Bachem Œ Insights Into Peptide Chemistry Achievements by The

Total Page:16

File Type:pdf, Size:1020Kb

Bachem ÂŒ Insights Into Peptide Chemistry Achievements by The 874 CHIMIA 2013, 67, Nr. 12 PePtide Science in Switzerland doi:10.2533/chimia.2013.874 Chimia 67 (2013) 874–880 © Schweizerische Chemische Gesellschaft Bachem – Insights into Peptide Chemistry Achievements by the World’s Leading Independent Manufacturer of Peptides Monika Mergler, Günther Loidl, Martina Diekmann, and Fritz Dick* Abstract: The Swiss fine chemicals company Bachem, pioneer and specialist in the chemical synthesis of peptides, has also become an internationally leading manufacturer of peptide active pharmaceutical ingredients (APIs). In response to increasing demands in scale and purity, Bachem’s research efforts centered on the chemistry involved in solid-phase peptide synthesis and the production of the required amino acid derivatives with the aim of a continuous improvement of the technology. The resulting optimized protocols together with high-throughput equipment enabled us to manufacture long peptide APIs and, more recently, even pharma-grade glycoproteins in industrial scale. Keywords: Active pharmaceutical ingredients · Large-scale peptide manufacturing · Process development · Side reactions · Solid-phase peptide synthesis Introduction Bachem and is still in our portfolio of more Peptide Synthesis at Bachem than 50 generic APIs. More than 40 years of experience al- This achievement triggered a further The ‘classical’ solution synthesis still lows us to highlight research and develop- significant growth: Processes for manu- has its place at Bachem for manufactur- ment activities in the field of peptide chem- facturing of luteinizing hormone-releasing ing short peptides for research purposes istry by Bachem. Achievements in the field hormone (LHRH), LHRH agonists, and or, adhering to cGMP guidelines, for ge- of liquid- and solid-phase synthesis, with even large peptides such as salmon calci- neric APIs. Over the years, our synthesis special focus on side reactions, will be dis- tonin consisting of 32 amino acids were processes have been thoroughly optimized cussed chronologically, starting from first developed via solution synthesis during so that kilograms of pure peptide drug sub- R&D work, leading to current hot topics. the 1980s, because this was the superior stance can be produced in a single batch. Bachem was founded as a producer of method for preparing bulk quantities of LHRH (GnRH, gonadorelin) and amino acid derivatives and peptides as re- desired purity for use as drug substances LHRH agonists such as goserelin or leu- search chemicals by Peter Grogg in 1971 compared to solid-phase peptide synthesis prolide are synthesized by solution-phase in Liestal. The company grew rapidly and (SPPS) with its limitations in purification methods, which also enabled us to obtain started with the manufacturing of peptide and scalability at that time. longer peptide APIs such as somatostatin active pharmaceutical ingredients (APIs) Shortly after the introduction of the Nα- or calcitonin on large scale.[4] The synthe- under cGMP (current Good Manufacturing Fmoc-based strategy,[1] Bachem developed sis of somatostatin represents a typical ex- Practice) conditions in the 1980s after hav- the syntheses of APIs, e.g. glucagon and ample for this methodology (Scheme 1). ing moved to a larger facility in Bubendorf. endothelin and subsequently, SPPS be- Nevertheless, in the manufacture of The immunomodulatory pentapeptide thy- came the preferred choice for production peptide APIs by chemical means, the fu- mopentin (TP-5) was the first peptide drug of peptides of any scale such as octreotide, ture belongs to solid-phase approaches. substance synthesized in bulk amounts at aprotinin (bovine pancreatic trypsin inhibi- Since the 1990s, Fmoc in combination with tor), and, more recently, liraglutide, a drug tBu-type protecting groups has become the substance inducing insulin secretion from preferred choice for Nα/side-chain protec- the pancreatic β-cells. Currently, the vast tion for SPPS of any scale, not only at majority of peptide APIs are manufactured Bachem.[5,6] The development of the large- by chemical means including SPPS and a scale synthesis of the HIV fusion inhibitor few by recombinant methods.