PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher' version.

For additional information about this publication click this link. http://hdl.handle.net/2066/147901

Please be advised that this information was generated on 2021-10-06 and may be subject to change. A FAR-INFRARED MICHELSON INTERFEROMETER AND ITS APPLICATION TO THE STUDY OF PHOTOCONDUCTIVITY IN ULTRA-PURE GERMANIUM

H.... JONGBLOETS

A FAR-INFRARED MICHELSON INTERFEROMETER AND ITS APPLICATION TO THE STUDY OF PHOTOCONDUCTIVITY IN ULTRA-PURE GERMANIUM PROMOTOR: PROF.DR.P. WYDKR

CO-REF:I:RENT DR. .H.M. STOELINGA A FAR-INFRARED MICHELSON INTERFEROMETER AND ITS APPLICATION TO THE STUDY OF PHOTOCONDUCTIVITY IN ULTRA-PURE GERMANIUM

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE KATHOLIEKE UNIVERSITEIT TE NIJMEGEN, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. P..A.. WIJDEVELD, VOLGENS BESLUIT VAN HET COLLEGE VAN DECANEN IN HET OPENBAAR TE VERDEDIGEN OP DONDERDAG 13 MAART 1980 DES NAMIDDAGS TE 4.00 UUR

door

HENDRIKUS WILHELMUS HUBERTUS MARIA JONGBLOETS geboren te Nijmegen

1980 Druk: Krips Repro Meppel The investigations described in this thesis have been carried out in the group "Experimentele Natuurkunde IV" of the Research Institute for Materials of the Faculty of Science at the Catholic University of Nijmegen under the direction of Prof. Dr. P. Wyder.

Part of this work has been supported by the "Stichting voor Fundamenteel Onderzoek der Materie" (FOM) with financial support from the "Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek" (ZWO).

We acknowledge the permission to reprint previously published papers, obtained from the publishers of Physica and Physical Review. Лап mijn ouders Op deze plaats wil ik allen bedanken die op enigerlei wijze hebben bijgedragen aan de totstandkoming van dit proefschrift. In het bijzonder wil ik vermelden dr. H.J.A. van Dijk van het Philips Natuurkundig Laboratorium te Eindhoven, die door het beschikbaar stellen van een aantal ultra-zuivere germanium prepa­ raten het onderzoek, beschreven in hoofdstuk IV van dit proefschrift, mogelijk heeft gemaakt. Verder dank ik Martien van de Steeg, die als doctoraal-student op uiterst ple­ zierige wijze heeft meegewerkt bij veel van de hier beschreven experimenten, en die ook in de laatste fase van het schrijven van dit manuscript is bijge- sprongen. Zeer bijzonder ook Riki Gommers, die het meeste type-werk voor haar rekening heeft genomen. Zeer zeker ook Evert-Jan van der Werf die als student uiterst geduldig een enorme reeks metingen heeft verricht die ons uiteindelijk het vertrouwen gaven dat het reflectie-effect, beschreven in hoofdstuk III, geen hersenschim was. En natuurlijk dank ik de medewerkers van de dienstverlenende afdelingen van de faculteit der wiskunde en natuurwetenschappen en, last but not least, alle medewerkers van Experimentele Natuurkunde IV, met wie ik jarenlang op uiterst plezierige wijze heb mogen samenwerken. In dit verband wil ik in het bijzonder noemen de technische medewerkers. Kees Beers en Jan Herrasen. CONTENTS

CHAPTER I GENERAL INTRODUCTION 1

References 3

CHAPTER II INSTRUMENTATION 5

1. Introduction 5 2. Spectrometer hardware 5 3. Experimental arrangement for photoconductivity measurements 12 References 13

CHAPTER III THE FAR INFRARED MICHELSON INTERFEROMETER 14

111.1 GENERAL INTRODUCTION 14

1. The interferogram-function 14 2. Amplitude and phase modulation 17 3. Spectra calculated by Fourier transformation 18 4. Effects due to sampling of the interferogram over a finite length 20 References 25

111.2 SPECTRUM DISTORTION IN FAR INFRARED FOURIER SPECTROSCOPY BY MULTIPLE REFLECTION BETWEEN SAMPLE AND MICHELSON INTERFEROMETER 26

Abstract 26 1. Introduction 26 2. Theory 27 3. Experiment 32 4. Conclusions 36 Appendix 37 References 39

CHAPTER IV PHOTOTHERMAL IONIZATION SPECTROSCOPY OF SHALLOW IMPURITIES IN

ULTRAPURE GERMANIUM 40

IV.1 INTRODUCTION TO PHOTOTHERMAL IONIZATION SPECTROSCOPY (PTIS) 40

1. General introduction 40 2. Theoretical considerations 41 3. Photothermal ionization spectroscopy (PTIS) 43 4. Applications of PTIS 46 References 47

MAGNETO-OPTICAL DETERMINATION OF THE GROUND STATE LEVELS OF SOME SHALLOW IMPURITIES IN HIGH PURITY GERMANIUM 48

1. Introduction and experimental method 48 2. Determination of the ground state energy 49 3. The effect of a magnetic field 50 References 51

TEMPERATURE DEPENDENCE OF THE PHOTOTHERMAL CONDUCTIVITY OF HIGH- PURITY GERMANIUM CONTAINING VERY LOW CONCENTRATIONS OF ΑΙ, В AND Ρ 52

1. Introduction 52 2. Sample preparation and experimental details 52 3. Results and discussion 53 References 56

DETERMINATION OF THE IMPURITY CONCENTRATION PROFILE IN A Ge SINGLE

CRYSTAL GROWN WITH THE CZOCHRALSKI METHOD 57

References 58

TEMPERATURE DEPENDENCE OF THE PHOTOTHERMAL CONDUCTIVITY OF SEMICONDUCTORS AT LOW TEMPERATURES 59

Abstract 59 1. Introduction 60 2. Signal formation in a photoconductivity experiment 62 3. Derivation of the temperature dependence of the photothermal ionization process 64 4. Сотрагьеоп with experimental results 66 References 74

MAGNETIC FIELD DEPENDENCE OF PHOTOTHERMAL CONDUCTIVITY SPECTRA IN THE FAR INFRARED OF THE BORON ACCEPTOR IN GERMANIUM 75

Abstract 75 1. Introduction 76 2. Experimental details 77 3. Field dependence of the peaks below 79 4. Field dependence of the peaks in the continuum 85 5. Zeeman effect 85 6. Landau levels 88 References 92

APPENDIX COMPUTER PROGRAM "PHASE2" 94

SUMMARY 119

SAMENVATTING 121

CURRICULUM VITAE 123

CHAPTER I GENERAL INTRODUCTION

In solid state physics, the relevant energies of many interesting effects correspond with temperatures of the order of 1 - 1000 degrees Kelvin. This range covers the binding energies of impurities in semiconductors, the ordering temperatures in ferromagnetism, antiferromagnetism and ferroelec- tricity, the transition temperatures of superconductors, phonon- and Debije- energies, etc. To study this interesting region, sometimes high magnetic fields can be applied. Field strengths up to 25 Tesla, corresponding to 16.7 , are available at the Nijmegen High Magnetic Field installation. In this framework it is obviously very much worthwile to have electro­ magnetic radiation available of comparable energy. This is the far infrared (FIR) or submillimetre wave region (wave length range 50 - 1000 pm or wave number range 10 - 200 cm. ), which connects the optical and microwave parts of the electromagnetic spectrum. This is a most awkward regime because of the lack of broadband sources of sufficient power. It is true that nowadays FIR (1 2) lasers are available with output power up to 0.4 W ' , but these have the disadvantage of not being continuously tunable nor being very stable. The FIR region can also be approached from the microwave side by the technique of harmonic generation which offers a higher stability and so a higher resolu­ tion. With this method the range of 2 - 25 cm can easily be spanned with an -2 -fi output power decreasing from 10 to 10 W with increasing wave number. The most widely used technique is that where the FIR region is penetrated from the optical side by employing a broadband source (medium pressure mercury arc lamp) in combination with a dispersive optical device, such as a grating monochromator ' ' , or an interferometric device such as a lamellar grating (7 8) (9) interferometer ' or a Michelson interferometer . These instruments -9 deliver only a radiation power which at low wave numbers is less than 10 W within a bandwidth of 1 cm , but they cover the whole FIR region. In chapter II of this thesis the hardware of a modern commercial Grubb Parsons FIR Michelson interferometer system is described, originally developed (9) by Chantry et al. . This system has been modified and improved in our laboratory by the author with the help of the instrument and electronics workshops of our Faculty. This instrument now covers the range 5 - 350 cm A short summary of the theory underlying the technique of Fourier spectroscopy is given in chapter III (section III.). This more conventional part of the theory does not take into account the radiation which returns to the interfe­ rometer due to reflection of the sample. It is shown that this can lead to significant distortions in the spectra, as is analyzed both theoretically and experimentally in chapter III (section III.2) and Ref. 10. In an appendix to this thesis the computer programs, developed for the processing of the data and the execution of the Fourier transform needed to obtain a frequency spectrum, are collected. The application of the Michelson interferometer to the study of the properties of impurity states in semiconductors is described in chapter IV. This study has been stimulated greatly by the very advanced crystal growing techniques which exist nowadays. It has become possible to fabricate ultra- 10 3 pure crystals with impurity concentrations smaller than 10 atoms/cm . In 12 other words, only one out of every 10 atoms is an impurity. It is extremely difficult to identify these impurities by conventional methods, e.g. Hall effect measurements. However, photothermal ionization spectroscopy (PTIS) in the far infrared region, first developed by Russian scientists ' , offers a possibility to study the impurities both qualitatively and quantitatively. With this technique FIR spectroscopy can be used as a tool for chemical analysis. It is well known that the group donor and group III acceptor impurities in group IV semiconductors (e.g. in germanium, silicon) exhibit "hydrogen­ like" energy level schemes for the single bound electron/hole, with binding energies in the order of 10 meV. The PTIS technique is based on the two-step photothermal ionization process where the electron/hole is excited from the impurity groundstate to a higher level by the FIR radiation, and then subse­ quently thermally ionized into the band continuum, where it contributes to the electrical conductivity. Therefore, in the photoconductivity line spectra, which reflect the discrete energy level structure of the impurity, the line intensity will be temperature dependent. Up to now little was known about the detailed mechanism of this thermal ionization, nor was the temperature dependence exactly known. The ad hoc assumption often mentioned in the literature of a simple exponential behaviour seems not to fit the experimental results. Therefore the statistical problem was studied in detail (i.e. the transition from a localized impurity state to a delocalized bandstate); we have been able to show that a detailed theoretical understanding is possible and gives very good agreement with our experimental observations. An expression was derived for the temperature

2 dependence, which includes not only the energy difference between band edge and excited level, but also the degeneracy of the relevant level and the band. Moreover it contains a factor proportional to the impurity concentration. Preliminary results are given in chapter IV, section IV.2 and Ref. 17. In section IV.3 (Ref. 18) very accurate values for the ground state energies of the ΑΙ, В and Ρ impurities in germanium are derived from the temperature dependence. These values are in excellent agreement with existent theories (19 20) ' . In addition, the ratio of the concentrations of the two acceptors present in our sample, is derived. This ratio is in accordance with the value obtained from the concentration profile in the original crystal from which our sample was cut. The determination of this profile is explained in section IV.4. In section IV.5 (Ref. 21) a detailed theoretical derivation of the temperature dependence is given, not only for the line intensity in a photo- thermal conductivity spectrum, but also for the signal strength in a photo­ conductivity experiment. Photoconductivity measurements in magnetic fields are described in section IV.6 (Ref. 22). The linear and quadratic Zeeman terms are determined for all lines of the boron excitation spectrum. In the literature ' only values for the lowest levels are available; the corresponding values of our investigation agree with these. Some of the lines showing up in a magnetic field can be identified as states associated with light-hole Landau levels. Values for the magnetic field dependence of these Landau levels, derived from (25) the measurements, agree very well with values from the literature

References.

1. .Y. Chang, IEEE Trans. Microwave Theory and Tech. MTT-22, 983 (1974). 2. .T. Hodges, Infrared Phys. 18, 375 (1978). 3. M.J. Huijben, CG..M. de Kort, J.H.M. Stoelinga and P. Wyder, Infrared Phys. 19, 257 (1979). 4. M. Tinkham, Science 145, 240 (1964). 5. J.H.M. Stoelinga en P. Wyder, Nederlands Tijdschrift voor Natuurkunde ¿6, 107 (1970). 6. M.V. Dorigo, J.H.M. Stoelinga and P. Wyder, . . angew. Math. u. Phys. 20, 565 (1969). 7. J. Strong and G.A. Vanesse, J. Opt. Soc. Am. 50, 113 (1960). 8. .C. Milward, Infrared Phys. 6, 59 (1969).

3 9. G.W. Chantry, H.W. Evans, J. Chamberlain and H.A. Gebbie, Infrared Phys. 9, 85 (1969). 10. H.W.H.M. Jongbloets, M.J.H. van de Steeg, E.J.C.M. van der Werf, J.H.M. Stoelinga and P. Wyder, accepted for publication in Infrared Phys. (1980). 11. T.M. Lifshits and F. Ya. Nad', Sov. Phys. Doklady 10, 532 (1965). 12. Sh. M. Kogan and T.M. Lifshits, Phys. Status Solidi A39, 11 (1977). 13. T.M. Lifshits, .I. Likhtman and V.l. Sidorov, Sov. Phys. Semicond. 2, 652 (1968). 14. S. Dana Seccombe and D.M. Korn, Solid State Commun. 11, 1539 (1972). 15. E.M. Bykova, L.A. Goncharov, T.M. Lifshits, V.l. Sidorov and R.N. Hall, Sov. Phys. Semicond. 9, 1223 (1976). 16. P.E. Simmonds, J.M. Chamberlain, R.A. Hoult, R.A. Stradling and C.C. Bradley, J. Phys. C: Solid St. Phys. 2. 4164 (1974). 17. H.W.H.M. Jongbloets, J.H.M. Stoelinga, M.J.H. van de Steeg and P. Wyder, Physica 89B, 18 (1977). 18. H.W.H.M. Jongbloets, J.H.M. Stoelinga, M.J.H. van de Steeg and P. Wyder, Phys. Rev. В 20, 3328 (1979). 19. R.L. Jones and P. Fisher, J. Phys. Chem. Solids 26, 1125 (1965). 20. J.H. Reuszer and P. Fisher, Phys. Rev. 1_35, A1125 (1965). 21. H.W.H.M. Jongbloets, M.J.H. van de Steeg, J.H.M. Stoelinga and P. Wyder, accepted for publication in J. Phys. C: Solid St. Phys. (1980). 22. H.W.H.M. Jongbloets, M.J.H. van de Steeg, J.H.M. Stoelinga and P. Wyder, submitted for publication. 23. A.P. Soepangkat and P. Fisher, Phys. Rev. В 8, 870 (1973). 24. J. Broeckx, P. Clauws, K. van den Steen and J. Vennik, J. Phys. C: Solid St. Phys. 12, 4061 (1979). 25. J.С Hensel and K. Suzuki, Phys. Rev. В 9, 4219 (1974).

4 CHAPTER II INSTRUMENTATION

1. Introduction.

For all far infrared spectroscopic experiments described in this thesis the technique of Fourier transform spectroscopy (FTS) was used. The principle of FTS involves the recording of interference fringes formed by radiation which has propagated through an interferometer. This interferogram is a function of path difference between two optical beams formed in the interfero­ meter, and is uniquely related to the spectral distribution of the radiation. This information is recovered by the process of Fourier transformation (see chapter III). The FTS technique offers several advantages over conventional dispersive techniques : 1. The multiplex advantage, first pointed out by Fellgett .that each spectral element is observed for the whole duration of the experiment. The signal-to-noise ratio of an interferometric system will therefore be superior to that of a dispersive system (at least as long as detector noise is the dominant source of noise). (2) 2. Jacquinot showed that the information throughput of cylindncally symetrical systems such as an interferometer, could be much higher than in systems where a slit has to be used. 3. An interferometer is mechanically extremely simple as compared with a grating instrument. And it has the added advantage that the problem of stray light is not very severe, because only radiation that has undergone interfer­ ence contributes to the interferogram. Once the problem of transforming interferograms into spectra was overcome with the advance of modern computers, the advantages mentioned before made the FTS technique the most widely applied technique in far infrared spectroscopy. Extensive reviews of FTS have been given by Chantry and Bell ; a short summary of the most important aspects is given in chapter III (section III.l).

2. Spectrometer hardware

A typical far infrared interferometric spectrometer consists of the following sub-systems: a). A broad band source of far infrared radiation, and optics for beam co11 imation.

