Peptides As Therapeutics with Enhanced Bioactivity

Total Page:16

File Type:pdf, Size:1020Kb

Peptides As Therapeutics with Enhanced Bioactivity Send Orders of Reprints at [email protected] Current Medicinal Chemistry, 2012, 19, 4451-4461 4451 Peptides As Therapeutics with Enhanced Bioactivity D. Goodwin1, P. Simerska1 and I. Toth*,1,2, 1The University of Queensland, School of Chemistry and Molecular Biosciences; 2School of Pharmacy, St. Lucia 4072, Queensland, Australia Abstract: The development of techniques for efficient peptide production renewed interest in peptides as therapeutics. Numerous modi- fications for improving stability, transport and affinity profiles now exist. Several new adjuvant and carrier systems have also been developed, enhancing the immunogenicity of peptides thus allowing their development as vaccines. This review describes the established and experimental approaches for manufacturing peptide drugs and highlights the techniques currently used for improving their drug like properties. Keywords: Peptide, drug delivery, vaccine, manufacture, bioavailability, peptide therapeutic, immunogenicity, peptide drug, peptide synthe- sis, clinical trials. INTRODUCTION side-chain reactivity, degree of modification, incorporation of un- natural components, in addition to the required purity, solubility, Natural and synthetic peptides have shown promise as pharma- stability and scale. There are two strategies for peptide production - ceutics with the potential to treat a wide variety of diseases. This chemical synthesis and biological manufacturing. potential is often overshadowed by the inability of the peptides to reach their targets in an active form in vivo. The delivery of active Chemical Peptide Synthesis peptides is challenging due to inadequate absorption through the Chemical synthesis has been used for the production of peptides mucosa and rapid breakdown by proteolytic enzymes. Peptides are in both research and industry and led to the development of the usually selective and efficacious, therefore need only be present in majority of peptide drugs [2]. These chemical-based strategies were low concentrations to act on their targets. The metabolism of pep- usually favored due to their unique ability to incorporate any num- tides is superior to other small molecules due to the limited possi- ber of non-natural components. Two chemical methodologies- bility for accumulation and result in relatively non-toxic amino solution-phase (SPS), and solid-phase peptide synthesis (SPPS) [4] acid, peptide metabolites. These properties contribute towards the - are the predominant methods of chemical synthesis, but many overall low toxicity of peptides, with a limited risk of adverse inter- other approaches, including hybrid synthesis and chemoselective actions. ligation, have also been studied. The most important classes of peptides that have been investi- Solution-Phase Peptide Synthesis gated include insulin, gonadotropin-releasing hormone, calcitonin, the enkephalins, the glucagons, other hormone analogs, enzyme First described by du Vigneud in 1953, the SPS method was inhibitors and vaccines. The majority of peptides were targeted used for the production of most commercial peptide therapeutics towards treatment of cancers and metabolic disorders, with a large [5]. The method was based on the coupling of peptide fragments or number targeting G-protein coupled receptors. In 2010, there were a single amino acid in solution Fig. (1). The main advantage of SPS over 50 peptide drugs approved for marketing, with annual global was economic because of the use of relatively inexpensive building sales nearing/surpassing US$ 1 billion for the following peptide blocks and reagents. Each intermediate could be analyzed and puri- drugs: ciclosporin (e.g. Neoral®, Novartis), goserelin acetate (Zo- fied, leading to products of higher purity and easier final purifica- ladex®, AstraZeneca), glatiramer acetate (Copaxone®, Teva Phar- tions. The main limitation of SPS was the need to modify each maceuticals), leuprolide acetate (e.g. Lupron®, Abbott Laborato- intermediate reaction step to synthesize a required peptide thus, the ries), and octreotide acetate (Sandostatin®, Novartis). Additionally, development of each synthetic scheme was long, laborious, and in 2010, more than 100 peptide drug candidates were reported to be relatively expensive. Peptide pharmaceuticals from as few as 3 in clinical development [1]. amino acids (e.g. thyrotropin-releasing hormone) to peptides of 32 residues (e.g. calcitonin) have been synthesized for clinical use This review describes novel approaches in peptide synthesis using SPS [2]. and the use of peptides as therapeutics. Solid-Phase Peptide Synthesis PEPTIDE THERAPEUTICS Ten years after the development of SPS, Merrifield introduced SPPS [6]. This method was based on the coupling of protected Initially, inefficient and expensive manufacturing processes amino acids to an insoluble support Fig. (1). The simplicity of this hampered the development of peptide-based therapeutics. Neverthe- process was compatible with automated synthesis for the large scale less, the production of the peptide drug enfuvirtide (Fuzeon®, production of peptides. SPPS proved to be faster and less laborious Roche, a human immunodeficiency virus (HIV) membrane fusion than SPS. Two forms of SPPS methods were developed based on inhibitor), demonstrated that preparing a 36-amino acid peptide on the protection of the -amino group of an amino acid, the tert- a ton-scale annually, could be cost effective [2]. butyloxycarbonyl (Boc) group was deprotected by acid (e.g. The establishment of industrial-scale peptide manufacturers trifluoroacetic acid) [7], while 9-fluorenylmethyloxycarbonyl meant that the chemical industry had to supply increased demands, (Fmoc) group was removed by base (e.g. piperidine) [8]. which caused a decrease in prices, increased availability of amino The most important limitation to the use of SPPS on an indus- acids and consequently, market growth [3]. trial scale was the requirement for excess starting material [2]. The methods used for the preparation of peptide therapeutics However, several peptide therapeutics such as ziconotide (Prialt®, have depended on a number of important criteria: sequence length, Elan), exanatide (Byetta®, Amylin/Eli Lilly Co.), pramlintide (Symlin®, Amylin) and degarelix (Firmagon®, Ferring) were syn- *Address correspondence to this author at the School of Chemistry and Molecular thesized by SPPS and approved by the U.S. Food and Drug Biosciences, The University of Queensland, St Lucia, Queensland, Australia; 4072, Administration (FDA) [9, 10]. Since 1992, microwave irradiation Tel: +61 7 33469892; Fax: +61 7 33654273; E-mail: [email protected] has been used extensively to accelerate SPPS by providing a con- 1875-533X/12 $58.00+.00 © 2012 Bentham Science Publishers 4452 Current Medicinal Chemistry, 2012 Vol. 19, No. 26 Goodwin et al. venient rapid heating method [11]. SPPS was used to make Grami- Pseudo-proline (Pro) modified amino acid residues were cidin A (peptide antibiotic) and CSF114(Glc) (a glycopeptide im- designed to minimize aggregation and racemization when synthe- munological probe) with a good yield and high purity [12]. sizing difficult peptide sequences [18]. Pseudo-prolines (Pro) are Hybrid Synthesis serine- or theonine-derived oxazolidines or cysteine-derived thio- zolidines with proline-like ring structures Fig. (2). A fragment con- Due to the time limitations and adverse side-reactions present in densation of the complex RNase1-39 glycopeptide made with Pro traditional SPS and SPPS protocols, synthesis of some peptide fragments was carried out successfully using SPPS without racemi- sequences has often proven difficult. Hybrid synthesis, which com- zation [19]. The use of polyethylene glycol (PEG)-based resins, bines SPS and SPPS, merged the benefits of both protocols Fig. (1) particularly ChemMatrix® (CM), showed benefits over traditional [4]. The production of enfurvirtide, established using SPPS, was polystyrene-based resins [20, 21]. CM was very stabile with a high changed to a hybrid strategy for manufacture in the scale of metric loading capacity and has been used in both aqueous solutions and tons annually from three or more fragments [2]. during the synthesis of difficult hydrophobic peptides [21]. The use Chemoselective Ligation of Pro in combination with CM was successful in the synthesis of a 68-amino acid chemokine, which was unsuccessful using a poly- Another option for the elongation of peptide chains is through styrene resin due to aggregation [22]. Kessam et al. suggested that a chemoselective ligation techniques, which offer the ability to cou- newly developed resin incorporating PEG polymerized onto a ple unprotected peptide fragments Fig. (1). Native chemical ligation poly(vinyl alcohol) core may be even more valuable, economically was described as one example of