[2] Solution enfuvirtide (T-20 or FUZEON®),[7] a 32 synthesis still has its place at Bachem for amino acid peptide, via an SPPS/solution- specific applications, e.g. the synthesis phase hybrid approach can most probably of short to medium-sized peptide APIs in be considered as the main breakthrough of large scale by optimized processes in one the Fmoc strategy.[6] batch. Whereas the ‘classical’ solution ap- Of special interest in R&D activities proach usually follows a convergent strat- at Bachem is the field of large peptides: egy, the peptides are assembled stepwise Recently our efforts resulted in a pioneer- from C- to N-terminus on the resin, SPPS α *Correspondence: Dr. F. Dick ing breakthrough in the chemical synthe- consists of repetitive N -deprotection, Bachem AG sis of interferon β-1a,[3] a 166 amino acid washing and coupling steps (Scheme 2). Hauptstr. 144 glycoprotein, which has been developed in Over the years, our capacity for solid- CH-4416 Bubendorf collaboration with GlyTech Inc., resulting Tel.: +41 61 935 23 33 phase synthesis, subsequent purification E-mail: [email protected] in a process suitable for industrial scale. by preparative HPLC, and lyophilization PePtide Science in Switzerland CHIMIA 2013, 67, Nr. 12 875 Scheme 1. of peptides has been increased from grams Convergent solution- to kilograms of final product. Our 1000 L phase synthesis SPPS-reactor (Fig. 1) allows us to produce of somatostatin. multiple kilograms of crude peptide on up Protecting groups to 30–50 kg of resin.As much as 3 kg of the have been omitted for clarity. crude product can be purified by prepara- tive HPLC in a single run employing our recently acquired 60 cm column (Fig. 2). Bachem is not only an expert in so- lution and solid-phase methodologies. We also developed resin derivatives such as SasrinTM (4-(4-hydroxymethyl-3-me- thoxyphenoxymethyl) poly(styrene-co-1% divinylbenzene),[8] which allows for the synthesis of fully tBu-type protected pep- tide fragments, and ‘Sasrin chloride’ for the low-racemization coupling of Fmoc- amino acids to the carrier via nucleophil- ic substitution[9] since the 1980s. In the meantime, 2-chlorotrityl chloride resin[10] has become an excellent alternative to ben- zyl alcohol-type resins. Scheme 2. Fmoc- based solid-phase peptide synthesis. The side chains Ri may contain function- alities, which have to be protected dur- ing the assembly of the peptide. These protecting groups are removed during the final cleavage step. Fig. 1. 1000 L stainless steel reactor for SPPS. Fig. 2. Base part of our 60 cm column for pre- parative HPLC (dynamic axial compression module). Total height (frame, column cylinder, and hydraulics) 3.5 m. 876 CHIMIA 2013, 67, Nr. 12 PePtide Science in Switzerland Currently, a large number of our ge- neric APIs and the vast majority of our research peptides are produced by Fmoc/ tBu-SPPS. As the production of peptides used in drugs has become the main busi- ness area of Bachem, developing meth- ods for increasing their purity is the most important part of our research activities. Higher purity can be achieved by comple- mentary approaches: i) Improvement of the quality of start- ing materials as amino acid derivatives, carrier resin, solvents: Not only did highly sensitive methods for analyzing our reac- tants have to be developed, we also had to evaluate the synthesis of the Fmoc amino acid derivatives, our building blocks. ii) Improvement of the synthetic meth- od: The second approach prompted our researchers to scrutinize the reactions tak- ing place during SPPS. Time and money Scheme 3. Putative mechanism for the formation of Fmoc–β-Ala–OH from Fmoc–OSu via Lossen for these studies were well invested, as rearrangement. improving the quality of the crude prod- uct and thus simplifying purification also means increasing the final yield. The fol- compounds, but, even though they have These conversions are accompanied by lowing chapters give an overview of these long been commercially available, it took side reactions as well. The esterification achievements. some time until their quality could meet (‘loading’) of the C-terminal Fmoc-amino iii) Improvement of purification meth- our standards. acid to Wang