5 Control Water unit DC-Supply cooling

,,•• to computer ( optional ) Fan Photocell *- Source Tape- Chopper• punch Reference generator

Interfero­ Stepping Scanner- Detector meter motor Control unit

D.VM. Vibrating mirror Multiplexer Pre­ amplifier I I I L analog inputs

Driver Amplitude Oscillator meter

Ampi.mod. J Phase mod

Ref Τ input Signal Lock-in Recorder input amplifier

SCHEMATIC DIAGRAM OF FOURIER SPECTROMETER

Figure 1

6 F.I.R. MICHELSON INTERFEROMETER

Φ Collimator mirrors ® Lightpipe (polished brass) φ Reference signal generator ® Brass cone (D Chopper motor ® TPX Fresnel lens © Chopper © Vibrating mirror (D Medium pressure mercury lamp © Beamsplitter (mylar film) © Water-cooled lamp mount © Moving mirror © Transmission fitter © Micrometer (D Black polyethylene window © Stepping motor

Ргдиге 2

7 b). The interferometer itself to create the necessary interferograra-function from the broad band radiation. c). A far infrared detector and signal amplifying system for recording analogue interferogram signals. d). A Scanner-Control Unit to drive the interferometer and containing a digital data system to digitize interferogram signals and store the data, so that they can be processed by a computer. These subsystems can easily be recognized in the schematic diagram (figure 1) of the Fourier spectrometer, which was used for the experiments described in this thesis. The interferometer is of the Michelson type, with a thin film dielectric beamsplitter (figure 2). This modular instrument was developed at the National Physical Laboratory (Teddington, England) and manufactured by Grubb Parsons Company . Several details of this basic machine have been modified and improved in our laboratory.

a) Source

The medium pressure mercury arc lamp is still the best continuous broad band far infrared source available today, particularly at wave numbers below 100 cm where emission from the hot electron plasma predominates. Unfortuna­ tely its power output is rather low. In the whole 10 - 300 cm band it deli- -2-1 -1 . . vers ^5 mW.cm .sterad . Above 100 cm , strong absorption and reemission from the fused quartz outer mantle takes place, which makes the total radia­ tive output extremely sensitive to effects of convective cooling. For high stability, the lamp operates on d.c, under constant vacuum and in a water- cooled jacket. The special d.c. power supply for the Philips HPK 125 W mercury lamp was custom-built by Heinzinger ; it uses a photo-cell feed-back circuit to stabilize the radiation output of the source. The radiation can be chopped by a cylindrical chopper around the lamp (amplitude modulation; see chapter III, section III.l), and the emergent beam is collimated by a combination of a concave and convex mirror.

b) Michelson interferometer

The radiation from the source is divided by the beamsplitter into two beams, which are sent to two plane mirrors. One mirror can be translated over a distance of 2 cm by a micrometer screw driven by a stepping motor (Slo-Syn SS25-1002). The beams are reflected by the mirrors and, as they are mutually coherent, interference will occur as they are recombined at the beamsplitter

8 and travel to the detector. The emergent beam is focussed on the entrance of a polished brass lightpipe by a TPX Fresnel lens. A low-pass transmission filter and a vacuum-tight black polyethylene window remove the unwanted part of the Planck-spectrum of the source. The division of the incident wavefront into two is achieved by a free­ standing dielectric film beamsplitter; Mylar films of thicknesses between 6 ym and 100 ym are available, covering the spectral range of 5-350 cm (For a description of the properties of thin film beamsplitters: see Ref. 3, chapter 3). An alternative way of modulating the radiation is the so-called phase modulation (see chapter III, section III.l), achieved by a sinusoidal varia­ tion of the optical path difference. For this purpose, one of the plane mir­ rors is mounted on a vibration generator manufactured by Ling Dynamic Systems Ltd(8). c) Far infrared detector

The important criteria for a detector for use in combination with a far infrared interferometer are that it should have a high sensitivity (low noise equivalent power, NEP) and high responsivity, a uniform spectral response over a wide wave number range, and a high linearity of output over a wide dynamic range of input signals. In practice these criteria are only met by thermal detectors, which use the heating by the radiation to measure the absorbed power. Most commercial far infrared interferometers use a room temperature Golay detector , which has the disadvantage of a moderate NEP ("ь 10 W.Hz ) and slow response time ('v 30 msec). Low was the first to describe a germanium bolometer operated at liquid helium temperatures. Nowadays both germanium and silicon bolometers are used, and often a He cooling system (12) -12 is employed to reach a temperature of 0.35 К , yielding a NEP of 10 -14 -h • 10 W.Hz . An extensive review of these cryogenic semiconductor bolometers (13) was given by Pankratov and Korotkov Figure 3 shows a typical example of a basic detection system; various modifications for specific experiments are used in our laboratory. The FIR radiation enters the system via a black polyethylene window, which blocks out all visible and near infrared radiation. A lightpipe directs the radiation through a cooled low-pass filter (removing room temperature radiation) and a conical lightpipe to an integrating cavity wherein the bolometer has been CRYOSTAT WITH FAR INFRARED DETECTOR

12.6 V

ω Incident radiation ® Light pipe (stainless steel) © Polyethylene window

Figure 3

10 CRYOSTAT FOR PHOTOTHERMAL CONDUCTIVITY MEASUREMENTS

JL -±- lj5Mмп^r © 126V ι _f—*H D HD

φ Incident radiation ® Superconducting magnet (D Polyethylene window © Germanium sample (5) Electrical connections for Ge-sample @ To amplifier (Z) Electrical connections for s.c magnet © Load resistor (5ΜΩ) © To helium pump © Cavity (gold plated copper) (6) Liquid helium dewar ® Clamp © Liquid nitrogen dewar ® Thermometer (8) Light pipe (stainless steel) © Heater (9) Sapphire filter (fê) Tufnol insulation (© Cone ( gold plated copper )

Ггаиге 4

11 mounted. The absorbed radiation causes an increase in temperature of the bolometer element; this temperature change manifests itself as a change in the electrical conductance. The bolometer is connected to an electric circuit which delivers a bias current provided by a 12.6 Volt mercury battery via a 5 MÜ cooled load resistor. The variation in the voltage drop across the bolometer, due to the chopped radiation, is measured with a lock-in amplifier. d) Scanner-Control Unit

The Scanner-Control Unit contains a preset indexer to drive the stepping motor a preset number of steps for discrete sampling of the interferogram. The step-length (i.e. the number of steps between two consecutive interfero­ gram points) is chosen appropiate to the spectrum high wave number cutoff (see also chapter III). The waiting time between sampled points is about twice the integration time of the detector lock-in amplifier. A digital volt meter (4? digit), preceded by a 4-channel multiplexer, digitizes the analogue output of the lock-in amplifier, and eventually the data are punched on papertape. The data are processed on a PDP-12 (DEC) laboratory computer, linked to a Houston incremental plotter. The relevant computer program is shown in an appendix to this thesis.

3. Experimental arrangement for photo-conductivity measurements.

For the photoconductivity experiments, described in chapter IV, no bolo­ meter is needed, as the sample itself is the detector. Figure 4 shows the cryostat insert. As can be seen, the construction is almost identical to that of the bolometer system (figure 3). Only the semispherical cavity at the end of the conical lightpipe is enlarged so that it can contain the cubic sample 3 of dimensions 1 χ 1 χ 1 cm . The sample is clamped onto the base of the cavity with only a small heat leak to the base. The clamp and the sample can be heated above the temperature of the surrounding helium bath by a resistance wire wrapped around the mount­ ing stud. The temperature of the sample is measured with an Allen Bradley carbon resistor and can be stabilized within 0.1 K. Electric contacts are made by pressing flat copper disks against two sides of the sample which are wetted with a mixture of In-Hg (50-50). The sample is connected to an electric circuit, identical to the bolometer circuit, so the variation of the conduc­ tivity due to chopped radiation can be measured with a lock-in amplifier.

12 References

1. P. Felgett, J. de Physique C.2 28. 165 (1967). 2. P. Jacquinot, J. Opt. Soc. Am. 44, 761 (1954). 3. G.W. Chantry, Submillimetre Spectroscopy, Academic Press, N.Y. (1971). 4. R.J. Bell, Introductory Fourier Transform Spectroscopy, Academic Press, N.Y. (1972). 5. G.W. Chantry, H.H. Evans, J. Chamberlain and H.A. Gebbie, Infrared Phys. 9, 85 (1969). 6. Sir Howard Grubb Parsons and Company Limited, Walkergate, Newcastle upon Tyne NE62YB, England. 7. Heinzinger Regel- und Messtechnik, 82 Rosenheim, Happingerstr. 71, We s t Ge rmany. 8. Ling Dynamic Systems Limited, Royston Herts SG85BQ, England. 9. M.J.E. Golay, Rev. Sei. Instrum. 20, 816 (1949). 10. F.J. Low, J. Opt. Soc. Am. 5J.» 1300 (1961). 11. I.F. Silvera and G. Birnbaum, J. Opt. Soc. Am. 58, 718 (1968). 12. H.D. Drew and A.J. Sievers, Appi. Opt. 8, 2067 (1969). 13. N.A. Pankratov and V.P. Korotkov, (Sov. Phys.) Opt. Technology JL4, 106 (1974).

13 CHAPTER HI THE FAR INFRARED MICHELSON INTERFEROMETER

III.l GENERAL INTRODUCTION

1. The interferogram-function.

In a Michelson interferometer radiation from the source is divided into two beams, one is sent to a fixed mirror, and the other is sent to another mirror which can be driven along one arm of the interferometer (Fig. 1). Assume the source to be monochromatic, emitting radiation of amplitude /s (intensity S) and of wave number σ(=1/λ). This radiation falls onto a dielectric beam divider to which can be assigned a complex reflectivity f and transmissivity t; these functions are complex because of the phase shifts introduced into the optical beam by the phenomena that occur in the

# Source

Detector

Sample

Ж/////Ш/Ж

?ig. 1 : The division of oomplex amplitudes in a Michelson interferometer; $ and t are the complex reflectivity and transmissivity of the dielectric film beam splitter (B.S.).

14 beam divider. (See e.g. Chantry , chapter 3.) Therefore î and t can be written as

f = г.еІ i, α) t = fe .

A displacement /2 of the moving mirror in one arm of the interferometer produces a phase delay Δ between the two beams, given by

Δ = 2irax . (2)

From Fig. 1 it can easily be seen that the amplitude â, of the recombined det beam going to the detector, and the amplitude â of the beam eoing r source & back to the source, are given by

â, _ = /S(?t+tf-eiA) det ? 9 ίΛ (3) 2 2 lA â = /s(t +î .e ) .

These equations illustrate the dissymmetry of the two beams. For the one travelling towards the detector, the beams traversing the two arms each suffer one transmission and one reflection at the beam splitter; for the other case one beam is reflected twice and the other transmitted twice. Using equation (1) this leads to

iA i(e ) â, , = /Srt(l+e )e ^ det (4) 2 ia, 2 i2e iA â source = ^(t .e +r .e .e ) .

The intensity of the beams is given by the square of the modulus of the com­ plex amplitude. Therefore, one gets at the detector and at the source res­ pectively

I. .. = 2r2t2S(l+cosA) det (5) I = S[r4+t4+2r2t2'cos(2e-2^+A)] . source 15 In the case of a non-absorbing beam splitter it can be shown (Chantry .chap­ ter 3) that

2В-Ър = (2η+1)π η = 1,2,3,... . (6)

This leads to

I = S(r4+t4-2r2t2-cosn) . (7) source

The properties of the beam splitter can be combined in two parameters A and В given by

A = At4 2 2 (8) В = 2r t .

The quality В is often called the efficiency of the beam splitter. If a sample with energy transmission-coefficient Τ is placed into the beam going to the detector (see Fig. 1), the intensity of the relevant beams can finally be expressed as

Ι. ίΔ) = TSB(l+cosA) det (9) Ι (Δ) = S(A-B'COsA) source

So far the source was assumed to be monochromatic with wave number σ and intensity S. If the source emits a broad spectrum with distribution S(a), the total intensity I'(x) reaching the detector can be found by integrating Ι, (Δ) over all wave numbers σ. It has to be noted that the quantities A, det В and Τ are function« of σ as well. The interferogram-function I'(x) for a broad spectrum is thus found to be

іЧх) = ƒ T(a)-S(a)-B(a)-(l+cos2wax)-da о (10) = 2 ƒ C!(a)'(l+cos2TOx)-do , о where (a) Ξ ^ τ(σ)·5(σ)·Β(σ).

16 2. Amplitude and phase modulation.

Since the intensity of the source in the far infrared region is very weak, the voltage output of the detectors is very small. Therefore it is necessary to modulate the radiation and to use phase sensitive detection (PSD) techniques. In a Michelson interferometer this modulation can be done in two ways: 1) Amplitude Modulation (AM), where the light beam emerging from the source is chopped; 2) Phase Modulation (PM), where the optical path difference between the two interfering beams is modulated. This is achieved by a vibration with small amplitude a of one of the mirrors in the inter­ ferometer. The modulation frequency ω for AM and PM is optimized with respect to the response time of the detector.

In the previous section the unmodulated interferogram-function I'(x) was calculated and is given by equation (10). When some form of periodic modulation is used, the interferogram-function becomes time-dependent and the intensity reaching the detector can be resolved into Fourier components. Since phase sensitive detection selects out only the fundamental Fourier- component of the signal, the ideal form of modulation is a pure sine-function of time. Obviously, the resulting interferograms and spectra will depend on which of the two modulation techniques, AM or PM, is used. When AM is used the source intensity 5(σ) in equation (10) becomes time-dependent. If the modulation has the ideal sine-form, the intensity Ilw(x>t) reaching the detector becomes AM

l!M(x,t) = I'ixMl+sinot) . (11)

AM

After PSD, the registered interferogram-function will be proportional to

I' (x) = h Ι'(χ) AM (12) = h ƒ 2Q(a)'(l+cos2Trax)-da . о This proportionality-factor is determined by the detector sensitivity and the amplification of the phase sensitive detector (lock-in amplifier). If a more practical square function is used for the modulation, the factor \ in equation (12) has to be replaced by 2/π. The actual spectral information is contained in the x-dependent part of equation (12), called the interferogram. 17 This interferogram I (χ) is obtained from expression (12) by subtracting the

, constant level ƒ Q(a) da) leading to

I^U) = h ƒ 2Q(a)'cos(2waxWa . (13) о

Notice that I.w(x) is an even function of xl AM

When PM is applied the optical path difference χ is modulated. If a sinusoidal modulation of amplitude a is used, in equation (10) χ has to be replaced by x+a*sinu)t. Using the Bessel series expansions of cos(z'sinO) and sin(z'sin6), the cos-term in equation (10) can be written as

CO cos[ 2πσ(χ+Ε·8ΪηωΟ ] = У J (2waa),cos(2iTax+müt) . (14) u m ms-»

Since phase sensitive detection is used, only the component with the funda­ mental frequency hhaa s to be considered. The intensity I' (x,t) of this com ponent is given by

I' (x,t) = ƒ 2Q(a)'(.-2JA2iíaa.))'sÍTt2T¡ax'sinb¡fda , (15) о where the relation J (z) = (-1) J (z) has been used. After PSD, the regis- -m m tered interferogram is therefore proportional to

00 I™(x) = ƒ 2Q(a)'(-2J.(2w0a))-sin2wax'do . (16) PM 1 о

Notice that this interferogram is an odd function of χ and that this ex­ pression has no constant term as in equation (12).

3. Spectra calculated by Fourier transformation.

Expressions for the observed interferograms were given in equations (13) and (16) for the case of AM and PM respectively. An extension can be made to negative wave numbers by stating that Q(-a) = Q(a) . Since J^(-2ixaa) =

-J1(2woa) it follows that -2J.(г-са)'Q(a) is an odd function of σ. With this

18 extension equations (13) and (16) can be rewritten in a complex form as

i2TOX lmM = h ƒ Q(a)-e -da (17)

-2 r «ζ \ . /•-! \ i2iroTOXx Ірм(х) = ^ ƒ Q(a)-J1(2waa)-e^ -do .

From these equations it is clear that the interferograms I...(x) and Ι,,,.ίχ) AM PM have a Fourier-type of relationship with the spectral functions h Q() and -τ- Q(o)'J.(2wca) respectively. The latter two functions can be recovered from I,..(x) and I„.,(x) by an inverse complex Fourier transform. Since in AM PM practise a complex Fourier transform yields a complex spectrum, one usually calculates the modulus of this spectrum, i.e.

2πίσχ Ρ(σ) = | ƒ ΐ(χ)·6" Μχ| , (18)

yielding

Ρ.Μ(σ) = % Q(a) and AM

ΡρΜ(σ) = 2|J (2πσβ)|·ς(σ).