chemoselective ligation, which, and environmentally, after demonstrating its promise against other through a thiol exchange and spontaneous rearrangement, ulti- resins in synthesis of a section of acyl carrier protein [23]. mately formed natural peptide bonds between peptide fragments [13]. The limitation of this strategy was the requirement of an N- terminal cysteine and C-terminal thioester. A modified method used NH O auxillary thiols in place of the cysteine residues, which were HN removed at the site of ligation and allowed the formation of a non- R4 N cysteine linkage [14, 15]. R3 O Improving Chemical Synthesis R 2 X H Due to ecological concerns about the impact of chemical syn- R1 thesis, there has been pressure
Recommended publications
  • Peptide Therapeutics Designing a Science-Led Strategic Quality Control Program
    BioProcess International Peptide SPECIAL REPORT Therapeutics Designing a Science-Led Strategic Quality Control Program INTERTEK PHARMACEUTICAL SERVICES Your partner for regulatory-driven, phase appropriate analytical programs tailored to your molecule. Our experts help you to navigate the challenges of development, regulatory submission, and manufacturing. Peptide Therapeutics Designing a Science-Led Strategic Quality Control Program Shashank Sharma and Hannah Lee ince the emergence of peptide therapeutics in the 1920s with the advent of insulin therapy, the market for this product class has continued to expand with global revenues anticipatedS to surpass US$50 billion by 2024 (1). The growth of peptide therapeutics is attributed not only to improvements in manufacturing, but also to a rise in demand because of an increasingly aging population that is driving an increase in the occurrence of long-term diseases. The need for efficient and low-cost drugs and rising investments in research and development of novel drugs continues to boost market growth and fuel the emergence of generic versions that offer patients access to vital medicines at low costs. North America has been the dominant market for peptide therapeutics, with the Asia–Pacific region Insulin molecular model; the first therapeutic expected to grow at a faster rate. The global peptides use of this peptide hormone was in the market has attracted the attention of key players 1920s to treat diabetic patients. within the pharmaceutical industry, including Teva Pharmaceuticals, Eli Lilly, Novo Nordisk, Pfizer, amino acids to be peptides. Within that set, those Takeda, and Amgen. Those companies have made containing 10 or more are classed as polypeptides.
    [Show full text]
  • A Global Review on Short Peptides: Frontiers and Perspectives †
    molecules Review A Global Review on Short Peptides: Frontiers and Perspectives † Vasso Apostolopoulos 1 , Joanna Bojarska 2,* , Tsun-Thai Chai 3 , Sherif Elnagdy 4 , Krzysztof Kaczmarek 5 , John Matsoukas 1,6,7, Roger New 8,9, Keykavous Parang 10 , Octavio Paredes Lopez 11 , Hamideh Parhiz 12, Conrad O. Perera 13, Monica Pickholz 14,15, Milan Remko 16, Michele Saviano 17, Mariusz Skwarczynski 18, Yefeng Tang 19, Wojciech M. Wolf 2,*, Taku Yoshiya 20 , Janusz Zabrocki 5, Piotr Zielenkiewicz 21,22 , Maha AlKhazindar 4 , Vanessa Barriga 1, Konstantinos Kelaidonis 6, Elham Mousavinezhad Sarasia 9 and Istvan Toth 18,23,24 1 Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; [email protected] (V.A.); [email protected] (J.M.); [email protected] (V.B.) 2 Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland 3 Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; [email protected] 4 Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; [email protected] (S.E.); [email protected] (M.A.) 5 Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland; [email protected] (K.K.); [email protected] (J.Z.) 6 NewDrug, Patras Science Park, 26500 Patras, Greece; [email protected] 7 Department of Physiology and Pharmacology,
    [Show full text]
  • Peptides As Drug Candidates: Limitations and Recent Development Perspectives
