Albert Claude, 1899-1983 with the Determined Intent to Fmd out Whatever There Was in It in Terms of Isolatable from Christian De Duve and George E

Total Page:16

File Type:pdf, Size:1020Kb

Albert Claude, 1899-1983 with the Determined Intent to Fmd out Whatever There Was in It in Terms of Isolatable from Christian De Duve and George E ~·~-------------------------NME~W~S~AMNO~V~IE;vW~S:---------------------------- Obituary 'microsomes'. That was the beginning of a rather long side voyage that led him into the heart of the cell, not in search of a virus, but Albert Claude, 1899-1983 with the determined intent to fmd out whatever there was in it in terms of isolatable from Christian de Duve and George E. Palade particles, and to account for them in a careful quantitative manner. It was a ALBERT CLAUDE, who died in Brussels on Having failed in his first project, Claude glorious voyage during which he worked out Sunday 22 May, belonged to that small group went on to study the fate of the mouse sar­ his now classic cell-fractionation procedure. of truly exceptional individuals who, drawing coma S-37 when grafted in rats. The thesis Most of what we know today about the almost exclusively on their own resources and he wrote on his observations earned him a chemistry and activities of subcellular com­ following a vision far ahead of their time, government scholarship which he used to ponents is based on his quantitative ap­ opened single-handedly an entirely new field go to Berlin. There he frrst worked at the proach. Claude enjoyed isolating whatever of scientific investigation. Cancer Institute of the University, but was was isolatable: from microsomes to 'large He was born on 23 August 1899, in forced to leave prematurely after showing granules' (later recognized as mitochondria), Longlier, a hamlet of some 800 inhabitants that the bacterial theory of cancer genesis chromatin threads and zymogen granules. situated in the heart of the Belgian Ardennes. propounded by Blumenthal, the Institute's The isolated particles were characterized in His mother developed breast cancer when he director, rested on faulty experimental terms of their basic chemistry and - in the was 3 years old, and he was with her most of manipulations: the simultaneous inocula­ case of the large granules - in terms of en­ the time to witness the progress of the disease tion of cancer cells with the incriminated zymic activities in work done with G. until she died four years later. He attended bacteria. Claude then joined the Danish Hogeboom, W. Schneider and R. Hotchkiss. the village school for a few years, but then his scientist Albert Fischer, a pioneer of tissue­ It was a very impressive harvest for a relative­ family moved to the German-speaking village culture techniques. ly short period of about 8 years during which of Athus, where, as he has recounted, he By then, Claude knew exactly what he his attention was naturally and logically found himself learning to read German in wanted to do - isolate and characterize the diverted to a new approach, electron Gothic, without understanding it. Amazing­ agent of the Rous sarcoma - and where to microscopy. ly, his school education stopped there. do it-The Rockefeller Institute for Medical In 1945 he succeeded with Keith Porter and At the age of 12, he went to work in the Research. With his characteristic mixture of Edward Fullam in getting electron local steel factory, where he had risen to the naive directness and unselfconscious micrographs of cultured fibroblasts in which position of draughtsman by the time the First assurance, he wrote out a research project 'a lace-like reticulum' could be clearly seen World War broke out. During the war, and sent it to Simon Flexner, the director of below the limit of resolution of the light Claude served underground in occupied the Institute, asking to be admitted in one of microscope. In time, this reticulum became Belgium for the British Intelligence Service, the Institute's laboratories. It is to Flexner's the now well known endoplasmic reticulum and earned several military distinctions. credit that he reacted favourably to this un­ of all eukaryotic cells. Two years later, using The activities and disturbances did not conventional approach and Oaude sailed essentially the same approach and working prevent Albert Claude from pursuing an in­ from Antwerp on Friday the 13th of with K. R. Porter and E. Pickels, Claude tense process of self-education. His September 1929 to spend the next 20 years at fmally found the chicken tumour I agent in childhood dream had been to study medicine, the Rockefeller Institute, first bringing to infected cultured cells. but his lack of a high-school diploma barred fruition his project on the Rous sarcoma One year later, he gave a travelogue of that his access to medical school. Reluctantly, he virus, and moving on from there to prepare historic voyage at the Harvey Society. His prepared, and passed successfully in 1921, the the fulfillment of his main dream: to enter the lecture retraces in memorable fashion the entrance examination to the School of Min­ cell, 'the mansion of our birth'. construction of those two pillars of modern ing Engineering, for which a high-school In 1949, he accepted a pressing offer from cell biology: cell fractionation and electron diploma was not required. Then something