From these considerations, some advantages of PM are immediately evident: 1. In order to obtain the spectral information from the interferogram- function I' (x) (equation (12)), the constant term in this expression has to be subtracted. Fluctuations in the source intensity and detector sensiti­ vity affect this constant term and therefore can falsefy the spectrum. Since the expression for I (x) (equation (16)) contains no constant term, greater immunity from fluctuations in source intensity and detector sensi­ tivity is obtained with PM. 2. The ratio of Ρ„.Χσ) and Ρ...(σ) is 4| J, (2тгоа) I . This factor is wave PM AM ' 1 ' number dependent and is > 1 for wave numbers between 0.08/a and 0.51/a. It reaches zero at σ = 0.611/a and has a maximum of 2.3 at σ = 0.29/a. This о max means that in case of PM the signal-to-noise ratio exceeds that of AM over 75% of the range between 0 and σ and is twice as high near σ . A physical ь о ь max ^ '

19 way of looking at this is that there is no chopper to interrupt the optical beam, so that the detector views the source for a greater length of time with PM, thus leading to an increase in the signal-to-noise ratio. 3. The wave number dependent multiplicative factor 4|j..(2waa)| can be used to act as a non-absorbtive filter. The Bessel function falls to zero when σ = 0.611/a. By an appropriate choice of the modulation amplitude a, a certain spectral region can be suppressed. Thus in combination with suited low-pass transmission filters an effective suppression of radiation with high wave numbers can be achieved. A more detailed description of AM and PM was given by Chamberlain ' ' and Chantry ,

4. Effects due to sampling of the interferogram over a finite length.

The optical path difference χ is usually assumed to be a continuous variable ranging from -"> to +<». Actually, however, interferograms are recor­ ded in discrete steps Δχ, over a finite range. If N datapoints are recorded symmetrically around zero path difference, i.e. χ ranging from -L to +L with

L = (Ν/2)·Δχ> then expression (18) for the modulus spectrum has to be modi­ fied into

+N/2 . 2πισηΔχ Ρ(σ) = Δχ- Ι ΐ(ηΔχ).ε" . (19) η=-Ν/2

This expression relates Ρ(σ) uniquely with ΐ(ηΛχ) for a limited range of values for σ only. This can be seen by considering the source to be monochro­ matic with wave number σ = (1/λ ). According to equation (9), this results in a cosine-like interferogram. To determine the value of σ from the inter- o ferogram, the sampling theorem states that at least two points have to be sampled within one wave length. Therefore, this leads, for a given value of Δχ, to a limit for the highest wave number σ , given by σ = 1/(2Δχ). 0 max 0 J max However, it is obvious that an infinite number of waves with higher wave numbers will also fit through the points in the range of observation. There­ fore, the information contained in the interferogram can be attributed to higher wave numbers as well; this phenomenon is called "aliasing" (Chantry , chapter 3). If low pass filters are used, which block out the radiation with wave numbers above σma x , usingo rexpressio n (19) the original ospectrur m can be

20 recovered uniquely from the recorded interferogram. In addition, the limitation of recording the interferogram over a finite range of x-values, -L < χ < L, also confines the spectral resolution. It can easily be shown (Chantry , chapter 3), that the power spectrum of a truncated interferogram of a monochromatic line is proportional to

8ίη2π(σ -a)L 2л(а0-о)Ь · (20) о

This function has a half-width of approximately 1/(2L)( and has large and slowly decaying sidelobes. If the resolution is taken as the minimum wave number distance at which another line of equal intensity can just be observed in the transformed discrete spectrum, then one gets a resolution of 1/(2L). Therefore, spectra with a higher resolution can be obtained simply by moving the mirror over a longer distance, parallel to its original position. In practice, the resolution is restricted by the signal-to-noise-ratio, the finite aperture of the source and detector, and by tilt adjustments (i.e. the image of one mirror in the beam splitter is not perfectly parallel to the surface of the other).

The sidelobes mentioned above can easily be mistaken for real spectral features. If the recorded interferogram is multiplied with a so-called apodization-function, these sidelobes can be suppressed effectively. Usually a cosine squared function (which is 1 at χ = 0 and 0 at χ = +_ L) is chosen; this is also done in our computer program, described in the Appendix. It should be noted however, that this procedure broadens the central line, degrading the resolution by a factor 1.5. An example of an interferogram of a monochromatic line, recorded with amplitude modulation, is shown in figure 2a. This line originated from a home-built grating monochromator, described in refs. 5 and 6. Figure 2b shows the corresponding power spectrum, calculated with equation (19). From figure 2a it can be seen that the interference pattern decays within the interferogram length; therefore figure 2b represents the actual lineshape. In fact, the lineshape is determined by the width of the exit-slit of the grating monochromator. From the interferogram, the wavelength λ is seen to have a value of 0.370 mm, while the central position σ of the line in . . -1 0 the spectrum is situated at 27 cm . So for these values the relation σ = Ι/λ holds. о о

21 ω '.hi с 'ι φ Ι (α) ί 11 ', ί ! - ίί ' ' ' ι' ΓΙ' ' '' ', ! ,' , ι Μ ! ι ι Ι' ι, , ,",

Ν -,Ι 1 ' , ι Ι' 'Ι , ι ι , 4 ' - " " , ! h ,, '· •' ' '/ у ι ι· Ί ч, !, ; ι . ι Ί,' υ ·/ i Ί Ι· ., ' '! . ι , ν ' ,1 ίι ι' . " ι. ' ' 'ί ϊ г

-5 -25 Ο 25 5 Optical path difference ( mm )

(Л с (Ы Φ

_L_i_. 25 50 75 100 125 150 Wave number (cm"1)

Fig. 2 : Figure (a) and (b) show respectively the interferogram and speatmm of a ntonoohro^atia line, originating fren a grating monoahro^ator.

22 w с (α) φ

—^Λι'/Υ-

\ ι

-10 12 Optical path difference ( mm )

λ ω с Á \ (b) Φ M Ι' ι I1 i

Л^Л I í > I

> / 1 í u V 50 100 150 200 250 300 350 Wave number (cm"1)

'.•'ig. 3 : Figure (a) and (b) show respectively the interferogram and speatrur, of a continuous broad band spcctriov. The structure is determined by the efficiency of the 50 \m Mylar beamsplitter.

23 In the previous section it was demonstrated that the spectral output was determined by the properties of the thin film beam splitter as well. The disadvantage of these thin films is that due to standing wave interference effects, caused by multiple reflections within the thin transparant films, the beam splitter efficiency Β(σ) is a periodic archlike function of wave number, reaching zero at multiple values of l/(2ndcos9'). Here d is the thickness of the film, η the refractive index and Θ' the angle of the re­ fracted beam inside the film. The function Β(σ) was first introduced in equation (8); its exact form has been calculated by several authors An example of the influence of a beam splitter is shown in figure 3a and 3b, where a Mylar beam splitter of 50 μπι thickness was used, with an angle of incidence for the broad band radiation of 45 . Using η = 1.72 the wave numbers where Β(σ) reaches 0, are found to be multiple values of 64 cm , in accordance with figure 3b.

Interferograms such as in figure 2a and 3a, which are recorded symmetri­ cally around zero path difference, are called double-sided interferograms. In principle, if the interferogram is exactly symmetrically sampled, it is sufficient to record one side only (single-sided interferograms). Actually, often the sampling comb is not positioned so as to record an ordinate at exactly zero path difference. It can easily be shown (Chantry , chapter 3) that this does not affect the modulus spectrum of a dobble-sided interfero­ gram. In case of a single-sided interferogram symmetry must be restored by numerical computation ' . Single-sided interferograms (not used in the (13) present investigations) are treated in details in textbooks (see Bell or Vanasse and Sakai ).

24 References.

1. G.W. Chantry, Submillimetre Spectroscopy, Academic Press, New York (1971). 2. J. Chamberlain, Infrared Physics 11, 25 (1971). 3. J. Chamberlain and H.A. Gebbie, Infrared Physics VL, 57 (1971). 4. J. Chamberlain, J. Haigh and M.J. Hine, Infrared Physics 1A, 75 (1971). 5. M.V. Dorigo, J.H.M. Stoelinga and P. Wyder, Z. ang. Math. Phys. (ZAMP) 20, 565 (1969). 6. J.H.M. Stoelinga and P. Wyder, Nederlands Tijdschrift voor Natuurkunde 36, 107 (1970). 7. D.J. James and J. Ring, J. Phys. (Paris) 28, 150 (1967). 8. E.V. Loewenstein and A. Engelsrath, J. Phys. 28, 153 (1967). 9. D.R. Smith and E.V. Loewenstein, Appi. Opt. 14, 2473 (1975). 10. D.A. Naylor, R.T. Boreiko and T.A. Clark, Appi. Opt. 17, 1055 (1978). 11. M.L. Forman, W.H. Steel and G.A. Vanasse, J. Opt. Soc. Am. 56, 59 (1966). 12. H. Sakai, G.A. Vanasse and M.L. Forman, J. Opt. Soc. Am. 58, 84 (1968). 13. R.J. Bell, Introductory Fourier Transform Spectroscopy, Academic Press, New York (1972). 14. G.A. Vanasse and H. Sakai, Progress in Optics, E. Wolf ed., 6, 259 (1967), North Holland, Amsterdam.

25 III.2 SPECTRUM DISTORTION IN FAR-INFRARED FOURIER SPECTROSCOPY BY MULTIPLE REFLECTIONS BETWEEN SAMPLE AND MICHELSON INTERFEROMETER

ABSTRACT

In far-infrared Fourier spectroscopy with a Michelson interferometer deviations in the measured transmission spectra of samples with non- negligible reflection can be observed. This effect is investigated both theoretically and experimentally. It is shown that the spectral element at a certain wave number contains contributions of subharmonics of that wave number.

1. Introduction.

One of the most widely used instruments in far-infrared spectroscopy is the Michelson interferometer with thin film beamsplitter. An extensive review of the Fourier spectroscopic technique on which this instrument is based has been given by Chantry . In order to determine the transmission spectrum of some sample one usually performs two measurements: 1) A sample interferogram with a sample in the light-path between interferometer and detector, and: 2) A background interferogram without the sample. These interferograms are Fourier transformed, and the ratio of the two obtained spectra then yields the desired transmission spectrum.

However, it should be noted that a non-negligible amount of radiation can be reflected back into the interferometer system by a reflecting sample. This can lead to significant distortions in the spectra. This effect seems to have escaped notice until now. It is the purpose of this paper to present results of a theoretical and experimental investigation into the effect of this reflected radiation on the measured transmission spectrum.

26 * Source

Detector

Sample

'////////////////M

Fig. 1 : Schevatie diagram of a Viihelscn interferone ter in a con figura­ tion for transmission measurements. The energy reflection ana transnission coefficients of the beamsplitter are R-, and T, respectively, those of the sample are Ρ and T.

2. Theory.

Fig. 1 shows schematically a Michelson interferometer with an inci­ dent beam of radiation. There are two emergent beams, one towards the sample and detector, the other towards the source. In the following cal­ culations we neglect the effect of absorption in the beamsplitter, which is a good approximation for the first lobe of the interference pattern (2) of a Mylar beamsplitter We assume the source to be monochromatic with wave number σ and in­ tensity S, and the optical path difference between the two arms of the interferometer to be x. Then the phase difference between the beams recombining at the beamsplitter will be Δ = 2ιτσχ, the energy I arriving at the sample will be given by

Ι (Δ) = SB(l + cosA) , о (1)

and the energy I' returning to the source by

27 Ι'(Δ) = S(A - B'cosA) . (2) о

(3) (See for instance: Loewenstein and Engelsrath .) The beamsplitter pro- 2 2 perties are represented by the quantities A = R + T. and Β = 2Κ,Τ, , where R, and T, denote the energy reflection and transmission coefficients of the beamsplitter respectively. For a non-absorbing beamsplitter we have R, + T, = 1 and A + В = 1. The quantity В is often called the efficiency of the beamsplitter. The sample will transmit a fraction Τ of the incident radiation to­ wards the detector, and will reflect a fraction R back into the inter­ ferometer (R < 1). To simplify the calculations it will be assumed that the reflected radiation has a random phase relation with the original beam, so that no interference will occur and one can simply add the in­ tensities. The sample can then be considered as an extra radiation source with intensity RI (Δ). According to Eq. (2) a fraction with energy

І.Ш = RI (Δ)(Α - B'cosA) 1 о

will return to the sample, and will again be partly reflected, etc. The total energy I reaching the detector, after transmission through the sample, will therefore be

œ Ι(Δ) = TSBd + cosA) I Rn(A - B-cosA)" . (3) n=0

The term in the infinite sum is < 1 (because R < 1 and A + В = 1), so the geometrical series can be summed. Introducing the quantity C, defined as

c=r^Rl· (4)

the summation of Eq. (3) yields:

Ι(Δ) = ψ [l - , * ' C . ] . (5) R 1 + С'созЛ

28 It follows from Eq. (4) that 0 < С < 1. In order to perform the Fourier transform it is convenient to write Eq. (5) in the form of a Fourier series. It is shown in the Appendix that the function

ί(Δ) = (1 + C-cosA)"1 can be represented by a Fourier series

a «> £(Δ) = -£ + У a 'COsCnA) 2 -i n n=l with coefficients a given by

2 2 1 n f^J - ΐ . (6) иг: ,2

Defining the coefficients В as:

В - i-ll - (1 - C) -£] (7.a) о R l 2

В = C Г 1 »a for η = 1,2,3, (7.b) η nR η ' the Fourier series representation of ΐ(Δ) can be expressed as:

Ι(Δ) = TS [ В + LУ В ·η·οο3(ηΔ) ] . (8) о η=.1 η

Fig. 2 shows the calculated В , B., B_ and B, as functions of R for various values of the beamsplitter efficiency B. It can easily be shown that for R -* 0 the values В -»· В, В, -»· В and В -> 0 for η > 2, so that ol η in this limit Eq. (8) reduces to the well known form of Eq. (1)

lim Ι(Λ) = TSBd + cosA) . R+0

29 OC 02 0¿ R- -

Вз

Fig. 2 : The ealaulated values of the quantities В , В j S and В as o i ¿ о functions of R for various values of the beamsplitter efficiency В (non-absorbing beamsplitter).

30 It is obvious from Eq. (8) that the interferogram-function ΐ(Δ) contains higher harmonics of the basic frequency due to the reflected radiation. So far the source was assumed to be monochromatic with wavenumber σ and intensity S. If the source emits a broad spectrum 5(σ), the total energy I'(x) reaching the detector can be found by integrating Ι(Λ) over all wavenumbers σ. In doing so one has to take into account that the quantities Α,Β,Τ,Κ,Ο and В may also be functions of σ. The interferogram- function I'Cx) for a broad spectrum is thus found to be

oo I'Cx) = ƒ τ(σ)·8(σ)·Β о(o)'d a о' (9)

œ œ + ƒ У Τ(σ)·8(σ)·Β (σ)·η·ΰθ8(2πησχ)«do . ι n ο n=l

The first integral in Eq. (9) is independent of x, and corresponds to the average of l'(x) over all x. The second integral in Eq. (9) is the proper interferogram iCx), which, by changing the variable σ to σ/η, can be written as

CO 00

I(x) = ƒ Уи Τ(-)·8(-)·Β (-).οο8(2πσχ)·ασ . (10) ο' η=,1 η η η η

In most experiments the intensity of the source is chopped and the detector provides a signal proportional to I'Cx). After phase-sensitive detection and subtraction of the average level one obtains an interfero­ gram proportional to l(x). The spectrum one is interested in is then cal­ culated as the Fourier transform of this interferogram. One sees immedia­ tely from Eq. (10) that this spectrum Ρ(σ), omitting multiplicative con­ stants, is given by:

oo Ρ(σ) = I T(^)-S(2.).B A . (11) η=*·1, η η η η

This means that the spectral element with wavenumber σ contains not only information about the sample, source and instrument for wavenumber σ, but

31 also for a series of subharmonics of σ. For small values of R Eq. (11) reduces to the well known undistorted spectrum:

lim Ρ(σ) = Τ(σ)·8(σ)·Β(σ) . R-+0

The background spectrum (without the sample) is simply 8(σ)·Β(σ)) so that for R-+0 the transmission spectrum, calculated as the ratio of the sample and background spectrum, is indeed equal to Τ(σ). However, for non-negli­ gible values of R one does not obtain the proper transmission spectrum in this simple way, and the corrections discussed above have to be taken into account.

3. Experiment.

In order to test the analysis of section 2 we performed some experi­ ments in which the transmission spectra of samples with high reflection were measured and compared with the known transmission. A modular FTR (4) interferometer , manufactured by Grubb Parsons Company, was employed with a 12.5 um Mylar beamsplitter. One of the modifications allowed the use of both the standard broadband source (i.e. a mercury lamp) or an external monochromatic source (i.e. a FIR-laser or a monochromator). A TPX lens focussed the radiation emerging from the interferometer onto the entrance hole of a lightpipe which contained the sample-holder. The reflected radiation re-entered the interferometer along the reversed path, while the transmitted power was detected at the exit of the lightpipe.

a. Monochromatic_source.

The properties of an interferometer are most clearly studied by em­ ploying a monochromatic source. In our experiments this was an optically pumped FIR laser, operating at the 118.8 ym (σ = 84.2 cm ) transition (5) . . . 0 . of methanol . The radiation was coupled into the interferometer via a lightpipe and collimated by a TPX lens; the emerging power was measured with a Molectron P3 pyro-electric detector. A 750 lines/inch nickel mesh (manufactured by Buckbee and Mears Company, Minnesota) was used as re­ flecting sample; the measured transmission coefficient at 84.2 cm was Τ = 0.15. 32 750 l/inch Ni-mesh

(a) Hl·-

No sample

(b) Hl·-

ooL 100 200 300 Wave number (cm*1)

The tr>ansrri3siûn apee trun of а /Ь0 linee/inoh nickel neah, chjiäing ine effect on the Ь^тг s formed opeotpun of the reflected raáiui,ion (7). "he source wac mono car ovati в vith radiation wave —2 nuròer σ„ - 84.2 an ; the background specie J."I Is s noun as c;rve (bj. The traronlssion of ^ie sarcle at 3Λ.? »η * is " = 0.15.