    ISSN: 2574-1241 Volume 5- Issue 4: 2018 DOI: 10.26717/BJSTR.2018.08.001694 Yusuf A Haggaga. Biomed J Sci & Tech Res Mini Rewiew Open Access Peptides as Drug Candidates: Limitations and Recent Development Perspectives Yusuf A. Haggag*1, Ahmed A. Donia1,2, Mohamed A. Osman1, Sanaa A. El-Gizawy1 1Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt 2Department of Pharmaceutical Technology, Faculty of Pharmacy, Menofia University, Menofia, Egypt Received: Published: *Corresponding August author: 28, 2018; September 05, 2018 Yusuf A Haggag, Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Egypt Abbreviations: GLP-1: Glucagon-Like Peptide-1; PEG: Polyethylene Glycol; Gamma IgG: Immunoglobulin; FcRn: Fc Receptor Introduction [4]. Discovery of several tumor-related peptides and proteins also Peptides can be defined as polypeptide chains of 50 or less protein/peptide receptors is supposed to create a new revolution amino acids or 5000 Da in molecular weight characterized by a wave of more promising, effective and selective anticancer drugs in high degree of secondary structure and lack of tertiary structure. the future. Therapeutic anticancer peptides will capture the largest Therapeutic peptides have traditionally been derived from nature share of the cancer therapeutic market [2]. This mode of cancer as naturally occurring peptide hormones (known as bioactive treatment including peptides, proteins and monoclonal antibodies peptides), genetic/recombinant libraries and chemical libraries is termed “biologics” treatment option [5]. [1]. The recent technologies used for peptides production include chemical synthesis, enzymatic synthesis, recombinant DNA About 75% from the whole peptide drugs in the market that biotechnology, cell-free expression and transgenic animal or plant gained total global sales over $1 billion are used directly in cancer There are several hundred peptide candidates under clinical species.
    [Show full text]
  • Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Yazan H
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2013 Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Yazan H. Akkam University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Biochemistry Commons, Medicinal and Pharmaceutical Chemistry Commons, and the Molecular Biology Commons Recommended Citation Akkam, Yazan H., "Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications" (2013). Theses and Dissertations. 908. http://scholarworks.uark.edu/etd/908 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology by Yazan H. Akkam Jordan University of Science and Technology Bachelor of Science in Pharmacy, 2001 Al-Balqa Applied University Master of Science in Biochemistry and Chemistry of Pharmaceuticals, 2005 August 2013 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Dr. David S. McNabb Dissertation Director Professor Roger E. Koeppe II Professor Gisela F. Erf Committee Member Committee Member Professor Ralph L. Henry Dr. Suresh K. Thallapuranam Committee Member Committee Member ABSTRACT Candida species are the fourth leading cause of nosocomial infection. The increased incidence of drug-resistant Candida species has emphasized the need for new antifungal drugs.
    [Show full text]
  • Therapeutic Oligos & Peptides
    Focus on Therapeutic Oligos & Peptides Enhancing the pharmaceutical properties of peptides To begin the discussion about enhancing or improving pharmaceutical properties, one must fi rst understand “the good, the bad, and the ugly” of peptides (1). The good. Peptides are generally highly potent, selective, and have a low potential for toxicity and low risk of drug-drug interaction. The bad. Peptides are generally not terribly stable in biological matrices, susceptible to protease degradation. The ugly. The polar nature of the peptide bond and the size of peptide molecules makes permeability across cell membranes challenging. In small molecule drug PEGylation development, we commonly think PEGylation refers to the attachment about Lipinski’s rule of fi ve (2), of poly(ethylene glycol) or PEG to which is based on the observation Keyw ds peptides or proteins and is able that most orally administered drugs to improve the pharmacokinetic have common physicochemical PEGylation, lipidation, properties of these molecules. characteristics, namely, glycosylation, PEG increases the hydration shell 1. a molecular mass less than 500 cyclization, of a peptide, making the peptide daltons non-natural amino less susceptible to renal clearance 2. a logP (octanol-water partition acid substitution and protease degradation. coeffi cient) less than 5 PEGylation can also decrease the 3. no more than 5 hydrogen bond immunogenicity potential. There are donors many diff erent PEG molecules that can be covalently 4. no more than 10 (2 x 5) hydrogen bond acceptors. attached to peptides including linear or branched, low Peptides violate each and every one of these rules, molecular weight or high molecular weight.