resin or SasrinTM is accom- ods: We continuously increased the effi- Only after optimization of the synthesis panied by varying degrees of concomitant ciency of purification by using the latest re- of Fmoc-amino acids to minimize the side racemization. The conversion tends to be versed-phase column media and applying reactions and the development of sensitive incomplete, even though large excesses of state-of-the-art equipment for preparative analytical methods for detecting the impu- amino acid derivative are used. HPLC. In parallel, the maximum through- rities mentioned above and others, would Remaining free hydroxyl groups have put had to be multiplied due to increasing Bachem attempt the stepwise solid-phase to be blocked to prevent their conversion demand.[11] synthesis of very long peptides in the de- during a subsequent coupling step. An ex- velopment of active ingredients. cess of benzoyl chloride in the presence The quality of the resin is of utmost im- of pyridine is the standard reagent used Quality of Starting Materials portance for the outcome of the synthesis. in this so-called capping step[17] (Fig. 3). Whereas the building blocks, re- Otherwise, C-terminally
Recommended publications
  • A Global Review on Short Peptides: Frontiers and Perspectives †
    molecules Review A Global Review on Short Peptides: Frontiers and Perspectives † Vasso Apostolopoulos 1 , Joanna Bojarska 2,* , Tsun-Thai Chai 3 , Sherif Elnagdy 4 , Krzysztof Kaczmarek 5 , John Matsoukas 1,6,7, Roger New 8,9, Keykavous Parang 10 , Octavio Paredes Lopez 11 , Hamideh Parhiz 12, Conrad O. Perera 13, Monica Pickholz 14,15, Milan Remko 16, Michele Saviano 17, Mariusz Skwarczynski 18, Yefeng Tang 19, Wojciech M. Wolf 2,*, Taku Yoshiya 20 , Janusz Zabrocki 5, Piotr Zielenkiewicz 21,22 , Maha AlKhazindar 4 , Vanessa Barriga 1, Konstantinos Kelaidonis 6, Elham Mousavinezhad Sarasia 9 and Istvan Toth 18,23,24 1 Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; [email protected] (V.A.); [email protected] (J.M.); [email protected] (V.B.) 2 Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland 3 Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; [email protected] 4 Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; [email protected] (S.E.); [email protected] (M.A.) 5 Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland; [email protected] (K.K.); [email protected] (J.Z.) 6 NewDrug, Patras Science Park, 26500 Patras, Greece; [email protected] 7 Department of Physiology and Pharmacology,
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0082079 A1 Spetzler Et Al
    US 2011 0082079A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0082079 A1 Spetzler et al. (43) Pub. Date: Apr. 7, 2011 (54) GLUCAGON-LIKE PEPTDE-1 DERVATIVES Publication Classification AND THEIR PHARMACEUTICAL USE (51) Int. Cl. A638/22 (2006.01) (75) Inventors: Jane Spetzler, Bronsho (DK); C07K I4/575 (2006.01) Lauge Schäffer, Lyngby (DK); A6IP3/10 (2006.01) Jesper Lau, Farum (DK); Thomas A6IP 9/12 (2006.01) Kruse, Herlev (DK); Patrick A6IP3/04 (2006.01) William Garibay, Holte (DK); A6IP 9/10 (2006.01) Steffen Runge, Frederiksberg A6IPI/00 (2006.01) (DK); Henning Thogersen, Farum A6IPL/04 (2006.01) (DK); Ingrid Petersson, Frederiksberg (DK) (52) U.S. Cl. .......................... 514/7.2:530/399; 514/11.7 (57) ABSTRACT (73) Assignee: Novo Nordisk A/S, Bagsvard (DK) The invention relates to protracted Glucagon-Like Peptide-1 Appl. No.: (GLP-1) derivatives and therapeutic uses thereof. The GLP-1 (21) 12/676,451 derivative of the invention comprises a modified GLP-1 (7- PCT Fled: 37) sequence having a total of 2-12 amino acid modifications, (22) Sep. 5, 2008 including Glu22 and Arg26, and being derivatised with an PCT NO.: PCT/EP2008/061755 albumin binding residue or pegylated in position 18, 20, 23. (86) 30, 31, 34, 36, 37, or 39. These compounds are useful in the S371 (c)(1), treatment or prevention of diabetes type 2 and related dis (2), (4) Date: Oct. 13, 2010 eases. The compounds are potent, stable, have long half-lives, a high affinity of binding to albumin, and/or a high affinity of (30) Foreign Application Priority Data binding to the extracellular domain of the GLP-1 receptor (GLP-1R), all of which is of potential relevance for the overall Sep.