33 The measured background interferogram was an almost perfect cosine of which the Fourier transform yields the monochromatic peak at σ = 84.2 cm shown in Fig. 3b. A very small harmonic component at 2σ can be seen which may be due to a reflection at the detector or to a possible non-linearity of the detector sensitivity. The small side-peaks at 10 cm to the left and right of the main peak are caused by a small periodical pitch error in the micrometer screw of the mirror drive of the interferometer The measured transmission spectrum (see Fig. 3a) of the sample shows very clearly the peaks at harmonics of σ as predicted by the theory of section 2. As our computer program calculated the modulus of the complex transformed spectrum, the negative sign of the peaks at even multiples of σ does not show up in Fig. 3a. The intensities of the peaks relative to the background peak are given in Table 1. We also calculated the re­ lative peak intensities with the formula Τ(σ )·Β (σ )/Β(σ ) given by the ο η о о theory; the results are also given in Table 1, where the negative signs for the even peaks have been omitted. In the calculations a loss of 5% of the radiation was assumed so that the effective reflection coefficient of the sample was taken as R = 0.8. In calculating the efficiency of the beamsplitter the polarization (2 3) properties have to be taken into account ' . The originally polarized radiation of the laser proved to be totally depolarized by entering the interferometer through a lightpipe and collimator lens. The calculations were performed separately for the parallel and perpendicularly polarized components of the incident radiation, and the results were averaged. For a non-absorbing 12.5 ym Mylar beamsplitter and 45 angle of incidence, the calculated efficiency of the two components was found to be B« = 0.11 and B. = 0.46 respectively. As can be seen from Table 1 the agreement between theory and experi­ ment is rather good. It is interesting to note that the efficiency of the beamsplitter has a minimum at 250 cm so that without the reflection effect discussed in this paper there could not be a noticeable intensity in the region where peak no. 3 is located.

b. Broadband source.

In order to investigate the influence of the reflection effect on broadband spectra, we measured the transmission of polished brass disks

34 'i'áble 1 : The experimentally and theoretically determined relative peak intensitbes in the transmission speetrum of a 750 lines/inch nickel mesh with a monochromatic source of wave number 84.2 cm ".

peak no. 1 2 3 A

Experiment 0.19 0.024 0.012 0.002

Theory 0.19 0.026 0.006 0.002

150 200 250 Wave number (cm"1)

Fig. 4 : The measured (solid curves) and calculated (dashed cvroes) transmission spectra of polished brass disks from which sectors of 90 j 180 and 270 were removed. The deviation due to the reflection effect from the ideal constant transmission coeffi­ cients Τ - 0.25, 0.50 and 0.75 respectively is clearly demonstrated.

35 from which sectors of 90 , 180 , and 270 were removed. The broadband source was a medium pressure mercury lamp (Philips HPK 125 W). An IR50 Golay cell was used as detector. Without the reflection effect under study, the expected transmission spectra should have a constant level at Τ = 0.25, 0.50, and 0.75 respectively. But, as can be seen in Fig. 4, the experimen­ tal results exhibit a distinct deviation from this ideal behaviour. Only the spectrum with the lowest reflection (T = 0.75) approximates the real transmission spectrum almost up to the regions near 0 cm and 250 cm , where the ratio of sample and background spectrum becomes inaccurate be­ cause of the minima in the beamsplitter efficiency. However, the measured transmission spectra conform very well to the calculated spectra (dashed curves in Fig. 4) if the reflection effect is included. In these calcula­ tions effective reflection coefficients were chosen by assuming a loss of 5% of the radiation, yielding R = 0.70, 0.45, and 0.20 respectively. The beamsplitter efficiency Β(σ) was calculated as in Ref. 2, ignoring absorp­ tion, and averaging over all polarization directions. The combination of source-spectrum and transmission of the present filters and windows was approximated by an analytical function S(o), which fitted the experimental curve within 10%.

As the spectral level at wavenumber σ is mainly determined by the

first two terms of the infinite series of Eq. (11), i.e. Τ(σ)·5(σ)•B1(σ) and Τ(^σ)·5(^σ) ·Β.(ΐίσ), the main result of the reflection effect will be 1 -1 an increase of the level for low wavenumbers, and a decrease near 250 cm This is due to the maximum in the beamsplitter efficiency at 125 cm , and the minima at 0 cm and 250 cm

4. Conclusions.

We have shown theoretically and experimentally that due to reflections from the sample the measured transmission spectrum can exhibit a substan­ tial deviation from the real spectrum if a Michelson interferometer is employed. The best way to avoid this effect is to arrange the optical set-up in such a way that the reflected radiation is prevented to re-enter the interferometer.

36 Appendix.

In this appendix the calculation will be given of the coefficients of the Fourier series representation of the function:

ί(Δ) = (1 + C-cosA)"1 , (Al) where 0 < С < 1. This function f(A) is a bounded periodic function of period 2π (i.e. f(A + 2π) = f(A)), and satisfies the Dirichlet conditions: a) In any period f(A) is continuous; b) In any period f(A) has only a finite number of maxima and minima. In addition, f(A) is even (i.e. f(-A) = f(A)). Then f(A) may be represented by a Fourier series

a œ f(A) = -%- + I a -cosinA) (A2) n=l where

a - - ƒ f(A)-cos(nA)-dA . (A3) η π J -π

Writing the Euler definition for the cosine, and using the fact that f(A) is even one obtains the complex form of a : r η

π ιηΔ a i f e_^ _dn -π 2 + C(e + e )

Substituting ζ = e and integrating along the unity circle yields:

а = I f Ξ . d£ . (A4) n π 1 1Z 2 + C(z + z" )

Introducing the quantities E and F, defined as:

37 2 E = (^0(1 + Vi - С ) (A5a)

F = (^)(1 - Vi - С2) (A5b)

Eq. (A4) can be written as:

4 1 n an = С ' 2ÏT ^ (z - EKz - F) dZ · (A6)

Since 0 < С < 1 we have E < -1 and -1 < F < 0, so that F lies inside the unity circle and E does not. The residu theorem is stated as

ι f lí£)_dz = g(a)

if a lies inside the closed integration path, and g(z) does not have any singularities inside this path. This can be applied to Eq. (A6) by sub­ stituting a = F and

η Z g(z) = ζ - E '

yielding:

_ 4 F an С " F - E

or, using the definitions for E and F:

f- f - Г . (A7) n vnt

38 References.

1. Chantry G.W., Submíllimetre Spectroscopy, Academic Press, London and New York (1971). 2. Naylor D.A., R.T. Boreiko & T.A. Clark, Appi. Opt. Ц, 1055 (1978). 3. Loewenstein E.V. & A. Engelsrath, J. de Phys. 28, C2-153 (1967). 4. Chantry G.W., H.M. Evans, J. Chamberlain & H.A. Gebbie, Infrared Phys. 9, 85 (1969). 5. Chang T.Y. , T.J. Bridges & E.G. Burkhardt, Appi. Phys. Lett. 1_7, 249 (1970). 6. Steeg M.J.H, van de, H.W.H.M. Jongbloets, J.H.M. Stoelinga, R.W. van der Heijden, R.J.M, van Vucht & P. Wyder, to be published.

39 CHAPTER IV PHOTOTHERMAL IONIZATION SPECTROSCOPY OF SHALLOW IMPURITIES IN ULTRA-PURE GERMANIUM

IV.1 INTRODUCTION TO PHOTOTHERMAL IONIZATION SPECTROSCOPY (PTIS)

1. General introduction.

In the last decade extensive investigations into the ultrapurification of germanium have taken place, mainly with the purpose of fabrication of (1 2 3) nuclear radiation detectors ' ' As criterion for the purity of germanium is currently used the total concentration of shallow donors and acceptors (i.e. elements like As, Sb, P, Li, ΑΙ, В, etc.). One of the difficulties which were met for many years was that while the net concentration of the residual donors and acceptors in the Ge crystals could be measured, one had very little information about the chemical identities of these impurities. However, a knowledge of the chemical identities is obligatory for the improvement in the technology of preparation of ultrapure germanium. Here a new technique, developed by Russian scientists ' ' , came to the rescue, which could be used to detect and identify impurities in 9 -3 germanium m concentrations down to the 10 cm range and possibly even lower. This technique of photothermal ionization spectroscopy (PTIS) is based on two experimentally established facts: 1) Under very definite con­ ditions the spectrum of the extrinsic photoconductivity is a line spectrum which reflects the energy level structure of the impurities; 2) The magni­ tude of the photoresponse is independent of the concentrations of the impurities down to very low concentrations. A recent review of the PTIS technique was given by Kogan and Lif shits1· ' '. Since 1970 many experi­ mentalists have used PTIS for the investigation of ultra-pure Ge. (See for instance Refs. 3*8-13.) In our laboratory we have performed measurements on ultra-pure germa­ nium samples obtained from Dr. H.J.A. van Dijk of Philips Research Labora­ tories in Eindhoven. Before explaining the PTIS technique a brief review will be given of the essential details of the theory of shallow donors and acceptors in germanium.

40 2. Theoretical considerations.

Kittel and Mitchell and Kohn and Luttinger presented the first comprehensive theoretical model for shallow donors in germanium; the so- called "effective mass approximation". The model is based on the following qualitative picture: The group V donor has five electrons outside of closed shells. Four of these complete the bonds with neighbouring Ge atoms. The fifth finds itself in the Coulomb field of the singly-charged impurity ion. A series of quantum states can be assigned to this additional electron similar to those of the single electron in the hydrogen atom, but with some important modifications. First, the "hydrogenic" impurity is not in a vacuum but in a lattice with dielectric constant, ε, so that all binding-energies 2 emerging from the hydrogen atom are reduced by a factor e and the linear dimensions of the wave functions are increased by a factor ε. Furthermore, the electric charge moving in the field of the impurity ion does not have the mass m of the free electron but has an effective mass m , which is о anisotropic. The dielectric constant and the reduced mass together result in approximately 1000 times smaller energies than in the hydrogen atom. The wave functions of the excited states extend over thousands of crystal cells, but are zero in the central cell occupied by the impurity. The corresponding energy levels are therefore almost insensitive to the chemical nature of the impurity atoms, and the "effective mass theory" provides a very accurate description of the excited levels. The differences that make the identification of the individual impuri­ ties possible are due to departures of the lowest levels from the effective mass approximation. The ground state wave function has a maximum in the crystal central cell. Therefore the ground state energy is sensitive to the form of the crystal field in the central cell and depends on the chemical nature of the impurity. This "central cell correction" to the effective mass approximation causes a "chemical shift" of the ground state level, characteristic for the impurity in question. Theoretical calculations were performed by Philips , while Reuszer and Fisher deduced the chemical shifts for various donors from measured absorption spectra. Most of the considerations above apply mutatis mutandis also to accep­ tors in Ge. On the other hand, acceptor states represent a rather different situation, because of the special structure of the top of the valence band. (18) The acceptor problem was first formulated by Kohn , while numerical calculations were performed by Schechter , Mendelson and James and

41 .(21 22) more recently by Baldereschi and Lipari ' . A very extensive review of (23) the theory of acceptors and donors in Ge was given by Bassani et al. The chemical shifts of the ground states of several shallow acceptors (24) in germanium were determined by Jones and Fisher from transmission 15 -3 measurements on samples with impurity concentrations of 10 cm . The ab­ sorption peaks they observed were interpreted as optical transitions from the ground state of the impurities to bound excited states. From a combina­ tion of theory and experiment they deduced the energy level schemes shown in Fig. 1. As can be seen the higher excited states of all acceptors are virtually the same, as was predicted by the effective mass theory. Only the

SJ VALENCE BANDÌ 0 1 I A" 2 -

u ce

Egs. Egs. Egs.- 11 BORON ALUMINUM 10.47 meV 10.80 meV GALL|UM Egs. 12 INDIUM 10.97 meV 11.61 meV

13 Egs.- THALLIUM 13.10 meV

Fig. 1 : The bound states of some shallou acceptors in germanium, as deter- (24) mined by Jones and Fisher . The numbers in the figure give the ground state energies (E ) of the impurities relative to the g.s. valence band. most strongly bound states, and especially the ground state Ε , differ among different impurities. The resulting absorption spectra therefore have the same structure but are shifted versus each other, the shifts depending on the differences in ground state energies.

42 The disadvantage of using transmission spectroscopy for the study of impurities is that this technique asks for samples with a high impurity con­ centration. However, the size of the wave functions then produces a severe overlapping between the impurity atoms, resulting in a relatively low reso­ lution in the spectra. In contrast with this PTIS on very pure samples, where the impurity atoms are far apart, produces spectra with very narrow lines.

3. Photothermal ionization spectroscopy (PTIS).

In PTIS one measures the change in conductivity of a sample under illumination with radiation in the same region as used in transmission spec­ troscopy. For shallow donors and acceptors in germanium this is the far infrared region (wave number 10 - 200 cm ). As an example we show in Fig. 2 the photoconductivity spectra at several temperatures of a polycrystalline sample, containing residual im­ purities in a concentration of ^ 10 - 10 cm . It is seen that above a temperature of 5 К a photoconductivity spectrum with a distinct line struc­ ture arises for photon energies below the impurity ionization energy (i.e. the onset of the continuum at ^ 85 cm ). The positions of the peaks on the energy scale coincide with the peaks in the optical absorption spectrum of (24) the boron and aluminum acceptors known from the literature . This proves that the lines are due to optical transitions of the charge carriers from the ground state to bound excited states of the impurity. However, in order to contribute to the conductivity the charge carriers must be released into the free band. We see in Fig. 2 that the heights of the peaks increase with increase in temperature. This suggests that the ionization of the impurity is a two-step process: 1) charge carriers in the ground state are optically excited to some intermediate state; 2) Subsequently a fraction of these excited charge carriers may be promoted thermally into the free band, producing an increase in conductivity of the sample. This is why the name of photothermal ionization was introduced for this two-step process. In order to obtain enough phonons of sufficient energy one would like to keep the Ge sample at high temperatures, while to keep most of the impurities in their ground state low temperatures would be prefered. This leads to an experimentally-determined optimum temperature of around 8 К for observation of shallow impurities in germanium.

43 в DC7—ішіши» ~^| ' Ес9' Α DC» ι іиіішші · >. о R78B

80 100 120 Wavenumber 'cm !

Fig. 2 : Photooonduativity spectra at several temperatures of a polyarystal- Ыпе Ge sample, containing aluminum and boron in a concentration of ъ IO10 - IO11 cm'2.

The most important and essential difference between PTIS and other analysis methods is that the recorded signal does not decrease with decrease of impurity concentration down to a very low concentration . This is a consequence of the fact that both the average number of current carriers, n, and the change Δη under illumination depend equally on the concentration of the impurities. The voltage sensitivity of the photo-response is proportional to the relative change of the carrier concentration Δη/η. This enables one to detect the impurities even if their concentration is extremely low and undetectable by all other analysis methods. As the positions of the spectral lines reflect the energy spectrum of the impurity atoms PTIS enables the determination of the chemical nature of

44 К Hb ч| о 'w|lJ д^ ί \ уft •Г И J^

1 ν V 'г, [ 20kG^I IJ, Vi ' Ι' , ι Μ; 1' • Ν! 1 17 5 kG ι Ι, Ι ' -'' i Α •Ι ' ' i ι и ι Ли Λ ^ Ι 1 U Ζ 15 kG ,/,"ί.!Μ '\ !-^, i'ιJ' Ι Λ

12 5 kG, ,-Ίι^,ν V' Il * ν

' - чЛлчЛЛ-АлЛ> ' V ΙΑ , 1Ι1" · ι', ι 'Ιι ι ,. »Ί

7 5kG ;¡; .1||ч ." ;и::.; f \і*\

100 120 Wavenumber (cm-')

Fig. 3 : Photoconduetivity spectra at 7.5 К of shallow aoaeptors in germanium for several values of the applied magnetio field (same sample as in Fig. 2).

45 the impurities. Accurate spectra for a number of donors and acceptors can be found in the literature (for instance in Refs. 8,9 and 10). The identifica­ tion of the impurities in the spectra of Fig. 2 was done by comparison with (9) the В and Al spectra given by Haller and Hansen ; these spectra are shown in the top of Fig. 2.

4. Applications of PTIS.

Originally the PTIS technique was only used as an analytical tool in the production of ultra-pure germanium. However, the inherent advantages over other analysis methods, such as the much better spectral resolution, have predicted PTIS to become one of the most powerful tools for the study of the basic physical aspects of germanium and a variety of other semicon­ ductors . The research subjects in which we have been engaged are: 1. An accurate determination of the ground state energies of some impurities from the temperature dependence of the peak intensities in the photocon­ ductivity spectra; 2. The influence of a magnetic field on the energy level scheme of acceptors in germanium. Figure 2 showed the effect of the temperature on the intensity of the peaks in a spectrum, whereas Fig. 3 shows the effect of a magnetic field on the same spectrum. As can be seen from Fig. 3 the spectrum not only exhibits a splitting or shift of the peaks below the continuum onset, but also develops a set of peaks in the continuum. The results of our investigations will be presented in the form of a set of papers. Preliminary results are presented in Section IV.2, while in Sections IV.3 and IV.5 the temperature effect is explained in more detail. Section IV.4 is a supplement to Section IV.3. In Section IV.6 we present measurements in a magnetic field on a monocrystalline sample, where the orientation was known. The experimental results will be discussed in terms of existing theories about Zeeman effect and Landau levels in germanium.