    [Show full text]
  • Peptides: Drivers and Challenges
    INTERVIEWGAYLE DE MARIA1*, BRUCE H. MORIMOTO2 *Corresponding author 1. Chimica Oggi - Chemistry Today / TKS Publisher 2. Celerion, Redwood City CA 94061, USA Member of Chimica Oggi / Chemistry Today Scientific Advisory Board Gayle De Maria The expansion of the therapeutic applications of peptides: drivers and challenges The notable expansion of peptide therapeutics in the late 1990s and 2000s led to an unprecedented number of marketing approvals in 2012, and has provided a robust pipeline that should deliver numerous approvals during the remaining decade (1). Peptides offer certain advantages as drugs; these include their high biological activity, high specificity and low toxicity. However, challenges exist for the drug development of peptide therapeutics. Obstacle number one: in general, peptides need to be parenterally delivered (via injection) because oral administration would lead to their degradation in the digestive tract. Obstacle number two: they have a short half-life because they are quickly broken down by proteolytic enzymes. Obstacle number three: their chemical nature prevents them to a large extent from getting past physiological barriers or membranes (2). That said, why has there been a renaissance with respect to peptide drugs in the pharmaceutical industry? First of all we should say that peptides often target receptors and enzymes that are difficult or impossible to access with small molecules; thereby, providing drug discovery and development of novel targets to potentially offset the revenue void left by recent drug failures and the loss of patent protection of blockbuster drugs. Moreover peptides can complement biologics as drugs with the hope for greater efficacy, selectivity and specificity. Peptides possess bioactivities that are of major interest for drug discovery; peptides, peptide fragments, or peptidometics can intervene in most physiological processes and pathways.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0082079 A1 Spetzler Et Al
    US 2011 0082079A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0082079 A1 Spetzler et al. (43) Pub. Date: Apr. 7, 2011 (54) GLUCAGON-LIKE PEPTDE-1 DERVATIVES Publication Classification AND THEIR PHARMACEUTICAL USE (51) Int. Cl. A638/22 (2006.01) (75) Inventors: Jane Spetzler, Bronsho (DK); C07K I4/575 (2006.01) Lauge Schäffer, Lyngby (DK); A6IP3/10 (2006.01) Jesper Lau, Farum (DK); Thomas A6IP 9/12 (2006.01) Kruse, Herlev (DK); Patrick A6IP3/04 (2006.01) William Garibay, Holte (DK); A6IP 9/10 (2006.01) Steffen Runge, Frederiksberg A6IPI/00 (2006.01) (DK); Henning Thogersen, Farum A6IPL/04 (2006.01) (DK); Ingrid Petersson, Frederiksberg (DK) (52) U.S. Cl. .......................... 514/7.2:530/399; 514/11.7 (57) ABSTRACT (73) Assignee: Novo Nordisk A/S, Bagsvard (DK) The invention relates to protracted Glucagon-Like Peptide-1 Appl. No.: (GLP-1) derivatives and therapeutic uses thereof. The GLP-1 (21) 12/676,451 derivative of the invention comprises a modified GLP-1 (7- PCT Fled: 37) sequence having a total of 2-12 amino acid modifications, (22) Sep. 5, 2008 including Glu22 and Arg26, and being derivatised with an PCT NO.: PCT/EP2008/061755 albumin binding residue or pegylated in position 18, 20, 23. (86) 30, 31, 34, 36, 37, or 39. These compounds are useful in the S371 (c)(1), treatment or prevention of diabetes type 2 and related dis (2), (4) Date: Oct. 13, 2010 eases. The compounds are potent, stable, have long half-lives, a high affinity of binding to albumin, and/or a high affinity of (30) Foreign Application Priority Data binding to the extracellular domain of the GLP-1 receptor (GLP-1R), all of which is of potential relevance for the overall Sep.