the Free University of Brussels to assume the microscopy. It heralds the beginning of of a miracle happened. He was able to take directorship of the Jules Bordet Institute. three decades of unprecedently rapid de­ advantage of a government disposition - Claude brought to his new duties the same velopments worked out in many labor­ obviously not intended for him - allowing thoroughness and perfectionist attention to atories throughout the world. war veterans to enter a university without a detail that he had devoted to his scientific Albert Claude approached science and the diploma or examination. He immediately work. But it took him several years before he other facets of human culture - he was a enrolled in the Medical School of the Univer­ was able to return to the cell. He retired from friend of the painter Diego Rivera and of the sity of Liege - not without a good measure the Bordet Institute in 1971, and moved to a musician Varese- with the candid and un­ of apprehension as he believed that the new laboratory offered to him by the prejudiced open-mindedness of the courses were given in Latin. He graduated as Catholic University of Louvain. In 1974, he unschooled. In some ways, he could serve as a an MD in 1928, one year ahead of the regular was awarded the Nobel Prize in Physiology good example for the proponents of nature curriculum. or Medicine. We were honoured to share it versus nurture. Yet, he was also a child of his As a student, Claude was already with him. environment, reflecting in his attitude the fascinated by cells: Claude's scientific career developed simple commonsense and fierce in­ "I remember vividly my student days, spending logically from a deep interest in cancer - the dividualism of the Ardennais peasants, deriv­ hours at the light microscope, turning endlessly the disease that killed his mother. His work at the ing his love of life and beauty from the rugged micrometric screw and gazing at the blurred boun­ Rockefeller Institute showed that the countryside in which he spent a lonely and dary which concealed from us the mysterious 'chicken tumour I agent' (Rous sarcoma dreamy childhood, marked by the "blues of ground substance where, one felt, the secret virus) was a complex of ribonucleic acid, pro­ the blueberries and of slate, the blue-green of mechanisms of ceU life might be found. Until .. I tein and phospholipid that lost its activity the fir-trees, new comers among the oaks, the realized that I should stop that futile game, and should try something else. In the meantime, I had upon UV irradiation, the inactivation spec­ blue-grey of the covered skies, but also in full faUen in love with the shape and the color of the trum coinciding with the absorption spec­ summer, by the clear waters and the black eosinophilic granules of leucocytes, and attempted trum of nucleic acids. nights on the milky way" (quoted from a let­ to isolate them. I failed - and coosoled myself But then in the late 1930s, he discovered terofClaudetoMarcelFlorkin). D later on in thinking that it was technically that similar complexes (without the biological premature, especially for a premedical student, and activity of the agent) were present in large that the eosinophilic granules were not pink, amounts in the cells of chick embryos he used Christian de Duve is at the Catholic University of anyway." Louvain and at The Rockefeller University and as controls. These normal complexes became George E. Palade is at the Yale University School (Out of Claude's Nobel lecture.) in time 'small granules' and finally of Medicine. 0028-0836/ 83/ 330588.01$01.00 CJ 1983 Macmillan Journals ltd .
Recommended publications
  • RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA
    GENES AND PROTEINS THAT CONTROL THE SECRETORY PATHWAY Nobel Lecture, 7 December 2013 by RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA. Introduction George Palade shared the 1974 Nobel Prize with Albert Claude and Christian de Duve for their pioneering work in the characterization of organelles interrelated by the process of secretion in mammalian cells and tissues. These three scholars established the modern field of cell biology and the tools of cell fractionation and thin section transmission electron microscopy. It was Palade’s genius in particular that revealed the organization of the secretory pathway. He discovered the ribosome and showed that it was poised on the surface of the endoplasmic reticulum (ER) where it engaged in the vectorial translocation of newly synthesized secretory polypeptides (1). And in a most elegant and technically challenging investigation, his group employed radioactive amino acids in a pulse-chase regimen to show by autoradiograpic exposure of thin sections on a photographic emulsion that secretory proteins progress in sequence from the ER through the Golgi apparatus into secretory granules, which then discharge their cargo by membrane fusion at the cell surface (1). He documented the role of vesicles as carriers of cargo between compartments and he formulated the hypothesis that membranes template their own production rather than form by a process of de novo biogenesis (1). As a university student I was ignorant of the important developments in cell biology; however, I learned of Palade’s work during my first year of graduate school in the Stanford biochemistry department.
