tokyo 136-0071, Japan Introduction Strategic Pairing of Orthogonally Protected Cysteines Disulfide rich peptides exhibit exquisite stability due to the For automated synthesis of the fully oxidized peptide, pairs of covalent stabilization of their secondary structure. After a methoxytrityl (Mmt)- and acetamidomethyl (Acm)-protected particular sequence has been identified and mapped, these cysteine residues were incorporated in place of standard trityl- peptides are typically folded in solution under redox protected cysteines used in the linear peptide synthesis. Using conditions, assuming that a single, thermodynamically stable the unique software feature Branches™, each orthogonal conformation will be the predominant species. However, there deprotection and subsequent cysteine oxidation can be have been several cases where multiple disulfide bonding visualized, individually programmed and the synthesis order patterns are observed upon folding completion in solution, assigned, Figure 2. demanding additional purification and significant characterization efforts before any biological assays can be performed. A simplified on-resin synthesis strategy is attractive as the Figure 3. Crude analytical HPLC chromatograms and representative mass spec analysis (inset) for Apamin samples analyzed during the purification and characterization steps can be minimized, if not Acm removal optimization. Representative chromatograms for completely eliminated, thereby increasing the overall yield of conditions 3 (red) and 6 (black) are overlaid. No significant the peptide with the proper disulfide bond pattern.
    [Show full text]
  • Application of the Logic of Cysteine-Free Native Chemical Ligation to the Synthesis of Human Parathyroid Hormone (Hpth)
    Application of the logic of cysteine-free native chemical ligation to the synthesis of Human Parathyroid Hormone (hPTH) Shiying Shanga, Zhongping Tana, and Samuel J. Danishefskya,b,1 aBio-Organic Chemistry Laboratory, Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065; and bDepartment of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027 Contributed by Samuel J. Danishefsky, February 24, 2011 (sent for review December 13, 2010) The power of chemical synthesis of large cysteine-free polypep- stable forms of hPTH, where “pharmacolability” is attenuated tides has been significantly enhanced through the use of nonpro- without undercutting biological activity, would be of great inter- teogenic constructs which bear strategically placed thiol groups, est (26). It is also of interest to interrogate the consequences enabling native chemical ligation. Central to these much expanded of employing nonproteogenic inserts (27). While this goal can capabilities is the specific, radical-induced, metal-free dethiolation, be accomplished by cleverly designed recombinant methods, che- which can be accomplished in aqueous medium. mical synthesis could well be more convenient for servicing the initial production of probe structures for such structure-activity alanine ligation ∣ desulfurization ∣ leucine ligation ∣ peptide ∣ relationship (SAR) evaluations (28, 29). Previously, the chemical valine ligation synthesis of hPTH required either the solid phase synthesis of an 84-mer-long peptide or the assembly of fully protected peptide he chemical synthesis of proteins offers the potential of segments. Such methods are not ideal for the generation of ana- Tsolving a multitude of problems in biomedical sciences (1). logs (30–33).
    [Show full text]
  • Synthesis of Native Proteins by Chemical Ligation∗
    P1: FDC/FGE P2: FDC July 12, 2000 11:26 AR102 CHAP29 Annu. Rev. Biochem. 2000. 69:923–60 Copyright c 2000 by Annual Reviews. All rights reserved SYNTHESIS OF NATIVE PROTEINS BY CHEMICAL LIGATION∗ Philip E. Dawson1 and Stephen B. H. Kent2 1The Scripps Research Institute, La Jolla, California 92037; e-mail: [email protected]; 2Gryphon Sciences, South San Francisco, California 94080; e-mail: skent@gryphonsci. com Key Words chemical protein synthesis, thioester, protein, peptide, solid phase synthesis, polymer-supported synthesis, protein engineering ■ Abstract In just a few short years, the chemical ligation of unprotected peptide segments in aqueous solution has established itself as the most practical method for the total synthesis of native proteins. A wide range of proteins has been prepared. These synthetic molecules have led to the elucidation of gene function, to the discovery of novel biology, and to the determination of new three-dimensional protein structures by both NMR and X-ray crystallography. The facile access to novel analogs provided by chemical protein synthesis has led to original insights into the molecular basis of protein function in a number of systems. Chemical protein synthesis has also enabled the systematic development of proteins with enhanced potency and specificity as candidate therapeutic agents. CONTENTS INTRODUCTION: Protein Science in the Postgenome Era ...................924 DOMAINS: Building Blocks of the Protein World .........................925 CHEMICAL PROTEIN SYNTHESIS: The State of the Art in 1990 .............926 SYNTHETIC-PEPTIDE CHEMISTRY: Useful but Bounded .................926 CHEMICAL LIGATION OF UNPROTECTED PEPTIDE SEGMENTS .........929 NATIVE CHEMICAL LIGATION .................................... 933 BIOCHEMICAL PEPTIDE LIGATION ................................ 935 Protein Splicing ................................................ 935 Conformationally Assisted Ligation .................................
    [Show full text]