    [Show full text]
  • PYY(3-36) Analogues: Structure
    PYY(3-36) analogues: Structure- activity relationships in energy homeostasis A thesis submitted for the degree of Doctor of Philosophy, Imperial College London 2011 Iain David Pritchard Section of Investigative Medicine Division of Diabetes, Endocrinology and Metabolism Department of Medicine Imperial College London Abstract The developed world is currently in the grip of an obesity epidemic. As a result, there is much ongoing research into the development of an effective anti-obesity agent. Peptide YY (PYY) is a 36 amino acid gastro-intestinal hormone released post- prandially by L-cells in the gastro-intestinal tract in proportion to the calorie content of a meal. The predominant form of the hormone found in circulation is the truncated PYY(3-36). Administration of PYY(3-36) at physiological doses to humans has been shown to reduce food intake. However, due to enzymatic degradation these effects are short lived, reducing the hormone’s utility as an anti-obesity pharmaceutical agent. A series of analogues of PYY(3-36) were designed either with amino acid substitutions in specific parts of the peptide sequence and/or with chemical modifications to the native sequence with the aim of increasing resistance to enzymatic activity whilst retaining or even enhancing the peptide’s bioactivity. The analogues were tested for resistance to degradation by different proteolytic enzymes in comparison to natural PYY(3-36). Their affinity to the Y2 receptor, for which PYY(3-36) is a natural agonist was then investigated. Finally, the effects of peripheral administration of selected analogues on food intake in overnight fasted mice were investigated.
    [Show full text]
  • The Importance of the Glycosylation of Antimicrobial Peptides: Natural And
    Drug Discovery Today Volume 00, Number 00 February 2017 REVIEWS The importance of the glycosylation POST SCREEN of antimicrobial peptides: natural and synthetic approaches Reviews Natalia G. Bednarska, Brendan W. Wren and Sam J. Willcocks London School of Hygiene and Tropical Medicine, Keppel Street, London, UK Glycosylation is one of the most prevalent post-translational modifications of a protein, with a defining impact on its structure and function. Many of the proteins involved in the innate or adaptive immune response, including cytokines, chemokines, and antimicrobial peptides (AMPs), are glycosylated, contributing to their myriad activities. The current availability of synthetic coupling and glycoengineering technology makes it possible to customise the most beneficial glycan modifications for improved AMP stability, microbicidal potency, pathogen specificity, tissue or cell targeting, and immunomodulation. Introduction O-linked glycosylation is a dynamically explored field because AMPs are ubiquitous, ancient, and highly effective host defense of its potent role in mammalian pathophysiological processes. compounds that are a prominent aspect of the early innate im- Defects in glycosylation in humans have broadly studied links mune response to infection. They vary in sequence and length, but to different diseases and malfunctions [3]. O-linked glycosylation are generally less than 30 amino acids, with a tendency to have a is characterised by the covalent attachment of glycan through an cationic charge that attracts them to bacterial membranes. Their oxygen atom. However, the O-linked consensus, unlike the N- mode of action is also diverse, ranging from direct integration and linked one, is not as easily predictable [4]. It is initiated by the permeabilisation of the cell wall, binding with nucleic and enzyme attachment of GalNac to Ser/Thr, but can also comprise O-linked targets, to indirect activity, such as immunomodulation of the b-N-acetylglucosamine; thus, classification of O-glycans is based host.