    [Show full text]
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • Five Great Ideas of Biology
    GREATGREAT IDEASIDEAS OFOF BIOLOGYBIOLOGY Paul Nurse KITP Public Lecture, Feb 24, 2010 THETHE CELLCELL The basic unit of life ROBERTROBERT HOOKEHOOKE’’SS MICROSCOPEMICROSCOPE Cork Image: Past Present STEMSTEM IMAGES:IMAGES: PASTPAST ANDAND PRESENTPRESENT Nehemiah Grew (1682) ANTONIANTONI VANVAN LEEUWENHOEKLEEUWENHOEK MICROORGANISMSMICROORGANISMS VANVAN LEEUWENHOEK?LEEUWENHOEK? THEODORTHEODOR SCHWANNSCHWANN “We have seen that all organisms are composed of essentially like parts, namely, of cells.” (1839) RUDOLFRUDOLF VIRCHOWVIRCHOW “Every animal appears as a sum of vital units, each of which bears in itself the complete characteristics of life.” (1858) CELLCELL Rockefeller Nobel Prize Winners in Cell Biology George E. Palade (1974) Christian de Duve (1974) Albert Claude (1974) Günter Blobel (1999) MAMMALIANMAMMALIAN EMBRYOEMBRYO SPERMSPERM ANDAND EGGEGG THETHE CELLCELL The basic unit of life Underpins all reproduction and development Stem cells THETHE GENEGENE Basis of heredity GREGORGREGOR MENDELMENDEL MENDELMENDEL’’SS GARDENGARDEN PEASPEAS PEASPEAS 1919TH CENTURYCENTURY CHROMOSOMESCHROMOSOMES EDOUARDEDOUARD VANVAN BENEDENBENEDEN’’SS NEMATODENEMATODE CHROMOSOMESCHROMOSOMES PNEUMOCOCCUSPNEUMOCOCCUS Avery, MacLeod and McCarty, Rockefeller University (1944) DNADNA MOLECULEMOLECULE CENTRALCENTRAL DOGMADOGMA THETHE GENEGENE Basis of heredity Genotype to phenotype Implications for what we are EVOLUTIONEVOLUTION BYBY NATURALNATURAL SELECTIONSELECTION Life evolves Mechanism of natural selection ERASMUSERASMUS ANDAND CHARLESCHARLES DARWINDARWIN
    [Show full text]
  • George Palade 1912-2008
    George Palade, 1912-2008 Biography George Palade was born in November, 1912 in Jassy, Romania to an academic family. He graduated from the School of Medicine of the The Founding of Cell Biology University of Bucharest in 1940. His doctorial thesis, however, was on the microscopic anatomy of the cetacean delphinus Delphi. He The discipline of Cell Biology arose at Rockefeller University in the late practiced medicine in the second world war, and for a brief time af- 1940s and the 1950s, based on two complimentary techniques: cell frac- terwards before coming to the USA in 1946, where he met Albert tionation, pioneered by Albert Claude, George Palade, and Christian de Claude. Excited by the potential of the electron microscope, he Duve, and biological electron microscopy, pioneered by Keith Porter, joined the Rockefeller Institute for Medical Research, where he did Albert Claude, and George Palade. For the first time, it became possible his seminal work. He left Rockefeller in 1973 to chair the new De- to identify the components of the cell both structurally and biochemi- partment of Cell Biology at Yale, and then in 1990 he moved to the cally, and therefore begin understanding the functioning of cells on a University of California, San Diego as Dean for Scientific Affairs at molecular level. These individuals participated in establishing the Jour- the School of Medicine. He retired in 2001, at age 88. His first wife, nal of Cell Biology, (originally the Journal of Biochemical and Biophysi- Irina Malaxa, died in 1969, and in 1970 he married Marilyn Farquhar, cal Cytology), which later led, in 1960, to the organization of the Ameri- another prominent cell biologist, and his scientific collaborator.