46 References.

1. R.D. Baertsch and R.N. Hall, IEEE Trans. Nucl. Sci. 17, 235 (1970). 2. R.N. Hall and T.J. Soltys, IEEE Trans. Nucl. Sci. 18, 160 (1971). 3. R.N. Hall, R.D. Baertsch, T.J. Soltys, and L.J. Petrucco, Annual Report No. 6 (Aug. 73), General Electric Co. 4. T.M. Lifshits and F.Ya. Nad', Sov. Phys. Doklady 10, 532 (1965). 5. V.l. Sidorov and T.M. Lifshits, Sov. Phys. Solid State 8, 2000 (1967). 6. T.M. Lifshits, N.I. Likhtman, and V.l. Sidorov, Sov. Phys. Semicond. 2, 652 (1968). 7. Sh.M. Kogan and T.M. Lifshits, Phys. Status Solidi A 39, 11 (1977). 8. S. Dana Seccorabe and D.M. Korn, Solid State Commun. 1Λ, 1539 (1972). 9. E.E. Haller and W.L. Hansen, Solid State Commun. , 687 (1974). 10. M.S. Skolnick, L. Eaves, R.A. Stradling, T.C. Portal and S. Askenazy, Solid State Commun. 21, 1403 (1974). 11. E.E. Haller, W.L. Hansen and F.S. Goulding, IEEE Trans. Nucl. Sci. -22, 127 (1975). 12. E.M. Bykova, L.A. Goncharov, T.M. Lifshits, V.l. Sidorov, and R.N. Hall, Sov. Phys. Semicond. 9, 1223 (1976). 13. E.E. Haller, Phys. Rev. Letters 40, 584 (1978). 14. С Kittel and A.H. Mitchell, Phys. Rev. 96, 1488 (1954). 15. W. Kohn and J.M. Luttinger, Phys. Rev. 98, 915 (1955). 16. J.C. Phillips, Phys. Rev. Bl_, 1540 (1970). 17. J.H. Reuszer and P. Fisher, Phys. Rev. 135, A1125 (1965). 18. W. Kohn, Solid-State Physics, Vol. 5, p. 257 (ed. by F. Seitz and D. Turnbull), Academic Press, New York (1957). 19. D. Schechter, J. Phys. Chem. Solids 23, 237 (1962). 20. K.S. Mendelson and H.M. James, J. Phys. Chem. Solids 25, 729 (1964). 21. A. Baldereschi and N.O. Lipari, Phys. Rev. B8, 2697 (1973). 22. A. Baldereschi and N.O. Lipari, Phys. Rev. B9, 1525 (1974). 23. F. Bassani, G. ladonisi and B. Preziosi, Rep. Prog. Phys. _У7, 1099 (1974). 24. R.L. Jones and P. Fisher, J. Phys. Chem. Solids 26, 1125 (1965).

47 IV.2 MAGNETO-OPTICAL DETERMINATION OF THE GROUND STATE Li VI·LS OF SOME SHALLOW IMPURITIES IN HIGH PURITY GERMAMLM

H W H M JONGBLOETS, J H M SIOFl INGA, M J H VAN Db STFFG and Ρ WYDER Ph\su s I aborali>r\ and lit\earih íns/iíw/t for Material* Vmter\it\ of Ntfnufun Tturnootutii Nijmtíí«" The Netherlands

Wc determine Ihe impurity ground state levels of aluminium boron find phosphor in permanium from very iccunte medsurements of the photo thermal conductivit> as a function of the frequency of the incident radiation the temper Uure and the magnetic field strength From our magnetic data mfornation is obtained on the field dependence of even the highest levels observed up to now

1. Introduction and experimental method Hallet and Hansen [S] on the other hand determine the energy difference of the ground During the last decade there has been con­ state energy and the band edge from the shape siderable interest in the study of the energy of the onset of the continuum observed in their levels of the impurity states m germanium and photo thermal conductivity data They assume silicon The experimental techniques used fall that this shape is due to the Fermi distribution mainly into two groups far infrared trans of the electron energy at the top of the (valence) mission measurements using spectrometers or band Their obtained values for the ground state interferometers on samples containing im energies are about 1 cm ' higher than the purities at concentrations of ~10',-10"'at/cm', theoretical values from the literature However, and photo-thermal conductivity measurements since the shape of the onset of the continuum, which enable investigation of high-purity sam­ according to our observations, does not change ples with 10IO-10" impunties/cm' Here also far with the temperature between 2 and 8 K, this infrared grating spectrometers or inter­ shape cannot be due to the Fermi distribution ferometers and sometimes lasers are used The but may be caused for instance by an averaging experimental results of these two methods are over к space by the effect of two phonon in good agreement both with each other and processes in the thermal process Although the with theoretical calculations For a review see frequency of the onset of the continuum gives Bassani et al [Ι] information over the ground state energy its However, up to now the precise deter­ value cannot be obtained from this with high mination of the ground state levels of the accuracy impurities has met difficulties Seccombc and It is our aim to derive the right temperature Korn [21 assume that the two step photo dependence of the photo thermal conductivity thermal conductivity process has a relative response and to obtain accurate values for the ionization probability which varies as ground state energies for some shallow ac­

P, п(Г)*ехр{-(Е„-Еі)ДГЬ where Fi is the ceptors and donors in high purity germanium

energy of the intermediate level and EB is the from detailed measurements of the photo- energy of the banded higher energy levels bom thermal conductivity as a function of the tem­ the measured temperature dependence they find perature For the determination of the ground

activation energies Ей-F, which lie about state levels the degeneracy of the intermediate 3 cm ' below the ionization energy of the levels has to be known This degeneracy is isolated impurity which is attributed to impurity obtained from measured level splittings m a banding The same temperature dependence has magnetic field up to 20 kG The field depen­ been assumed by Simmonds et al Π] and pre­ dencies of the energy levels are compared with viously by Nagasaka (4] whereby the latter current theories of both the low and high field remarks that the measured temperature depen­ region dence deviates from an exponential behaviour The measurements were performed both on This is tentatively attributed to the effect of polycrystallme and on monocrystallme samples clustering of the impurities obtained from the same ingot of high purity

Physica 89B (1977) IH-21 © North Holland

48 energy-difference between the intermediate I ¡МЩЩІ level and the band, g is the degeneracy of the excited level and g' is the degeneracy of the 1 ,IIJ¡J.n,J ** ι band at к =0. The factor A is proportional to the concentration of the impurity and to the Hb optical transition probability of the spectral line. We measured the temperature dependence of the line intensities at temperatures ranging from 2 to 10 K. As an example some of these spectra are shown in fig. 1. All spectra were corrected ІцДі-*^- for the spectral background of the far infrared interferometer and were normalized to the same continuum height. This continuum is caused by LJVAAAAÍWA и direct optical excitations to the band edge. The relative line intensities were plotted on a lo­ Ur^ garithmic scale versus 10/T as is shown in fig. 2 ^j^M^i for boron in the monocrystalline sample J78A. In this figure the solid curves represent com­ *• AiU/^i puter fits of the experimental data to eq. (1) •О 100 120 using ΔΕ and A as parameters. The degeneracy Wov«numb«r cm ι factors g were deduced from the measured level Fig 1 Photoconductivity spectra at several temperatures of splittings in a magnetic field (see the next sec­ a Ge sample containing both donors (P) and acceptors (B tion). The degeneracy of the conduction band of and ΛΙ) The ΛΙ and В spectra at the top are after Mailer and germanium is g' = 1 and that of its valence band Hansen 15), the Ρ spectrum after Seccombe [2) is g' = 2. As is shown in fig. 2 the measured temperature dependencies of the line intensities germanium containing aluminium, boron and are fully m agreement with eq. (1) within the phosphor in concentrations ranging from 10'° to experimental error. 10" at./cm'. The concentrations of the im­ purities of the two monocrystalline samples J78A and J78B were (2x10" at./cm' B, 4.7 χ 100 10 1 IO at./cm' Al, 1.9 χ 10'° at./cm Ρ) and (1.5 χ B0R0N 10" at./cm' Ρ, 4.7χ IO10 at./cm5 Al), respec­ X tively. These concentrations were determined \ with the method outlined in ref. 6 where also the -A J78A experimental details will be given. •>^ As is shown in fig. 1 with this method both κ^ν*^ donor and acceptor impurities present in the ^>4 ^\ same sample can be investigated. Using a \\Γ ^^^ . superconducting coil magnetic fields up to 20 kO ю-• could be applied. >κ"

о χ\ 2. Determination of the ground state energy \ * с \ \\ Generalizing the calculations of Spenke [7] it о в \\ ^Χ can be shown that the thermal ionization me­ Ατ chanism associated with the two-step photo- Α; thermal conductivity process leads to a line intensity ƒ given by: , ι , I i .... ι ... . 15 20 25 30 35 / = Α Γΐ + (—) exp (ΔΕ/ΛΤ)1 (1) ίο/τ ÍK Ί Fig 2 Logarithmic plot of the relative line intensities ver­ sus 10/T for several boron lines in sample J78A The solid for both donors and acceptors. Here ΔΕ is the curves represent computer fits to eq (1)

49 For each transition observed the sum of ΔΕ and the energy of the transition E as obtained from the measured spectra yields the energy of the ground state ERS of the impurity involved In this way we obtain for the ground state Г-1- ^ energies of aluminium, boron and phosphor the values presented in table I As is shown in this table these values are in excellent agreement with the theoretically deduced values for Al and I ' В of Jones and Fisher [8] and the value for Ρ of Reuszer and Fisher (9] 1" i г* 'VV If I, i' "·' .' -»'I

>. J Table 1 The ground stale energies of ΑΙ В and Ρ in germanium in

' . ' fv (this work) 81 1 * 0 4 84 « + 0 1 I02 9JLO^ £, (refs 8 and 9) »ι 1 » 0 2 84 S i 0 2 1029*01

i' I 'Л,

U 3. The effect of a magnetic field •·* ι t ι' < -ν,ν, _'V*f ~'·ι ', ' ^ Ь'* In a low magnetic field, in the low field limit, the Zeeman term connected with the magnetic field produces a linear splitting of the /*0 levels while the diamagnetic term gives a quadratic correction On the other hand, in the high field limit the impurity potential produces a wn Ν ч^ ^ τι set of sublevéis associated with each I andau big 1 Photoconductivity spectra of sample J78A at 7 ^ К level Again we refer to the review of Bassani et for several values of the magnetic field with B//(1001 Im purity concentrations 2 χ 10' at lem' В 4 7 χ ю' at /cm' al [I] Al 1 9 ж 10 'at/cm' Ρ The labelling at the top shows the Experimentally Boyle et al [10] investigated boron spectrum with the Zeeman splitting and the first four As donors in germanium by measuring the far Landau levels with their associated sublevéis at ISkG infrared transmission of samples containing ~ I 5 χ 10" árceme atoms/cm' in magnetic fields up to 40kG Horn et al [II] did the same for shows that the general behaviour sketched arsenic and antimony up to 46 kG. while Soe- above manifests itself in these spectra on a very pangkat et al [12] studied boron and thallium clear and illustrative way After a shift and acceptors in germanium in magnetic fields up to splitting of the hydrogen like levels lying below 20kG using the same method Nisida et al [Π] the band edge to higher energies in low fields, investigated germanium containing antimony these levels are forced up to energies higher and arsenic impurities by measuring the pho­ than the band edge energy in higher fields At toconductivity m a varying magnetic field up to these fields the continuum above the band edge 40 kG under the influence of intraband radiation changes more and more in a number of peaks of a laser source the Landau levels with their associated su­ In our experiment we measured the photo- blevéis By plotting the resonance frequencies thermal conductivity response of our high- as function of the magnetic field each line could punty germanium samples as a function of the easily be followed and identified In this way the frequency of the far infrared radiation at several identification indicated in fig Λ has been per­ values of the magnetic field up to 20 kG hig Я formed 1 he notation is that of Jones and Fisher

50 [8] From the energy differences of the first four References I andau levels which can be identified we obtain |1| h Bassani O Iddonisi and В Pre/iosi Rep Progr an effective mass of m*lm =0 08 ±0 04 which Phys V (1974) 1099 has to be compared with the effective mass |2] S Dana Seccombe and D M Korn Solid Stale Com m*/m =0 04 of the light hole, cf Sze |I4] The mun II 119-2) i^9 inaccuracy is caused by the non linearity of the |4) Ρ Ь Simmonds J M Chamberlain R A Houli R A shift of the I andau levels with the magnetic Stradlmg ind С С Bradley J Ph>s С Solid Mate field m this region since the high field limit is not Ph>s 7 (1974)4164 [4| К Ndgasdka and S Narita Solid State Commun 7 entirely reached For the lower levels, our (1969) 467 results are in accordance with those of the au І^] I F Hiller and Wl Hansen Solid State Commun И thors mentioned above However, in contrast to (1974) Ш these authors, we obtained also information (6| H W H M Jongbloets J H M Stoelmga M J H Van de about the higher levels More quantitative Steeg Ρ Wydcr and H J A van Dijk (o be published 171 [ Spenke FlcUronic Semiconductors (McGraw Hill results about these magnetic data will be pu­ Book С ompany Ine №8) ρ 187 blished separateli [15] |81 R I Jones and Ρ Hsher J Phys Chcm Solids 26 (I96S) 1124 We thank Dr H J A van Dijk, Philips |9| J Η Reiiszer and Ρ Fisher Phys Rev 13S (|%S) A I12S Research Laboratories, for providing the Ge [101 W S Boyle and Rb Howard J Phys Chem Solids 19 samples and performing the impurity concen (1961) 181 tration analysis This work was performed as [III К Horn and Y Nisida J Phys Soc Jap 11(1971)781 part of the research program of the Stichting [121 HP SoepmkatandP Fisher Phys Rev 88(1971)870 voor Fundamenteel Onderzoek der Materie (ΠΙ Y Nisida and К Muro Suppl Progr Theor Phys 41 (FOM) with financial support from the Neder (I97Í) 77 1I4| SM Sie Physics of Semiconductor Devices (John landse Organisatie voor Zuiver Wetenschap Wiley and Sons Ine 1969) ρ 20 pehjk Onderzoek (ZWO) I И] H W H M Jongbloets J H M Stoelmga M J H Van de Stceg Ρ Wydcr to be published

51 PHYSICAL REVIEW В VOLUME 20, NUMBER 8 15 OCTOBER 1979

IV. 3 Temperature dependence of the photothermal conductivity of high-purity germanium containing very low concentrations of ΑΙ, В, and Ρ

Η W H M Jongbloets, i H M Stoelmga, M J H van de Steeg, and Ρ Wyder Research institute for Materials University of Nijmegen, Toernooiveld Nijmegen The Nethertands (Received 7 February 1979) The temperature dependence of the photothermal conductivity in the far-infrared region (10 to 200 cm"') is studied in pure germanium containing —IO'0 atoms/cmJ of Al, В, and Ρ A theoretical expression for the temperature dependence of the intensities is given which is in ex­ cellent agreement with the experimental results From these very detailed spectra, reliable values for the ground-state energies of the impurities are obtained and a quantitative chemical analysis of the impurity concentration as a function of the position in a Czochralski-grown single crystal is achieved

I INTRODUCTION analyzed It will be shown that the measurements are in very good agreement with our calculations of The photothermal conductivity in the far-infrared the temperature dependence of the photothermal region of very pure germanium containing residual response Finally, a qualitative and a quantitative impurities of very low concentrations ( —IO" chemical analysis of the samples will be given, based atoms/cm1) has been the subject of several studies in on the photoconductivity data This analysis will be the past '"* A recent review of this subject was given compared with results based on Hall-effect measure­ by Kogan and Lifshits ' However, surprisingly ments on the same ingot from which the samples enough, the temperature dependence of this effect were obtained Preliminary results of these investiga­ has drawn little attention so far tions have been published before ' It is generally believed that, in order to get a pho­ tothermal response, the donors or acceptors are ion­ ized through a two-step process First, the electrons II SAMPLE PREPARATION AND (or holes) are excited from their ground state to a EXPERIMENTAL DETAILS higher bound state by irradiation with light in the far-infrared region (10-200 cm"') Then, a subse­ All our germanium samples were cut from the quent excitation to the free conduction (or valence) same boule These ultrapure samples were kindly band occurs by interaction with thermal phonons supplied by Dr H J A van Dijk of the Philips The photoconductivity is measured as a function of Research Laboratories, who also performed Hall- the radiation frequency, whereas the sample tempera­ effect measurements to determine the residual im­ ture is held constant, typically between 2 and 10 К purity concentration The polycrystallme samples, At higher temperatures the photoconductivity signal R78/4 and R78Ä, were obtained from both of the decreases due to the increase of the carrier density in ends of the high-purity zone-refined ingot Then, the free band, while lower temperatures provide too from the remaining ingot, a single crystal was grown few thermal phonons necessary for the second step of with the Czochralski method Again from both ends the process Although the influence of the tempera­ of this crystal two monocrystalline samples ¡HA and ture on the effect is thus qualitativley well under­ J78B were cut Figure 1 shows the variation of the stood, the precise temperature dependence has never impurity concentration along this single crystal as cal­ been studied in a quantitative way Most authors as­ culated from Hall-effect measurements, assuming sume a temperature dependence typically of the form aluminum, boron, and phosphorus as the main impur­ ехр(-Д£/<:Г), where Af is the energy difference ities and using the known segregation properties of between the excited level and the conduction (or these elements 2 J valence) band edge ' ' However, the agreement The samples used for the photoconductivity meas­ with experimental results is rather poor, and esti­ urements were cubes with dimensions of mates for the binding energy of the impurities yield ~1 χ I χ 1 cm3 The cubes were polished and etched, 5 values which are about 3 cm"' too low and then electrical contacts were produced by wetting In this paper, we will concentrate upon this aspect with a mixture of In-Hg (50 50) Although these In Sec II the experimental details will be described, contacts were not entirely ohmic, we found no evi­ while in Sec III the results will be presented and dence that the contacts had any effect on the data