    [Show full text]
  • Racemization Ages (Radiocarbon Dating/Fossil Bones) JEFFREY L
    Proc. Nat. Acad. Sci. USA Vol. 71, No. 3, pp. 914-917, March, 1974 Concordance of Collagen-Based Radiocarbon and Aspartic-Acid Racemization Ages (radiocarbon dating/fossil bones) JEFFREY L. BADA*t, ROY A. SCHROEDERt, REINER PROTSCHt, AND RAINER BERGERt tScripps Institution of Oceanography, University of California, San Diego, La Jolla, Calif. 92037; and tDepartments of Anthropology and Geography and Institute of Geophysics & Planetary Physics, University of California, Los Angeles, Los Angeles, Calif. 90024 Communicated by William A. Nierenberg, October 19, 1973 ABSTRACT By determining the extent of racemization racemization reaction. The only assumption required, in using of aspartic acid in a well-dated bone, it is possible to calcu- this approach, is that the average temperature experienced by late the in situ first-order rate constant for the intercon- version of the L and D enantiomers of aspartic acid. the "calibration" sample is representative of the average Collagen-based radiocarbon-dated bones are shown to be temperature experienced by other samples from the deposit. suitable samples for use in "calibrating" the racemization Many radiocarbon dates suitable for calibrating the aspar- reaction. Once the aspartic-acid racemization reaction has tic-acid racemization reaction have been derived from colla- been "calibrated" for a site, the reaction can be used to date other bones from the deposit. Ages deduced by this gen. However, it is important to show the dependability of method are in good agreement with radiocarbon ages. collagen dates by comparison with measurements made on These results provide evidence that the aspartic-acid charcoal or other organic materials. racemization reaction is an important chronological tool In this study we establish the dependability of radiocarbon for dating bones either too old or too small for radiocarbon collagen dates and then show the equivalence of collagen and dating.
    [Show full text]
  • PYY(3-36) Analogues: Structure
    PYY(3-36) analogues: Structure- activity relationships in energy homeostasis A thesis submitted for the degree of Doctor of Philosophy, Imperial College London 2011 Iain David Pritchard Section of Investigative Medicine Division of Diabetes, Endocrinology and Metabolism Department of Medicine Imperial College London Abstract The developed world is currently in the grip of an obesity epidemic. As a result, there is much ongoing research into the development of an effective anti-obesity agent. Peptide YY (PYY) is a 36 amino acid gastro-intestinal hormone released post- prandially by L-cells in the gastro-intestinal tract in proportion to the calorie content of a meal. The predominant form of the hormone found in circulation is the truncated PYY(3-36). Administration of PYY(3-36) at physiological doses to humans has been shown to reduce food intake. However, due to enzymatic degradation these effects are short lived, reducing the hormone’s utility as an anti-obesity pharmaceutical agent. A series of analogues of PYY(3-36) were designed either with amino acid substitutions in specific parts of the peptide sequence and/or with chemical modifications to the native sequence with the aim of increasing resistance to enzymatic activity whilst retaining or even enhancing the peptide’s bioactivity. The analogues were tested for resistance to degradation by different proteolytic enzymes in comparison to natural PYY(3-36). Their affinity to the Y2 receptor, for which PYY(3-36) is a natural agonist was then investigated. Finally, the effects of peripheral administration of selected analogues on food intake in overnight fasted mice were investigated.