    [Show full text]
  • Nobel Prize in Medicine 1952 Was Awarded to Selman A
    History of Мedicine of the Newest period (XX-XXI centuries). EHRLICH AND ARSPHENAMINE Paul Ehrlich In 1910, with his colleague Sahachiro Hata, conducted tests on arsphenamine, once sold under the commercial name Salvarsan. Salvarsan, a synthetic preparation containing arsenic, is lethal to the microorganism responsible for syphilis. SULFONAMIDE DRUGS In 1932 the German bacteriologist Gerhard Domagk announced that the red dye Prontosil is active against streptococcal infections in mice and humans. Soon afterward French workers showed that its active antibacterial agent is sulfanilamide. In 1928 ALEXANDER FLEMING noticed the PENICILLIN inhibitory activity of a stray mold on a plate culture of staphylococcus bacteria. In 1938 HOWARD FLORY, ERNEST CHAIN received pure penicillin. In 1945 ALEXANDER FLEMING, HOWARD FLORY, ERNEST CHAIN won the Noble Prize for the discovery of penicillin and its curative effect in various infectious diseases. ANTITUBERCULOSIS DRUGS •In 1944, SELMAN WAXMAN announced the discovery of STREPTOMYCIN from cultures of a soil organism Streptomyces griseus, and stated that it was active against M. tuberculosis. •Clinincal trials confirmed this claim. •The Nobel Prize in Medicine 1952 was awarded to Selman A. Waksman •In Paris, Élie Metchnikoff had already detected the role of white blood cells in the IMMUNOLOGY immune reaction, •Jules Bordet had identified antibodies in the blood serum. •The mechanisms of antibody activity were used to devise diagnostic tests for a number of diseases. •In 1906 August von Wassermann gave his name to the blood test for syphilis, and in 1908 the tuberculin test— the skin test for tuberculosis— came into use. INSULIN •In 1921, Frederick Banting and Charles H.
    [Show full text]
  • Evidence for Design in Physics and Biology: from the Origin of the Universe to the Origin of Life
    52 stephen c. meyer Pages 53–111 of Science and Evidence for Design in the Universe. The Proceedings of the Wethersfield Institute. Michael Behe, STEPHEN C. MEYER William A. Dembski, and Stephen C. Meyer (San Francisco: Ignatius Press, 2001. 2000 Homeland Foundation.) EVIDENCE FOR DESIGN IN PHYSICS AND BIOLOGY: FROM THE ORIGIN OF THE UNIVERSE TO THE ORIGIN OF LIFE 1. Introduction In the preceding essay, mathematician and probability theo- rist William Dembski notes that human beings often detect the prior activity of rational agents in the effects they leave behind.¹ Archaeologists assume, for example, that rational agents pro- duced the inscriptions on the Rosetta Stone; insurance fraud investigators detect certain ‘‘cheating patterns’’ that suggest intentional manipulation of circumstances rather than ‘‘natu- ral’’ disasters; and cryptographers distinguish between random signals and those that carry encoded messages. More importantly, Dembski’s work establishes the criteria by which we can recognize the effects of rational agents and distinguish them from the effects of natural causes. In brief, he shows that systems or sequences that are both ‘‘highly com- plex’’ (or very improbable) and ‘‘specified’’ are always produced by intelligent agents rather than by chance and/or physical- chemical laws. Complex sequences exhibit an irregular and improbable arrangement that defies expression by a simple formula or algorithm. A specification, on the other hand, is a match or correspondence between an event or object and an independently given pattern or set of functional requirements. As an illustration of the concepts of complexity and speci- fication, consider the following three sets of symbols: 53 54 stephen c.