20 3328

52 20 TEMPERATURE DEPENDENCE OF THE PHOTOTHERMAL 3329

CRYSTAL

τ τ 1 пикник Al O i > -Т--Г-

08 Froc tion W^-4rt FIG 1 Disinbution of phosphorus, boron and alumi num impurities along a germanium single crystal, calculated from Hall-effect measurements (Segregation coefficients FIG 2 Photoconductivity spectra of the polycrystallme germanium samples R78/4 and Я1ІВ containing boron and used Ρ

The samples were positioned in a semisphencal cavity wherein the chopped far-infrared radiation en­ at a temperature of 7 S К Indicated are also the ex­ tered through a conical light pipe Thermal contact pected transitions for boron and aluminum known 4 5 was made by clamping the sample onto the base of from the literature From these spectra one can the cavity The clamp and the sample could be heat­ conclude that R78/I contains В and Al in about equal ed above the temperature of the surrounding helium amounts, while in sample R780the Al concentration bath with an electronically controlled heater system exceeds the В concentration as is expected in a The temperature of the sample was stabilized within zone-refined ingot Figure 3 shows similar data for OIK An Allen-Bradley carbon resistor was used as the monocrystallme samples, ¡HA contains both В a thermometer and Al, with В having the highest concentration, while in sample J78ß, apart from phosphorus, some Using standard lock-in techniques, the photocon­ lithium is present as well3 s In addition, indicated by ductivity was measured as a function of the wave an in the figure, in 1780 some other transi­ number of the incident radiation produced by a tions, with an origin not entirely known, are found, Grubb-Parson Michelson interferometer operating these transitions may be due to a LiO complex l0 with phase modulation at 90 Hz The data were The wave numbers where the transitions are observed punched on tape, and subsequently handled and agree within 0 2 cm"1 with the expected ones from analyzed on a PDP-12 laboratory computer linked to the literature3"5, however, due to the limited resolu­ a plotter All spectra were corrected for the varying tion, the A and / transitions of aluminum and boron spectral background of the interferometer by dividing are not fully resolved in these spectra The continu­ through a spectrum obtained by replacing the Ge um in the spettra is caused by direct optical transi­ sample with a Si bolometer tions from the ground state into the valence (or con­ duction) band In this context, it is interesting to III RESULTS AND DISCUSSION note that with the method of pholothermal ionization both donor and acceptor impurities can be seen Figure 2 shows the photothermal response as a simultaneously in one sample function of the wave number of the incident radia­ The strength of a spectral line is proportional to the tion for the polycrystallme samples R78/1 and R78B thermal ionization probability of the excited states

53 3330 JONGBLOETS, STOELINGA, van de STEEG, AND WYDER 20

_ f«· t ¿ ¿ ¿ ^«и«, —ι 1 1 щи urn ι Al 9 ¿ - ¿ ;^«і!^ о с в Τι ι ιι ιιιιιι il В >. J78A ° t в » , 1 Eg5 Hb 0 * С 0 ιΚ α • Λ) lil ^ ε « о e .с J78B α. -II-

i г-і tl ι η-m » il № I ifV

Wove numbtr {cm I

FIG 3 Photoconductivity spectra at Γ-7 5 К of the monocryslalline germanium samples ПІА, containing boron and aluminum, and J780, containing phosporus, lithium, 60 80 100 120 and probably a LiO complex The spectra at the top are WAVE NUMBER (cm'] from Refs 3, 4, 5, and 10 FIG 4 Photoconduc^iviiy spectra at several temperatures of the monocryslalline germanium sample Л8Л Impurity concentration В 2 1 x 10" atoms/cm3. Al 4 3 χ IO10 atoms/cm3 and this can be studied by comparing the line intensi­ ties at various temperatures with the height of the continuum 2 Figure 4 shows the spectrum of sample equilibrium is found in the usual way by optimizing ПІА, containing aluminum and boron, at different the number of possibilities for ionization at constant temperatures All these spectra are corrected for the total energy Hereby the strong Coulomb interaction spectral background of the interferometer and are of electrons in an excited state has to be taken into normalized to the same continuum height Similar account which can be done m a similar way as in con­ measurements were also performed on a sample con­ siderations regarding donor and acceptor ionization taining phosphorus 2 probabilities ' In this manner the line intensity /, From the voltage drop across the sample, the which is proportional to the average number of ioni­ current through the sample and the measured change zations is found to be given by in voltage in a typical experiment, it is possible to get a rough estimate of the number of carriers involved Typical data yield for the ntftnber η of the free car­ l=A 1 -f-iyexp (1) riers in the band η ~ 10' (cm"') and the change Δη gg in carriers due to photothermal ionization Δη ~ 10s (cm-3) This means that η and Δη are small com­ for both donors and acceptors Here, ΔΕ is the ener­ pared with the total number of impurity states gy difference between the intermediate level and the Therefore the average number of optical excitations band edge, g is the degeneracy of the excited level, to one of the excited levels may be considered as in­ and g' is the degeneracy of the band The factor A is dependent of temperature at very low temperature proportional to the concentration of the impurity and Since the excited levels are very localized in к to the optical transition probability for the spectral space," thermal ionization from this level will at low line under consideration For donor states, where temperatures only take place to the nearest band ex- spin-orbit interaction is small, thermal processes with tremum The average number of ionizations in spin flip may be neglected so that g' is the band de-

54 20 TEMPERATURE DEPENDENCE OF THE PHOTOTHERMAL 3331 generacy apart from spin, thus g' — 1 for german­ 1 1 ' ' ' ' ' ' ium Although for acceptor states the situation is

less obvious, the degeneracy of the valence band in •\ germanium will be taken only as the effective-mass degeneracy at к-0, yielding g' -2 ;\ « Is —2p Figure 5 shows the relative line intensities for the о Is -Зр. phosphorus spectrum, plotted on a logarithmic scale, 0 1s -¡.p. as a function of the inverse temperature The solid » 1s -4f. curves in this figure represent computer fits of Eq (1) to the experimental data, using Δ£ and A as adjust­ able parameters The degeneracy factors g were de­ έ 10!- C^^T^\ l duced from measured level splittings due to magnetic >— fields Here our own observations' 13 confirmed the splittings found in the literature for the lower levels of the donors" and acceptors,'4 1S and extended the results to higher levels As is shown in Fig 5, the measured temperature dependence of the line mten- sitie; is within experimental accuracy in agreement with Eq (1) Similar results were obtained for the Al and В spectra of sample Л$А Table 1 collects the numerical results of the computer fits for the param­ eters A and Δ£ In the fitting procedure also the pro­ duct gg' was varied by integer values It was not pos­ sible however to obtain a reasonable fit for other values of gg' than those quoted which supports the FIG 5 Logarithmic plot of the relative line intensities vs assumption of the neglect of spin in the band degen­ lO/Tfor several phosporus lines The solid curves represent eracy made above computer fits to Eq (1) (See also Table I )

The energy of the ground state Ets of the impurity involved is now simply the sum of Δ£ and the energy from this table, these experimentally found values of the optical transition £,„„, (as obtained from the are in excellent agreement with the theoretically de­ measured spectra) In this way it is possible to obtain duced values of Jones and Fisher" for В and Al and the ground-state energies of boron, aluminum and of Reuszer and Fisher" for Ρ phosphorus as presented in Table II As can be seen As a factor A is proportional to the impurity con-

TABLE I Values of A and A£as obtained from a computer fit from the temperature depen­ dence of various lines in the B, Al, and Ρ spectra [see bq (1)1

Transition „(cm"1) A (arb units) dEtcm-')

Boron D 64 0 ±0 2 450 ±15 20 5 ±0 2 С 70 1 265 ±8 144±02 078,4) В 75 2 44 ±1 93±02 Аг 77 9 123 ±3 66±02 Αι 78 9 78 ±2 56±02

Aluminum D 66 7 + 0 2 70 ±7 20 5 ±0 6 С 72 8 41 ±3 14 Ι ±0 5 078,4) h 8S0 36 ±2 23±05

Phosphorus υ— 2/1+ 90 0+0 2 285 ± 10 12 9+0 2 ls-3/ч. 95 5 44 ±3 75+02 1.-4/,+ 97 9 26 ±2 53+03 Is-4/+ 99 0 33 ±3 40±03 33Î2 JONGBLOETS, STOELINGA, v«n de STEEG, AND WYDER 20

TABLE 11 Energies of Ihe ground state of B, Al, and Ρ in germanium, measured in cm"

В Al

£^5 (experimental, this work) 84 5 ±0 2 87 1+0 3 103 0 ±0 2

E„ (theoretical, Refs II and 17) 84 5 ±0 2 87 1 ±02 1029±03

centration, it is in principle possible to get some in­ dence of the photoconductive response which is in formation on the relative impurity content from a excellent agreement with our experimental results determination of A Assuming the same transition The values found from these data for the ground- probability for transitions between similar states of state energies of various impurities confirm theoreti­ different donors or acceptors, the ratio of the A fac­ cal calculations very well In addition, we have tors for corresponding lines will therefore indicate the shown that the concentration ratios of the impurities ratio of the concentrations of the impurities For as obtained from photoconductive measurements are sample J78/4 one finds for the ratio of the A factors in reasonable agreement with values obtained from for the С and D transitions of boron and of alumi­ Hall-effect measurements num a value of 6 4 ± 0 5 This value can be com­ pared with the concentrations obtained from Hall- effect measurements as presented in Fig 1 From ACKNOWLEDGMENTS this figure one concludes that for sample ПІА the ra­ tio of the concentrations of В and Al is Part of this work has been supported by the Stich­ (2 1 x 10" cm-J)/(4 3 x 10'° cm"') -5 ± 1 , ting voor Fundamenteel Onderzoek der Materie (FOM) with financial support from the Nederlandse which is in good agreement with the value obtained Organisatie voor Zuiver Wetenschappelijk Onderzoek from the photoconductivity measurements (ZWO) We thank Dr Η J A van Dijk, Philips In conclusion we can remark that we have given a Research Laboratories, for providing the Ge samples theoretical expression for the temperature depen­ and performing the impurity-concentration analysis

'T M Lifshits and F Ya Nad', Sov Phys Dokl 10, 532 'H W H M Jongbloets, J H M Stoelmga, M J H van (1965) de Steeg, and Ρ Wyder, Physica (Utrecht) В 89, 18 2T M Lifshits, N I Likhtman, and V I Sidorov, Sov (1977) Phys Semicond 2, 652 (1968) ,0R L Aggarwal, Ρ Fischer, V Mourzme, and A К Ram­ 3S Dana Seccombe and D M Korn, Solid State Commun das, Phys Rev Ш, A882 (1965) И, 1539 (1972) "F Bassani, G ladomsi, and В Preziosi, Rep Prog Phys 4E E Haller and λν L Hansen, Solid State Commun 15, 37, 1099 (1974) 687 (1974) 12E Spenke, Electronic Semicondtutors (McGraw Hill, New 'M S Skolnick, L Eaves, R A Stradlmg, J С Portal, and York, 1958), ρ 387 S Askenazy, Solid Slate Commun 15, 1403 (1974) "H W H M Jongbloets, J H M Stoelmga, M J H van 'Ε M Bykova, L A Goncharov, Τ M Lifshits, V I de Steeg, and Ρ Wyder (unpublished) Sidorov, and R N Hall, Sov Phys Semicond 9, 1223 MH Ρ Soepangkat and Ρ Fisher, Phys Rev |, 870 (1973) (1976) I5E Ρ Kartheuser, S Rodriguez, and Ρ bisher, Phys Status 'S M Kogan and Τ M Lifshits, Phys Status Solidi A 39, Solidi В 64, Il (1974) 11 (1977) "R L Jones and Ρ Fisher, J Phys Chem Solids 26, 1125 'P E Simmonds, J M Chamberlain, R A Houli, R A (1965) Stradlmg, and С С Bradley, J Phys С 7, 4164 (1974) "J Η ReuszerandP Fisher, Phys Rev J35, A1125 (1965)

56 IV.4 DETERMINATION OF THE IMPURITY CONCENTRATION PROFILE IN A Ge SINGLE CRYSTAL GROWN WITH THE CZOCHRALSKI METHOD

Figure 1 of the preceding paper (Section IV.3) showed the distribution of the phosphorus, boron and aluminum impurities along the germanium crystal, from which our samples J78A and J78B were cut. In this section it will be shown how this figure was obtained from Hall effect measurements, performed by Dr. H.J.A. van Dijk of Philips Research Laboratories. The variation of the impurity concentration along a crystal which is grown by the Czochralski method, is caused by the segregation of dissolved ...... (1 2) impurities during non-equilibrium solidification ' . For low impurity concentrations the ratio of the concentration С in the just solidified material and the concentration С in the remaining liquid will be a constant L K, the so-called segregation coefficient. If the location in the crystal is denoted by the weight fraction g of the original melt that was solidified at that point, the distribution of (3) every impurity along the crystal can be described by :

1 (g) = CgCOXl-g)^ , (1)

where С (0) is the concentration at the head of the crystal (i.e. g=0). The number of uncompensated holes N.-N is determined by the net impurity concentration

[NA-ND] (g) = I c£(g) - I c£(g) , (2)

where A and D denote acceptors and donors respectively. The value of KA"N_ at various positions in the crystal can be deduced from Hall effect measure- ment s The photothermal conductivity spectra of samples J78A and J78B (Fig. 3, Section IV.3) reveal that the Al and В acceptors and Ρ donor are the most important residual impurities in our crystal. From the measured values of N.-N for three different locations g, indicated in Fig. 1 by small circles, ΑΙ Β Ρ equations (1) and (2) can be solved for С (0), С (0) and С (0). The con­ centration profile for ΑΙ, В and Ρ can then be calculated with Eq. (1). These

57 solutions are represented in Fig. 1 (Section IV.3) by the solid curves, whereas the dashed curve shows the calculated profile of N.-N,. . 'AD' As a check the values of K.-N were also measured for three intermediate positions, indicated in Fig. 1 (Section IV.3) by crosses; they fit very well to the calculated IN.-ÍLI curve. 1 A D' The segregation coefficient used for these calculations were: Κ^=0.1, ^=5.7 and K. =0.9. Aluminum has normally a segregation coefficient В Al1

К =C (0)/C (0)=0.1) but when a crystal is grown with the Czochralski method (5) Al shows only a small segregation , so that in Eq. (1) we have used К =0.9. (6) However, in the zone-refining process used for the purification of

the original Ge ingot, one has Кд1=0.1. We find boron and aluminum in about equal amounts in the region where the zone is started (sample R78A was cut from this region). Near the opposite end the boron concentration is reduced but aluminum is increased (sample R78B).

References.

1. The structure and properties of materials. IV: Electronic properties. Ed. John Wiley & Sons, New York (1966), pp. 146-154. 2. R.N. Hall and T.J. Soltys, IEEE Trans. Nucl. Sci. 18, 160 (1971). 3. E.M. Bykova, L.A. Goncharov, T.M. Lifshits, V.l. Sidorov, and R.N. Hall, Sov. Phys. Semicond. 9, 1223 (1976). 4. C. Kittel; Introduction to solid state physics, 4 edition, John Wiley & Sons, New York (1971), p. 288. 5. H.J.A. van Dijk, private communication. 6. W.G. Pfann; Zone melting, John Wiley & Sons, New York (1958), p. 211.

58 IV.5 TEMPERATURE DEPENDENCE OF THE PHOTOTHERMAL CONDUCTIVITY OF

SEMICONDUCTORS AT LOW TEMPERATURES

ABSTRACT

A careful analysis has been made of the temperature dependence

of the signal strength in a photoconductivity experiment in a semi­

conductor. The temperature dependence of the line intensity in a

photothermal conductivity spectrum has been calculated. The results

are in excellent agreement with measurements on high purity germa­

nium containing boron, aluminum and phosphorus as residual impurities

(ъ 10 atoms/cm ;.

59 1. Introduction.

Photothermal conductivity spectroscopy is of considerable in­

terest for the study of impurity states in semiconductors (Lifshits

and Nad' 1965). It offers the most sensitive method of analysis of

impurities at very low concentrations (10 -10 atoms/cm ) in

semiconductors. The method is sensitive enough to investigate subtle

features such as the magnetic field dependence of central cell cor­

rections (Stoelinga et al 1978). A lot of work has been done related

to this subject. A recent review has been given by Kogan and

Lifshits (1977, further referred to as Ref. I).

However, the well known strong temperature dependence of the

photothermal conductivity signal has met relatively little attention

so far. Frequently a simple exponential behaviour, ехр(-ДЕ/кТ), has

been assumed for the relative ionization probability of the two-step

photothermal conductivity process (Lifshits et al 1968, Seccombe and

Korn 1972, Stillman et al 1972, Simmonds et al 1974, Bykova et al

1976, Ref. I). Here ΔΕ is the energy difference between the band

edge and the intermediate level to which optical excitation from the

ground state takes place followed by thermal ionization from this

level to the band edge. The experimental results do not agree very

well with this assumption; this has been tentatively attributed to

the effect of clustering of the impurities (Nagasaka and Narita

1969).