    [Show full text]
  • Maurice Manning 02/04/2021
    MAURICE MANNING 02/04/2021 POSITIONS: Distinguished University Professor Department of Cancer Biology Ombudsman University of Toledo College of Medicine and Life Sciences PLACE OF BIRTH: Loughrea, Co. Galway, Ireland PARENTS: John and Annie Manning, National School Teachers Drim National School, Drim, Loughrea and Danesfort National School, Danesfort, Loughrea SIBLINGS: Justin Manning, B.E., M.A., Galway City, Ireland Helene Lafferty, N.T., B.A., Lisdoonvarna, Co. Clare, Ireland Monica McNamara, R.N., Ganty, Craughwell, Co. Galway, Ireland Claire Manning, Loughrea, Co. Galway, Ireland Lou Manning, B.A., M.Ed., Toronto, Ontario, Canada Gary Manning, Niagara Falls, Ontario, Canada MARITAL STATUS: Married to Carmel Walsh, R.N., B.Ed. CHILDREN: Shane J. Manning, Columbus, OH Deirdre Manning, B.A., M. Div., MSW, Toledo, OH Brian Manning, B.A., M.A., Los Angeles, CA CITIZENSHIP: United States PROFESSIONAL ADDRESS: University of Toledo College of Medicine and Life Sciences Department of Cancer Biology 3000 Arlington Avenue – MS 1010 Block Health Science Building, Room 428 Toledo, OH 43614-2598 (419) 383-4131 - Office (419) 383-6228 - Fax email address: [email protected] HOME ADDRESS: 2143 Bridlewood Drive, Toledo, OH 43614, (419) 866-6407 1 EDUCATION: Elementary School; Saint Brendan’s Boys National School,Loughrea, County Galway, Ireland High School; De La Salle Brothers Secondary School, Loughrea, County Galway, Ireland Degree Institution Date B.Sc. (1st Honors) Chemistry University College Galway*, Galway, Ireland 1957 M.Sc. Chemistrya University College Galway*, Galway, Ireland 1958 Ph.D. Organic Chemistryb University of London, London, England 1961 D.Sc. Peptide Chemistry University College Galway*, Galway, Ireland 1974 *Now named: “National University of Ireland, Galway” (NUIG) aMentor: Professor P.F.
    [Show full text]
  • 1 Peptide Therapeutics
    Universal Free E-Book Store Donate Us, In order to keep our Service Alive, We have to pay for placing files (Abstracts, Books, Literature & Software) on File Hosting Servers, Your donations will make our process of payment a bit easier, Please use any one of the Payment Gateway for Donation. Never matter what amount you donate (10’s or 100’s or 1000’s). Universal Free E-Book Store Universal Free E-Book Store PEPTIDE CHEMISTRY AND DRUG DESIGN Universal Free E-Book Store Universal Free E-Book Store PEPTIDE CHEMISTRY AND DRUG DESIGN Edited by BEN M. DUNN Universal Free E-Book Store Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Characterization of Asparagine Deamidation in Immunodominant
    International Journal of Molecular Sciences Article Characterization of Asparagine Deamidation in Immunodominant Myelin Oligodendrocyte Glycoprotein Peptide Potential Immunotherapy for the Treatment of Multiple Sclerosis Maria-Eleni Androutsou 1, Agathi Nteli 2, Areti Gkika 2, Maria Avloniti 3, Anastasia Dagkonaki 3, Lesley Probert 3 , Theodore Tselios 2,* and Simona GoliˇcGrdadolnik 4,* 1 Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, 14671 Athens, Greece; [email protected] 2 Department of Chemistry, University of Patras, 26504 Patras, Greece; [email protected] (A.N.); [email protected] (A.G.) 3 Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vasilissis Sophias Ave., 11521 Athens, Greece; [email protected] (M.A.); [email protected] (A.D.); [email protected] (L.P.) 4 Laboratory for Molecular Structural Dynamics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia * Correspondence: [email protected] (T.T.); [email protected] (S.G.G.); Tel.: +30-26-1099-7905 (T.T.); +38-61-4760-409 (S.G.G.) Received: 7 August 2020; Accepted: 6 October 2020; Published: 13 October 2020 Abstract: Mannan (polysaccharide) conjugated with a myelin oligodendrocyte glycoprotein (MOG) peptide, namely (KG)5MOG35–55, represents a potent and promising new approach for the immunotherapy of Multiple Sclerosis (MS). The MOG35–55 epitope conjugated with the oxidized form of mannan (poly-mannose) via a (KG)5 linker was found to inhibit the symptoms of MOG35–55-induced experimental autoimmune encephalomyelitis (EAE) in mice using prophylactic and therapeutic vaccinated protocols. Deamidation is a common modification in peptide and protein sequences, especially for Gln and Asn residues.
    [Show full text]