    [Show full text]
  • SCIENTIFIC REPORT 2020 for the Years 2016 to 2019 Table of Contents
    SCIENTIFIC REPORT 2020 For the years 2016 to 2019 Table of Contents 3 Foreword 4 Research in Numbers 7 Strategic Vision 9 Research Pillars 10 Pillar I: Dissecting Tumour Survival Mechanisms and Tumour Microenvironment 18 Pillar II: Tracking and Targeting Minimal Residual Disease 22 Pillar III: Next Generation Molecular Imaging to Better Personalise Treatment 27 Pillar IV: Accelerating Anticancer Drug Development 33 Pillar V: Developing New Approaches to Patient Empowerment and Well-being 40 New facilities will bring new opportunities for research 41 Organisation of Research Governance Research Support Units 48 Collaborations 51 Funding Les Amis de l’Institut Bordet Research Grants 54 Visiting Medical Research Fellows (2016-2019) 55 Awards 56 Publications 2016-2019 2016-2019 (Selected Papers) Publications 2019 79 Abbreviations 2 Foreword Dominique de Valeriola General Medical Director Institut Jules Bordet is a public and academic OECI*-certified comprehensive cancer center playing an important role in cancer care, research and education, both in Belgium and internationally. Entirely dedicated to adult cancer patients since its creation in 1939, it belongs to the City of Brussels and the Université Libre de Bruxelles. Both translational and clinical research are part of the Institute’s DNA, aiming to bring research discoveries to the patient’s bedside quickly. The present 2016-2019 scientific report reflects the spirit of commitment and collaboration of the Institute’s healthcare professionals, researchers, and administrative support teams and, above all, of the patients who trust our teams and volunteer to participate in clinical trials. A concerted and well-rewarded effort has been made during these recent years to build a stronger partnership with patients in developing our clinical trials, and to establish more efficient, centralised governance and operational support for our research activities.
    [Show full text]
  • Albert Claude, 1948 the Rockefeller University
    Rockefeller University Digital Commons @ RU Harvey Society Lectures 1950 Albert Claude, 1948 The Rockefeller University Follow this and additional works at: https://digitalcommons.rockefeller.edu/harvey-lectures Recommended Citation The Rockefeller University, "Albert Claude, 1948" (1950). Harvey Society Lectures. 44. https://digitalcommons.rockefeller.edu/harvey-lectures/44 This Book is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Harvey Society Lectures by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. STUDIES ON CELLS: MORPHOLOGY, CHEMICAL CONSTITUTION, AND DISTRIBUTION OF BIOCHEMICAL FUNCTIONS* ALBERT CLAUDE Associate Member The Rockefeller Institute for Medical Research N 1827 Giovanni Battista Amici, Italian mathematician and I astronomer from Modena, came to Paris to demonstrate the microscope that he had just perfected. All those interested in natural sciences went to examine the new instrument and, according to Dutrochet, 1 were considerably impressed. A few weeks later Amici was in London, demonstrating his microscope, among others, to Robert Brown, the man who four years later was to discover the cell nucleus. Soon thereafter the leading microscopists of Europe were in possession of one of Amici' s microscopes, or one constructed after his specifications.Amici had finallysucceeded in correcting to a large extent the spherical and chromatic aberrations of microscopic lenses. The morphological details in plant and animal tissues were no longer blurred, hopelessly merging as in the old instruments, but appeared sufficiently well defined to convince microscopists that tissues were composed of an ever repeating unit, which has come to be known as the cell.
    [Show full text]
  • Balcomk41251.Pdf (558.9Kb)
    Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr.