In this paper we will analyze the temperature dependence of the

photothermal conductivity in semiconductors in detail, and derive a

theoretical expression for this temperature dependence which accor­

ding to our measurements on shallow impurities in high purity germa­

nium is in excellent agreement with the experimental results. This

60 0.7¿

Eg s - Etrans + ΔΕ

•• /ч/ ч^ hv=Etran s

0.73 J gs DONOR

ACCEPTOR gs. 0.01

> hv = Etl О) >- о cc

kr^in-i) к=(000)

1 : Illustration of the mechanism for photothermal ionization. Shown is part of the band structure of germanium along the (111) direction in к space, with the conduction band (C.B.), the valence band (V.B.) and some shallow donor and acceptor levels, i.e. the impurity ground state (g.s.) and the excited levels. expression enables one to determine the ground state levels of the

impurities very accurately from photothermal conductivity experiments

(Jongbloets et al 1977 and 1979, further referred to as Ref. II and

III). In analyzing the experimental data it will become clear why

photothermal conductivity spectroscopy is applicable only in a

relatively small temperature region (2-10 K).

2. Signal formation in a photoconductivity experiment.

In photothermal conductivity spectroscopy, electrons (or holes)

are excited from their ground state with binding energy E to an

excited state by radiation of energy hv equal to the transition

energy E , as illustrated in figure 1. The radiation frequency ν

is usually in the far infrared region (10-200 cm ). While being in

such an excited state, the extra energy ΔΕ needed to overcome the

remaining part of the binding energy is gained by interaction with

thermal phonons. This ionization can be observed as an increase in

the electric conductivity of the sample. The photoconductivity is

usually measured as a function of the radiation frequency at constant

temperature, typically between 2 and 10 K, yielding characteristic

"hydrogen-like" excitation spectra for the various shallow impurities

(Refs. I, II and III). In the measured spectra one can distinguish

between a continuum, caused by direct photo-ionization from the

bound ground state into the free band, and sharp peaks due to the

two-step photothermal ionization process via bound intermediate

states.

In order to analyze the temperature dependence of the photo-

thermal ionization process, we will treat a typical experiment as an

example, the results are of general validity however. In such an

62 experiment the source for the chopped excitation radiation is usually a Michelson interferometer. The sample is connected to an electric circuit so that a bias current is provided by a battery (V„) via a load resistor (R. ) in series with the sample. The change in voltage drop across the sample due to the radiation is measured at various temperatures, using standard lock-in techniques.

The electric conductance of a sample of area A and length I is given by Aepn/Ä, where η is the free carrier concentration, μ is the mobility and e is the charge of the carrier. Introducing the quan­ tity a = RjAe/Ä the d.c. voltage drop V across the sample may be written as

1 V = Vn(l + αμη)" . (1)

Without the chopped excitation radiation the number of ionizations, n, will be determined by the background radiation and by the few phonons of sufficient energy available at low temperature. The chop­ ped radiation causes a change Δη of the free carrier concentration, and thus a change in the conductivity of the sample. Assuming

Δη << η the photoconductive response will be an a.c. voltage with amplitude

Д = ν_βμ·Δη(1 + αμη)" (2) В so that Л is directly proportional to Δη.

One now has to distinguish between the change in free carrier density Δη due to photothermal ionization via an intermediate level Ρ and the change Δη due to direct photo-ionization. The "continuum" carrier density variation Δη is expected to be independent of tem­ perature in the temperature region of present interest. However, it

63 will be shown below that the "peak" carrier density variation Δη is Ρ

strongly temperature dependent, and that this temperature dependence

can be investigated by looking at the ratio Д /ÛV .

3. Derivation of the temperature dependence of the photothermal

ionization process.

As will be shown in section 4 in a typical experiment the free

carrier densities η, Δη and Δη are small compared to the total

number of impurity states, so that most of the impurities remain in

their ground state. The average number N of optical transitions to

one of the excited states may therefore be treated as independent of

temperature at the low temperatures at which these experiments are

usually carried out, so that only the subsequent thermal ionization

needs to be considered. N is directly proportional to the impurity

concentration.

In electron-phonon interaction the longitudinal acoustic phonons

are most important. At the low thermal energies (< 10 K) where the

experiments under consideration take place these phonons have a small

wave vector k. Since the excited states are very localized in k-space

(Bassani et al 1974), ionization by phonons from these levels will

only take place to the nearest band extremum. Generally the excited

state is g-fold degenerated, so the strong Coulomb interaction of

electrons (holes) in such a state has to be taken into account. This

can be done by stating that an excited level can be occupied by only

one electron (hole) but in g different ways (Spenke 1958). The number

of ways, g', in which a particle can be transferred from one of the

g degenerate excited states to a band state depends on the degeneracy

of the band and on the selection rules for such transitions via a

64 phonon. The number of ways W in which Δη particles can be transferred from the N optical excited levels to a band state is then given by:

Δη , W = (gg*) Ρ·Ν: [Δη !(Ν-Δη )l]'L . (3)

The equilibrium state is now easily obtained in the well known manner by demanding that W is maximal under the condition that the energy:

U = Ν·Ε^ + Δη ·ΔΕ trans ρ is a constant. Maximizing (with respect to Δη ) of: Ρ

In W + e(U - Ν·Ε^ - Δη ·ΔΕ) trans ρ using Stirling's formula yields:

Δη = N[1 + (J-OexpCß.AE)]"1 , (4) Ρ gg where β = 1/кТ. The intensity I of a line in the photothermal con­ ductivity spectrum relative to that of the continuum is now given by:

I - Л /Л = Δη /Δη pc pc

= A [ 1 + (-i-ïOexpUE/kT) Γ1 , (5) gg where equation (2) has been used. Here A contains the optical tran­ sition probability of the line under consideration.

Since both Δη and Δη are proportional to the impurity con­ centration the intensity I is independent of the latter. If a sample contains several impurities the various Δη 's add up in forming one continuum band in the spectrum. The ratios of the intensities of corresponding peaks, all compared with the intensity of the combined continuum band, yield a measure of the ratios of the concentrations

65 of these impurities in the sample, cf. the experimental work of

Ref. III.

As argued above, in equation (5) g is the degeneracy of the

excited bound state while g' is partly determined by the selection

rules for transitions via phonons from this state to the nearest

band extremum. For donor states in germanium and silicon, where the

spin-orbit interaction is small, thermal processes in which spin

flips occur may be neglected and the selection rule simply converts

to that of spin conservation. In this case g' is the band degeneracy

apart from spin, thus g' = 1 for germanium and silicon. Although for

acceptor states, where spin-orbit interaction is not negligible, the

situation is less obvious the degeneracy of the valence band at

к = 0 will be taken in analogy only as the effective mass degenera­

cy, yielding g' = 2 for germanium and silicon.

4. Comparison with experimental results.

In this section the analysis of the previous sections will be

compared with experimental results obtained on high purity germanium

samples. These samples contained aluminum, boron and phosphorus as

residual impurities in concentrations of 10 -10 atoms/cm

(Refs. II and III). The dimensions of the cube-shaped samples were 3 Ixlxl cm . The bias voltage V was provided by a 12.6 Volt mercury

battery over a load resistor R. of 5 ΜΩ in series with the sample.

The quantity о introduced in section 2 has thus a value of

8xlO"13[V-cm-s].

The photoconductive signal strength Д and Д , corresponding

with the change in carrier density Δη and Δη respectively, can be

deduced from the measured spectra by taking the area of a peak and of

66 6 8 Temperature (К)

F-íg. 2 : For a germanium sample with impurity oonaentration 2.1x10 aioms/om are shewn as a function of temperature: the voltage drop V across the sample, the contribution Δ/ of the continuum to the photoconduaiive signal, and the contribution &V of the peak belonging to the C-transition of the boron spectrum.

67 10 ι 1 1 1 1 r

Fig. Ζ : The values for μη, μ·Δη and van as a function of iemperatui aalaulated from figure 2 with equations (1) and (2). Here μ is the carrier mobility, η the carrier concentration, an the variation of the latter by photothermal ionization vie an excited state and Δη its variation by direct photo-ionizai

68 the continuum. In figure 2 this is shown as a function of temperature for the C-transition peak and continuum of the boron spectrum from a 11 3 sample with impurity concentration 2.1x10 atoms/cm . Also shown in figure 2 is the d.c. voltage-drop V across the sample. It is seen that ÛV decreases very rapidly above 7 К whereas V decreases more slowly. The peak strength Д increases with temperature as expected, but above 7 К Д decreases along with Д . ρ с The values for μη, ν·Δη and μ·Δη can now be calculated from с ρ the measured V, Δν and Л with equations (1) and (2); the results ' с ρ м are presented in figure 3. The precise temperature dependence of μ is not known but according to Debye and Conwell (195A) typical

S f\ 9 values for ν lie between 10 -10 [cm /V-s] in this temperature range and for this impurity concentration. As the "continuum" carrier density variation Δη is expected to be independent of temperature, the shape of the μ·Δη curve in figure 3 will reflect the tempera­ ture dependence of μ. 5 -3 We thus conclude from figure 3 that Δη * 10 [cm ] and с that the strongly temperature dependent value of Δη is of the 4 -3 order of 10 [cm ]. The mean free carrier concentration η approaches an assymptotic value for low temperatures, probably due to ionization by background radiation. For temperatures above 7 Κ η increases because of thermal ionization. In the considered temperature region 8 -3 the value of η is of the order of 10 [cm ]. We may conclude from all this that although Δη does not change with temperature, the photoconductive signal (i.e. Δν and Л ) decreases very rapidly above 7 К due to the increase of n, according to equation (2).

Furthermore we see that η, Δη and Δη are very small compared with 11 3 the impurity concentration (2.1x10 atoms/cm ), so that practically

69 most impurities remain in their ground states. The temperature depen­

dence of the photothermal ionization process can now be studied by

comparing the measured peak strength Д at various temperatures with

the area of the continuum ÛV , so by studying:

I = Д MV = Δη /Δη . pc pc

In references II and III where equation (5) was already pro­

pounded, it was shown that experimental results on boron, aluminum

and phosphorus dopes in high purity germanium were in excellent

agreement with this equation. This is illustrated in figure 4 for two

lines of the phosphorus spectrum. These results justify the assump­

tion made about g' in section 3. The line intensities were taken

from spectra which were normalized to the same continuum area. The

solid curves in this figure represent least square computer fits of

equation (5) to the experimental data, using ΔΕ and A as adjustable

parameters. The degeneracy g of the intermediate levels was deduced

from measured level splittings due to a magnetic field (Bassani et

al 1974). The numerical results of these fits for ΔΕ are presented

in table 1, together with the ground state energies (E ) calcula- g.s. ted as :

E = E,. + ΔΕ . (6) g.s. trans

The values for E found in this way from the various spectral g.s.

lines are consistent with each other within experimental accuracy

and, as is shown in reference III, agree with data obtained by other

means. As an illustration that the simple exponential behaviour

Ι α ехр(-ДЕ/кТ) , (7)

70 100 ι I I 1 | I 1 I I | ι ι 1 1 | 1 1 1 1

(Л 'с PHOSPHORUS "

4 ι- Δ Ο 1s — 2p ι_ ± S ν 1s—Af. JD \ >- _ _ I- »—I со ζ ^ц» LU 10- —

< ω CL -

\^- 1 I

Fig. 4 : Logarithmic plot of the relative line intensities versus 10/T for two phosphorus lines. The solid curves represent least square computer fits to equation (b), the dotted lines those to equation (7). (See also table 1.)

71 Table 1 : Values of AE and E as obtained from sommter fits of equations (h) and (7) from the temperavure dependence of tuo lines of the phospho-ms spectrun.

With Eq. (5) With Eq. (7)

transition E^ (cm ) g ДЕСст ) E (cm ) UE(cm ) E (cm ) trans β g.s. g.s.

Is + 2p+ 90.0+0.2 4 12.9+0.2 102.9+0.2 9.5+0.4 99.5+0.4

Is -»- 4f 99.0 + 0.2 2 4.0 + 0.3 103.0 + 0.3 2.6 + 0.5 101.6 + 0.5 frequently assumed ad hoc in the literature, does not yield very reliable results equation (7) was also fitted to the experimental data. The results are shown in figure 4 (dotted lines) and in table 1. As can be seen from figure 4 the fit is not as good as with equation (5) and the calculated values for E are not consistent g.s. with each other.

Summarizing we may conclude that the theory about the line intensity in a photoconductivity spectrum, as outlined above, is in excellent agreement with the experimental results.

73 References.

Bassani F, ladonisi G and Preciosi В 1974 Rep. Prog. Phys. 37

1099-210

Bykova Ε M, Goncharov L A, Lifshits Τ M, Sidorov V I and Hall R N

1976 Sov. Phys. - Semicond. 9_ 1223-7

Debye Ρ Ρ and Conwell E M 1954 Phys. Rev. 93 693-706

Jongbloets li W H M, Stoel inga J H M, Steeg M J H van de and Wyder Ρ

1977 Physica 89B 18-21

1979 Phys. Rev. 20 3328-32

Kogan S M and Lifshits Τ M 1977 Phys. Stat. Solidi 39 11-39

Lifshits Τ M and Nad' F Ya 1965 Sov. Phys. - Doklady 1£ 532-3

Lifshits Τ M, Likhtman N I and Sidorov V I 1968 Sov. Phys. - Senicond.

2 652-5

Nagasaka К and Nar ita S 1969 Solid St. Commun. _7 467-70

Seccombe S D and Korn D M 1972 Solid St. Commun. 11_ 1539-45

Simmonds Ρ E, Chamberlain J M, Hoult R A, Stradling R A and

Bradley С С 1974 J. Phys. С: Solid St. Phys. T_ 4164-84

Spenke E 1958 Electronic Semiconductors (McGraw-Hill Book Company,

Inc.) ρ 387

Stillman G E, Wolfe С M and Korn D M 1972 Proc. XI Int. Conf. Semi­

cond. Phys. (Warsaw) ρ 863

Stoelinga J H M, Larsen D M, Walukiewicz W, Aggarwal R L and

Bozler С 0 1978 J. Phys. Chem. Solids 39 873-7

74 IV.6 MAGNETIC FIELD DEPENDENCE OF PHOTOTHERMAL CONDUCTIVITY SPECTRA IN THE FAR INFRARED OF THE BORON ACCEPTOR IN GERMANIUM

ABSTRACT

Photothermal conductivity spectra in the far infrared

(10 - 200 cm ) of boron doped germanium (dopant concentration 10 3 ъ 10 atoms/cm ) have been obtained in magnetic fields В up to

2 Τ (B//[001]) at a temperature of Τ = 7.5 К. The coefficients of

the linear and quadratic field dependence of the Zeeman splittings

and the resulting g values of the associated levels have been

determined for the well known D and С transitions, and for the В

and several A and I transitions as well. Moreover the field

dependence has been studied of transitions to final states which

could be identified as I, like states associated with light-hole

Landau levels. The results are discussed in terms of existing

theories.

75 1. Introduction.

From a theoretical point of view, transitions between impurity

states of semiconductors like GaAs and InSb are easier to discuss

than those in Ge and Si because of the less complicated band struc­

ture of the former materials. However, in Ge and Si interactions

between the impurity states are easier to avoid since impurity con­ io 3 centrations of ^ 10 atoms/cm can be achieved, while the lowest

impurity concentration in a material like GaAs is of the order of

10 atoms/cm , where interactions cannot be excluded (Larsen 1976,

Stoelinga et al. 1978).

Impurity states have been studied mostly by measuring the

transmission in the far infrared region (see the review article by

Bassani et al. 1974). Soepangkat and Fisher (1973, further referred

to as SF) employed this technique to investigate the Zeeman effect

of lower levels of the boron and thallium impurities in germanium.

For this type of measurements, relatively high impurity concentra­

tions are needed.

By measuring the photothermal conductivity, samples of much

higher purity can be used, yielding very narrow line widths of the

spectra. This method was used by Lifshits and Nad (1965) for the

first time and a recent review of this subject was given by Kogan

and Lifshits (1977).

In a set of previous papers (Jongbloets et al. 1977, 1979 and

1980, further referred to as I, II and III) it has been shown how

very accurate values for the ground state energies of the impurities

can be deduced from the temperature dependence of the peaks in the

spectra, obtained with the technique of photothermal ionization

spectroscopy. Broeckx et al. (1979, further referred to as BCSV)

76 used this technique to investigate the Zeeman effect of the D and

С transitions of the aluminum acceptor in germanium. Here, experi­ mental results will be presented, not only for the D and С transi­ tions, but also for the В and several A and I transitions of the boron acceptor in germanium. The labeling of the transitions is the same as used by Haller and Hansen (1974).

The Zeeman term connected with the magnetic field produces a linear splitting of the levels, whereas the diamagnetic term gives a quadratic correction. In addition, the impurity potential produces a set of sublevéis associated with each Landau level (for detailed references, see the review article of Bassani et al. 1974).

In this paper, the splitting of one of the zero-field levels into sublevéis associated with Landau levels is studied. Taking into account the magnetic field dependence of this zero-field level, values of the magnetic field dependence of the light-hole

Landau levels are obtained. This dependence is in excellent agree­ ment with theoretical considerations.