    [Show full text]
  • Peptides As Therapeutics with Enhanced Bioactivity
    Send Orders of Reprints at [email protected] Current Medicinal Chemistry, 2012, 19, 4451-4461 4451 Peptides As Therapeutics with Enhanced Bioactivity D. Goodwin1, P. Simerska1 and I. Toth*,1,2, 1The University of Queensland, School of Chemistry and Molecular Biosciences; 2School of Pharmacy, St. Lucia 4072, Queensland, Australia Abstract: The development of techniques for efficient peptide production renewed interest in peptides as therapeutics. Numerous modi- fications for improving stability, transport and affinity profiles now exist. Several new adjuvant and carrier systems have also been developed, enhancing the immunogenicity of peptides thus allowing their development as vaccines. This review describes the established and experimental approaches for manufacturing peptide drugs and highlights the techniques currently used for improving their drug like properties. Keywords: Peptide, drug delivery, vaccine, manufacture, bioavailability, peptide therapeutic, immunogenicity, peptide drug, peptide synthe- sis, clinical trials. INTRODUCTION side-chain reactivity, degree of modification, incorporation of un- natural components, in addition to the required purity, solubility, Natural and synthetic peptides have shown promise as pharma- stability and scale. There are two strategies for peptide production - ceutics with the potential to treat a wide variety of diseases. This chemical synthesis and biological manufacturing. potential is often overshadowed by the inability of the peptides to reach their targets in an active form in vivo. The delivery of active Chemical Peptide Synthesis peptides is challenging due to inadequate absorption through the Chemical synthesis has been used for the production of peptides mucosa and rapid breakdown by proteolytic enzymes. Peptides are in both research and industry and led to the development of the usually selective and efficacious, therefore need only be present in majority of peptide drugs [2].
    [Show full text]
  • Phenylalanine Post Translational Modifications
    Phenylalanine Post Translational Modifications Pilous and unseparable Fitzgerald never abreacts faultlessly when Kenn producing his shorelines. Exciting Simmonds reproves almostunfearfully gloriously, while Smith though always Barnard japes earwigged his krone his gusset magnetrons glancingly, disbudding. he malleates so yesteryear. Inofficious and septimal Raimund tariff Modified proteins of this type cannot be sequenced by the Edman method, they are blocked. The acetylation of proteins is mainly a cotranslational and posttranslational process. Furthermore, these biocontained cells will grow more rapidly than first generation biocontained cells, which can accelerate the rate of industrial production of metabolites or proteins. Results showed highly efficient incorporation at both positions. All work on the mice was performed at a sterile workbench in the same room. Advanced glycation endproducts: what is their relevance to diabetic complications? Protein posttranslational modifications: the chemistry of proteome diversifications. Tekle E, Wang T, Stadtman ER, Yang DCH, Chock PB: Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Synonyms: racemization, epimerisation, stereoinversion. Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. Zhang Q, Monroe ME, Schepmoes AA, Clauss TRW, Gritsenko MA, Meng D, Petyuk VA, Smith RD, Metz TO: Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: Respiration, apoptosis, and human disease. Mitochondrial Pathophysiology, Reactive Oxygen Species, and Cardiovascular Diseases. Raise the profile of a research area by leading a Special Issue. PTMs are then immunodetected using fluorescence tagging. The carbamido diacetyl reaction: a test for citrulline.
    [Show full text]
  • 1 Peptide Therapeutics
    Universal Free E-Book Store Donate Us, In order to keep our Service Alive, We have to pay for placing files (Abstracts, Books, Literature & Software) on File Hosting Servers, Your donations will make our process of payment a bit easier, Please use any one of the Payment Gateway for Donation. Never matter what amount you donate (10’s or 100’s or 1000’s). Universal Free E-Book Store Universal Free E-Book Store PEPTIDE CHEMISTRY AND DRUG DESIGN Universal Free E-Book Store Universal Free E-Book Store PEPTIDE CHEMISTRY AND DRUG DESIGN Edited by BEN M. DUNN Universal Free E-Book Store Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Characterization of Asparagine Deamidation in Immunodominant
    International Journal of Molecular Sciences Article Characterization of Asparagine Deamidation in Immunodominant Myelin Oligodendrocyte Glycoprotein Peptide Potential Immunotherapy for the Treatment of Multiple Sclerosis Maria-Eleni Androutsou 1, Agathi Nteli 2, Areti Gkika 2, Maria Avloniti 3, Anastasia Dagkonaki 3, Lesley Probert 3 , Theodore Tselios 2,* and Simona GoliˇcGrdadolnik 4,* 1 Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, 14671 Athens, Greece; [email protected] 2 Department of Chemistry, University of Patras, 26504 Patras, Greece; [email protected] (A.N.); [email protected] (A.G.) 3 Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece; [email protected] (M.A.); [email protected] (A.D.); [email protected] (L.P.) 4 Laboratory for Molecular Structural Dynamics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia * Correspondence: [email protected] (T.T.); [email protected] (S.G.G.); Tel.: +30-26-1099-7905 (T.T.); +38-61-4760-409 (S.G.G.) Received: 7 August 2020; Accepted: 6 October 2020; Published: 13 October 2020 Abstract: Mannan (polysaccharide) conjugated with a myelin oligodendrocyte glycoprotein (MOG) peptide, namely (KG)5MOG35–55, represents a potent and promising new approach for the immunotherapy of Multiple Sclerosis (MS). The MOG35–55 epitope conjugated with the oxidized form of mannan (poly-mannose) via a (KG)5 linker was found to inhibit the symptoms of MOG35–55-induced experimental autoimmune encephalomyelitis (EAE) in mice using prophylactic and therapeutic vaccinated protocols. Deamidation is a common modification in peptide and protein sequences, especially for Gln and Asn residues.