    [Show full text]
  • Albert Claude and the Beginnistgs of Biological Electron Microscopy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central ALBERT CLAUDE AND THE BEGINNISTGS OF BIOLOGICAL ELECTRON MICROSCOPY GEORGE E. PALADE From The Rockefeller University, New York 100~1 EARLY ELECTRON MICROSCOPES AND THE NEED FOR NEW PREPARATION TECHNIQUES The grcat potential value of electron microscopy for biological research was often strcsscd and quickly understood in the middle 1930s, at the time when thc first laboratory models of transmission electron microscopes were being built by Ruska, yon Borrics (1, 2), and Marton (3, 4). The reasons were clear: the new instruments were expected to have a resolving power 40-50 times higher than the best light microscopes then available. It was also understood from the bcginning that a new technology was needed for preparing biological specimens for electron microscopy, definitely more refined and in some respects quite different from the traditional histological technology then in use for light microscopy. The limited pcnctrafion power of electrons, and the ease with which thcy arc scattered by any atom required that specimens of unusual thinness--for the thinking and experience of thosc times--bc examined in a relatively high vacuum (~ 10-4 torr). The microtomcs then in use for light microscopy could not cut tissue sections thinner than I t~, while the desirable specimen thickness for electron microscopy was estimated at ~-~0.1 ~ or less. In addition, since the specimens were examined in vacuo, they had to withstand the removal of their volatile components, primarily the removal of water, without collapse or deterioration of their structure.
    [Show full text]
  • Vesicular Transport in Cells – from Analysis to Biogenesis
    Powered by Website address: https://www.gesundheitsindustrie- bw.de/en/article/news/vesicular-transport-in-cells-from- analysis-to-biogenesis Vesicular transport in cells – from analysis to biogenesis COPI vesicles, one of the three major types of intracellular transport vesicles, are an excellent example of how the molecular analysis of individual vesicle components can lead to an understanding of the biogenesis and transport mechanisms of membrane vesicles as a whole. The research carried out by Dr. Felix T. Wieland’s team at the University of Heidelberg has made a decisive contribution to such detailed insights. Eukaryotic cells are characterised by complex membrane systems that separate different metabolic compartments from each other at the same time as transporting metabolic products and messenger substances to specific destinations inside the cell and into the extracellular space. The transport is mediated by vesicles that detach from the folded and branched cisternae of intracellular membranes. They either then fuse with intracellular membranes again or with the plasma membrane where the contents of the vesicles, secretory proteins for example, are discharged to the outside of the cell. This process is referred to as exocytosis. The opposite process is known as endocytosis, in which cells take up molecules from the exterior by enveloping them in their cell membrane before releasing them inside the cell. Camillo Golgi (1843-1926). © Universitá degli studi di Pavia The Golgi apparatus, named after the Italian physiologist Camillo Golgi who discovered a method to 1 stain nervous tissue with silver, which led to his discovery in 1898 of the "apparato reticulare interno" in the hippocampal neurons, is integral in modifying and packaging macromolecules for exocytosis or use within the cell (endocytosis).
    [Show full text]
  • Guest Editorial 1 Guest Editorial
    Indian JJ PhysiolPhysiol PharmacolPharmacol 2012; 2012; 56(1) 56(1) : 1–6 Guest Editorial 1 Guest Editorial IMMUNOLOGY AND NOBEL PRIZE : A LOVE STORY Several breakthroughs revealing the way in which our bodies protect us against microscopic threats of almost any description have been duly acknowledged by the Nobel Prizes in Physiology or Medicine. Interestingly, Nobel Prizes in Physiology or Medicine including the latest one, for the year 2011, has been awarded for twelve times to the field of Immunology. The story began in 1901 with the very first Nobel Prize in Physiology or Medicine - it was awarded to Emil Von Behring for his pioneering work which resulted in the discovery of antitoxins, later termed as antibodies. Working with Shibasaburo Kitasato, Von Behring found that when animals were injected with tiny doses of weakened forms of tetanus or diphtheria bacteria, their blood extracts contained chemicals released in response, which rendered the pathogens’ toxins harmless. Naming these chemical agents ‘antitoxins’, Von Behring and Erich Wernicke showed that transferring antitoxin-containing blood serum into animals infected with the fully virulent versions of diphtheria bacteria cured the recipients of any symptoms, and prevented death. This was found to be true for humans also; and thus Von Behring’s method of treatment – passive serum therapy – became an essential remedy for diphtheria, saving many thousands of lives every year. Shortly after this, the very first explanation about the mechanisms of immune system’s functioning was proposed which paved way for extensive research in immunology till today. Paul Ehrlich had hit upon the key concept of how antibodies seek and neutralize the toxic actions of bacteria, while Ilya Mechnikov had discovered that certain body cells could destroy pathogens by simply engulfing or “eating” them.
    [Show full text]