    [Show full text]
  • Strategies Toward Optimizing Automated On-Resin Disulfide Bond Formation in Disulfide Rich Peptides
    Strategies Toward Optimizing Automated On-Resin Disulfide Bond Formation in Disulfide Rich Peptides Elizabeth Denton1, Amit Mehrotra2, Cedric Rentier3 1Biotage, 10430 Harris Oakes Blvd., Suite C, Charlotte, North Carolina 28269, USA 2Biotage, Vimpelgatan 5, 753 18 Uppsala, Sweden 3Biotage, 2nd Mantomi Bldg 6F, 1-14-4 Kameido, Koto-ku, Tokyo 136-0071, Japan Introduction Strategic Pairing of Orthogonally Protected Cysteines Disulfide rich peptides exhibit exquisite stability due to the For automated synthesis of the fully oxidized peptide, pairs of covalent stabilization of their secondary structure. After a methoxytrityl (Mmt)- and acetamidomethyl (Acm)-protected particular sequence has been identified and mapped, these cysteine residues were incorporated in place of standard trityl- peptides are typically folded in solution under redox protected cysteines used in the linear peptide synthesis. Using conditions, assuming that a single, thermodynamically stable the unique software feature Branches™, each orthogonal conformation will be the predominant species. However, there deprotection and subsequent cysteine oxidation can be have been several cases where multiple disulfide bonding visualized, individually programmed and the synthesis order patterns are observed upon folding completion in solution, assigned, Figure 2. demanding additional purification and significant characterization efforts before any biological assays can be performed. A simplified on-resin synthesis strategy is attractive as the Figure 3. Crude analytical HPLC chromatograms and representative mass spec analysis (inset) for Apamin samples analyzed during the purification and characterization steps can be minimized, if not Acm removal optimization. Representative chromatograms for completely eliminated, thereby increasing the overall yield of conditions 3 (red) and 6 (black) are overlaid. No significant the peptide with the proper disulfide bond pattern.
    [Show full text]
  • Hybrid-Phase Native Chemical Ligation Approaches to Overcome the Limitations of Protein Total Synthesis
    Hybrid-Phase Native Chemical Ligation Approaches to Overcome the Limitations of Protein Total Synthesis DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ruixuan Ryan Yu Graduate Program in the Ohio State Biochemistry Program The Ohio State University 2016 Committee: Jennifer J. Ottesen – Advisor Michael G. Poirier Michael A. Freitas Dennis Bong Copyrighted by Ruixuan Ryan Yu 2016 Abstract Total protein synthesis allows the preparation of proteins with chemically diverse modifications. The numerous advantages of total synthesis are sometimes offset by some major limitations. Protein synthesis is a non-trivial task involving many chemical steps, and these steps increase with the size of the protein. Therefore, larger proteins are difficult to synthesize with high yield. We have developed a strategy which we term hybrid-phase native chemical ligation (NCL) to overcome some of the limitations of size and yield. Hybrid-phase NCL combines ligating peptides on a solid support (solid-phase NCL) and in solution (solution-phase NCL) to maximize synthetic yield. We have successfully used this method to synthesize triple-acetylated histone H4-K5ac,K12ac,K91ac and, for the first time, acetylated centromeric histone CENP-A-K124ac (CpA-K124ac). In order to improve the yield of CENP-A total synthesis, we have incorporated a convergent ligation element in our hybrid-phase strategy. This new approach reduced the number of purification steps, leading to a synthetic yield that was almost triple that of the original approach. Finally, we introduce the convergent solid-phase hybrid NCL approach that allows the preparation of a long peptide segment bearing a masked thioester on a solid support.
    [Show full text]
  • Camp-Dependent Phosphorylation of Bovine Lens Cv-Crystallin*
    Proc. Natl. Acad. Sci. USA Vol. 82, pp. 4712-4716, July 1985 Cell Biology cAMP-dependent phosphorylation of bovine lens cv-crystallin* (AX, A2, B1, and B2 chains/post-translational modification/protein kinase) ABRAHAM SPECTOR, RAJL CHIESA, JANET SREDYt, AND WILLIAM GARNER Biochemistry and Molecular Biology Laboratory, Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 Communicated by Karl Meyer, March 18, 1985 ABSTRACT This communication reports that the Al and A few of the major cAMP-dependent phosphorylated pro- B1 chains of bovine lens a-crystallin are phosphorylated. The teins found in the lens have been identified. They include the conclusion is based on the following evidence: (i) When soluble major fiber membrane protein MP26 (4, 5), vimentin (6), actin preparations from lens cortex are incubated with [y-32P]ATP, (6), and fodrin (7). a cAMP-dependent labeling of a high molecular weight protein Of particular interest is the preliminary finding of a major is obtained. (it) After NaDodSO4/PAGE, the label is found in phosphorylated polypeptide with Mr in the 20,000 range, two bands with Mr 22,000 and 20,000, corresponding to the B which appears in the outer fiber layers (the outer cortex) but and A chains of a-crystallin, respectively. (Wil) Isoelectric not in the epithelium (3). This report presents evidence which focusing indicates that the radioactivity is almost exclusively in suggests that this phosphorylated fraction consists of the Al bands with pI values of 5.58 and 6.70, corresponding to the Al and B1 chains ofa-crystallin, one of the major proteins of the and B1 chains, respectively.
    [Show full text]
  • Conformations of Heterochiral and Homochiral Proline-Pseudoproline
    Conformations of Heterochiral and Homochiral Proline-Pseudoproline ConformationsSegments in of Peptides: Heterochiral Context and Dependent HomochiralCis–Trans Proline-PseudoprolinePeptide SegmentsBond Isomerization in Peptides: Context Dependent Cis–Trans Peptide Bond Isomerization Kantharaju,1 Srinivasarao Raghothama,2 Upadhyayula Surya Raghavender,3 Subrayashastry Aravinda,3 Narayanaswamy Shamala,3 Padmanabhan Balaram1 1 Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India 2 NMR Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India 3 Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India Received 9 March 2009; accepted 7 April 2009 Published online 16 April 2009 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/bip.21207 ABSTRACT: stabilized by two intramolecular hydrogen bonds. Further truncation of the sequence gives an appreciable rise in the The pseudoproline residue (CPro, L-2,2-dimethyl-1,3- D thiazolidine-4-carboxylic acid) has been introduced into population of cis conformers in the tripeptide Piv- Pro- C heterochiral diproline segments that have been previously Pro-Leu-OMe (6). In the homochiral segment Piv-Pro- C shown to facilitate the formation of b-hairpins, containing Pro-Leu-OMe (7)onlythecis form is observed with the b central two and three residue turns. NMR studies of the NMR evidence strongly supporting a type VIa -turn ? octapeptide Boc-Leu-Phe-Val-DPro-CPro-Leu-Phe-Val- conformation, stabilized by a 4 1 hydrogen bond OMe (1), Boc-Leu-Val-Val-DPro-CPro-Leu-Val-Val-OMe between the Piv (CO) and Leu (3) NH groups. The crystal CH,CH3 (2), and the nonapeptide sequence Boc-Leu-Phe- structure of the analog peptide 7a (Piv-Pro- Pro- Val-DPro-CPro-DAla-Leu-Phe-Val-OMe (3)established Leu-NHMe) confirms the cis peptide bond geometry for CH,CH3 well-registered b-hairpin structures in chloroform the Pro- Pro peptide bond, resulting in a type VIa b # solution, with the almost exclusive population of the trans -turn conformation.
    [Show full text]