2. Experimental details.

The measurements were performed on a germanium sample contain­ ing 2.1x10 atoms/cm boron and 4.3x10 atoms/cm aluminum. The photothermal conductivity spectrum of the sample was measured as function of the wave number of the far infrared excitation radiation, using a Grubb Parsons Cube interferometer. The position of the peaks in the spectra were determined with an accuracy of 0.2 cm .A mag­ netic field of up to 2 Tesla could be applied with a superconducting solenoid (Oxford Instruments). Most of the experimental details were given in reference II.

77 В// [001] Boron spectrum for B = 15 Tesla О С В A I S"^ ab CìS\ •a lb lc l<¡ ι il ι—ι ι ι ІІІІЧІІ|-Г- r- r- 1- D eg st

Ι­ Ο Hb ^

σι -(I 2.0 Τ о f! ж ^''iv ^ Û. ш(Л er •AAJ

' ™ ^^Апм 1-от

^^IrAfW-,^ 0.5 Т

от

100 120 КО WAVE NUMBER (cm"1)

Photothezmal conductivity spectra at 7.5 К of shallou acceptors in germanivm for several values of the magnetic field В // [001 ]. 11 7 10 3 Impurity concentrations: 2.1x10 at./am B, 4.2x10 at./cm Al. The labelling at the top shous the boron spectrum at 1.5 Tesla including the Zeeman splitting and four satellite peaks of the I. transition associated with Landau levels. 6 Figure 1 shows some of the measured spectra for several values of the magnetic field with B//[001]. The sample was held at a tem­ perature of 7.5 K. The labeling of the lines of the boron spectrum at 1.5 Tesla is shown in the upper part of figure 1. The zero-field band edge corresponds with the ground state binding energy Ε , as g. s. determined by the method outlined in references II and III. The continuum above E in the zero-field spectrum is due to direct g.s. photo-ionization from the impurity ground state into the free band, whereas the peaks below E are caused by the two-step photother- g. s. mal ionization process. It is clearly visible in figure 1 that on applying a magnetic field the spectra not only exhibit a splitting or shift of the peaks below E , but also develop a set of peaks in the continuum. These two types of peaks will be discussed separately in the following sections.

3. Field dependence of the peaks below E

In figure 2 the transition energies of the peaks with wave numbers below the continuum onset E are plotted as a function g.s. r of the magnetic field. As a linear and a quadratic Zeeman term is expected for each transition, a quadratic polynomial

E(B) = E(0) + aB + ЬВ2 (1) was fitted to the experimental data. The solid curves in figure 2 calculated in this way, show an excellent fit to the data. The parameters a and b for the various spectral lines are summarized in table 1.

A similar procedure was applied by SF to the D and С lines of boron, and by BCSV to the D and С lines of aluminum. BCSV used

79 11 h Ge(B) B//I001]

I I I I 0 1 2 MAGNETIC FIELD (Τ)

F-ìg. 2 : Zeeman effeat in the photothermal conduotivity spectrum of the boron acceptor in germanium with В // [ 001 ] . The curves are least square fits of a quadratic polynomial to the experimental data. (See also table 1.)

80 Table 1 : Linear and quadratic Zeeman parameters for the spectral lines of the boron impuri by in germanium with В // [ 001 ] as deter­ mined from figure 2.

Transition a (meV/T) b (meV/T )

D -0.205 + 0.005 0.031 + 0.004 a

D -0.041 + 0.005 0.003 + 0.002 b D 0.050 + 0.005 0.020 + 0.004 с

D 0.198 + 0.009 -0.027 + 0.006 d

С -0.081 + 0.005 0.061 + 0.004 a

C 0.094 + 0.003 0.032 + 0.001 b В -0.094 + 0.009 0.042 + 0.006

-0.17 + 0.01 0.103 + 0.006 A4

A -0.117 + 0.007 0.086 + 0.006 3 -0.175 + 0.005 0.124 + 0.004 A2 -0.07 + 0.01 0.08 + 0.01 Al h -0.09 + 0.01 0.082 + 0.007 h -0.057 + 0.007 0.084 + 0.005 h -0.079 + 0.007 0.108 + 0.006 h -0.07 + 0.01 0.12 + 0.01

81 polarized radiation in the Faraday configuration with the polariza-

tion vector E 1 В, SF used the Voigt configuration with E 1 В and

E//B. So the relative intensities of the peaks within one multi­

plet could be used for the identification of the transitions (see

Bhattacharjee and Rodriguez, 1972). The experimental results of SF

and BCSV for B//[ 001 ] are collected in table 2. The corresponding

notations for the transitions, used by BCSV and SF, and in the

present paper are also given there.

In this experiment the sample was mounted inside a semispheri-

cal integrating cavity; therefore it was not possible to use pola­

rized radiation. This was not a serious problem, however, because

the only lines seen to be splitting into multiplets with B//[ 001 ]

are the D and С transitions, for which the identification was

already given by BCSV. Comparing table 1 and 2 a good agreement

can be seen between the present values for the linear and quadratic

Zeeman terms for the D and С transitions, and those of SF and BCSV.

For the higher transitions (i.e. B, A and I lines) no compara­

ble experimental values are available from the literature. Compa­

rison with theory is also not possible because, as can be seen from

figure 2, the theoretical assumption (Bhattacharjee and Rodriguez,

1972) that the unperturbed states at В = 0 are sufficiently well

separated to treat the splitting of each state separately, does not

hold for the higher lines any longer. The violence of this assump­

tion for the A and I-lines can be seen from the nearly similar

values for b, which is a consequence of the mutual repulsion of

these lines because of their narrow spacing. A common feature of the

B, A and I lines is the negative sign for the values of a.

82 Table 2 : Linear and quadratic Zeeman parameLers a and Ъ with В // [ 00] ]

for the D and С transition of the Al aooeptor in Ge3 as deter­ mined by BCS7 (Faraday aonfiguration, E 1 Β), together with the values for the В aooeptor in Ge, as determined by SF (Voigt configuration, E 1 В and 'È // В).

This work BCSV values for Ge(Al) SF values for Ge(B) Trans. Trans, a (meV/T) b (meV/T2) Trans, a (meV/T) b (meV/T )

D -0.176 0.015 D D. -0.208 0.028 l a 4 D -0.163 0.014 2

D -0.045 0.005 DL D. -0.05A 0.009 D J 3

D -0.030 0.002 4

D D 0.055 0.017 D 0.057 0.019 0 6 с 2 D 0.046 0.021 5

D 0.185 -0.017 D,, D, 0.219 -0.030 8 α 1 D 0.187 -0.020 7

C -0.048 0.052 С С, , -0.066 0.062 2 а 4,3 C -0.064 0.055 l

C 0.095 0.038 С, С, . 0.120 0.033 3 D /,1 C 0.107 0.037 4 Gel В) B//I001]

1 1 1 1 ι__ Ο 1 2 MAGNETIC FIELD (Τ)

Fig. S : Magnetic field dependence in the photoconduativity spectra of the I- transition and four satellite transitions to bound states associated with Landau levels. The dashed line indicates the zero-field band edge. The curves are least square fits of a quadratic polynomial to the experimental data. (See table 3. )

84 4. Field dependence of the peaks in the continuum.

Apart from the peaks below the band edge, the photoconductivity spectra (figure 1) show a great number of peaks in the continuum that are almost impossible to identify unambiguously. However, some very pronounced peaks appear (labelled I , I, , I and I.) that can easily be recognized in every spectrum. The magnetic field depen­ dence of these peaks is shown in figure 3, together with the I, transition. Again a quadratic polynomial was fitted to the experi­ mental points, i.e.

E (В) = E (0) + ρ В + q В2 , η = a,b,c,d . (2) η η "η ηη

A very good fit can be obtained if the zero-field energy intercepts

E (0) of the curves coincide with the zero-field I, transition η 6 energy; this has been plotted in figure 3. The parameters ρ and q of these fits are summarized in table 3. ^n This allows the conclusion that the I , I, , I and I, transi- a' b' с d tions are of the same type as I,, i.e. transitions from the impurity ground state to impurity excited states rather than valence band levels. Kaplan (1968) observed similar features in transmission spectra of boron in germanium and attributed the excited states tentatively to light-hole Landau states. The present very accurate experimental data support this conclusion (section 6).

5. Zeeman effect.

Soepangkat and Fisher (1973) interpreted their absorption spectra of the boron impurity in germanium under the assumption that the Zeeman splitting of the ground level is of the same order of magnitude as that of the final state of the D transition. However,

85 Table S : Linear and quaâratia fit parameters for the magnetie field de­ pendence of the I , I,, J and Ij transitions of the boron impurity in germanium with В // [001] (see figure 3). Also listed are the differenaes between these parameters and those of the I„ transition. 6

Transition p q n n p„ - W % - "«V (meV/T) (meV/T2) (meV/T) (meV/T2)

I 0.11 + 0.01 0.20 + 0.01 0.19 + 0.02 0.09 + 0.01 a h 1.28 + 0.03 0.24 + 0.03 1.35 + 0.03 0.13 + 0.03

l 2.46 + 0.04 0.16 + 0.03 2.53 + 0.04 0.05 + 0.03 c h 3.47 + 0.04 0.47 + 0.04 3.55 + 0.04 0.36 + 0.04

Table 4 : Calculated parameters for the linear Zeeman effect of the final state of the D and С transitions with Ъ // \001\ for Ge(B). Also shown are the values of BCSV for Ge(Al).

'Ill '3/2

this work 7.0+0.2 -0.52+0.04 -0.120+0.005 7.9+0.2

M BCSV 7.4 + 0.2 -0.63 + 0.07 -0.119 + 0.006 8.4 + 0.2

this work 3.0 + 0.1 1.01 + 0.04 -0.077 + 0.004 3.3 + 0.1 С { BCSV 3.2 + 0.2 1.07 + 0.07 - 1/13 3.5 + 0.2 Tokumoto and Ishiguro (1977) concluded from magnetoacoustic resonance attenuation measurements on Ga-doped Ge that the splitting of the ground state of shallow acceptors in Ge is much smaller than previous­ ly assumed. BCSV pointed out that the ground state splitting is in fact so small that the observed line-splittings in photothermal conductivity spectra would reflect the splittings in the final state of the transitions only. This simplifies greatly the interpretation of the spectra, BCSV proposed the assignment of both the D and С

lines to Гй -*• Г. transition. We will proceed along the same line and compare our results for the Zeeman effect of the D and С transi­ tions of boron in germanium with В/Д 001 ] with the results of BCSV for aluminum.

Using symmetry considerations Bhattacharjee and Rodriguez (1972) have shown that with B//[ 001 ] the energy shifts of the Zeeman levels of a Γ„ state are given by

ΔΕ P (g'p + g^i3)B + Uj +

gi/2 - gl Ü • D (4)

g'/2 - gi (1 • 9r) ,

the linear part of equation (3) can be written as:

AE+1/2 » І 1/2 Si/^B (5)

ΔΕ 3/2 μ Β +3/2 - І δ3/2 Β

87 So the splitting of а Г„ level will be symmetrical relative to the

zero-field energy for μ = -1/2, +1/2 and μ = -3/2, +3/2.

BCSV assign to the D multiplet with B//[ 001 ] the transitions:

D Γ 1/2 D Γ V +3/2 D Γ 3/2 and D Γ +1/2 a = 8 - - · b - 8 - > c - 8 - - d - 8 " ·

With this assignment the principal g-factors gì/, and go/9 can be

deduced from the measured parameters a with equation (5), and from

this gl and r can be calculated with equation (4). The results are

shown in table 4, together with the results of BCSV. For the С

multiplet BCSV give the assignment С =?„->• -3/2, -1/2 and

C. = rD ->• +3/2, +1/2. This leads to the g-factors for the C-final D о

state which are also summarized in table 4. As can be seen from

table 4 there is a good agreement between our values and those of

BCSV.

6. Landau levels.

-»• In a uniform magnetic field В the continuum of states in the

energy band coalesces into a set of discrete quantum states, the

Landau levels. Usually these Landau levels form a "ladder" of

equidistant energies with spacing ϋω defined by the classical

cyclotron frequency ω = еВ/m , m being the effective mass of the

charge carrier. However, for degenerate bands such as the valence

band edge in Ge the situation is more complex. Using the quantum-

mechanical effective mass formalism Luttinger (1956) predicted that

the lowest Landau levels would have irregular spacings, while the

higher levels tend to uniform intervals. Numerical values for the

Landau energy levels in Ge were derived by Evtuhov (1962) from

second order perturbation theory.

88 60 І//І001:

1 mie > α) Ι­

Ε 1

"о ДО (Л 'с

>- 98- 97- О 87. 8б· er 7 . 20 76- 5 б5. 64-

Зі. 32- 2о-

Fig. 4 : Valenae-band Landau levels in germanium with В // [001] , as oaloulated by Hensel and Suzuki (1974).

89 Very extensive calculations have been carried out by Hensel and

Suzuki (1974) who applied uniaxial stress to the Ge crystal as a

means to uncouple the valence bands in order to decipher the com­

plicated quantum spectra. They found a separate Landau ladder for

every value of the magnetic quantum number Μ , i.e. two heavy hole

ladders (M = + 1/2) and two light hole ladders (M = + 3/2). Their

results for B//[001] are plotted in figure 4.

Boyle and Howard (1961) and Horii and Nisida (1971) have shown

that in Zeeman transmission spectra of Ge donors every bound state

with energy E(B) has a set of satellite states associated with con­

duction band Landau levels. The energy Ε (В) of these satellite

states is given by

E (В) = E(B) + L (Β) , η η

where L (в) is the energy of the n-th Landau level relative to the

zero-field band edge. Applying the same idea to acceptor spectra,

the valence band Landau levels can be deduced from the experimental

data of figure 3 and table 2 by subtracting the linear and quadratic

fit parameters of the I, transition from those of the I , I. , I and

I, transition i.e. d

L (B) = [p - a(I,)]-B + [q - b(I,)]'B2 η = a.b.c.d . η По η Ό

The results are listed in table 3. A comparison of the values of the

linear field dependence with the calculations of Hensel and Suzuki

(figure 4), yields that the value of (p - ad,)) for L has a fair

agreement with Landau levels 1- and 0-, whereas the corresponding

values for L, , L and L, agree excellently with the Landau levels

90 2Ì, 1. and 3n respectively. So apparently the spectral lines I , I, ,

I and I can be assigned to transitions from the boron ground state to I -like final states associated with light-hole Landau levels. b

In conclusion it should be emphasized that the technique of photothermal ionization spectroscopy not only provides an excellent method for the study of the Zeeman effect of shallow impurities in germanium, but also for the analysis of the Landau level structure of the energy bands. It is shown that the results obtained with this technique are in excellent agreement with existing theories.

91 References.

Bassani F, ladonisi G and Preciosi В 1974 Rep. Prog. Phys. 37

1099-210

Bhattacharjee A К and Rodriguez S 1972 Phys. Rev. B6 3836-56

Boyle W S and Howard R E 1961 J. Phys. Chem. Solids 19 181-8

Broeckx J, Clauws P, Van den Steen К and Vennik J 1979 J. Phys. C:

Solid St. Phys. 12 4061-79

Evtuhov V 1962 Phys. Rev. 125 1869-79

Haller E E and Hansen W L 1974 Solid St. Commun. 15 687-92

Hensel J С and Suzuki К 1974 Phys. Rev. B9 4219-57

Horii К and Nisida Y 1971 J. Phys. Soc. Jap. 31 783-91

Jongbloets H W H M, Stoelinga J H M, Steeg M J H van de and

Wyder Ρ 1977 Physica 89В 18-21

Jongbloets H W H M, Stoelinga J H M, Steeg M J H van de and

Wyder Ρ 1979 Phys. Rev. B20 3328-32

Jongbloets H W H M, Steeg M J H van de, Stoelinga J H M and Wyder Ρ

1980 accepted for publication in J. Phys. С: Solid St. Phys.

Kaplan R 1968 Phys. Rev. Letters 20 329-31

Kogan S M and Lifshits Τ M 1977 Phys. Stat. Solidi 39 11-39

Larsen D M 1976 Phys. Rev. ВП 1681-91

Lifshits Τ M and Nad' F Ya 1965 Sov. Phys. - Doklady 10 532-3

Luttinger J M 1956 Phys. Rev. 102 1030-41

Soepangkat Η Ρ and Fisher Ρ 1973 Phys. Rev. B8 870-93

Stoelinga J Η M, Larsen D M, Walukiewicz W, Aggarwal R L and

Bozler С 0 1978 J. Phys. Chem. Solids 39 873-7

Tokumoto H and Ishiguro Τ 1977 Phys. Rev. Bl¿ 2099-117

92

APPENDIX COMPUTER PROGRAM "PHASE2"

This appendix shows the computer program, that has been developed for the processing of the data from the interferometer equipment, described in Chapter II. It is intended for handling phase-modulated interferograms, but only minor modifications are necessary for amplitude-modulation. The program is written in assembler language for a PDP-12 (DEC) laboratory computer. But it is also suited for a PDP-8 system; only the instructions for reading and writing of magnetic tapes have to be adapted. The program is divided into two parts : 1. The main program "PHASE2", the structure of which is shown in Fig. A.l. 2. "FIRUTIL", a series of utily subroutines, such as: a software floating point system, a subroutine to type text strings, an incremental plotter subroutine, a subroutine to plot alphanumeric characters, a subroutine to read papertapes and convert codes, a subroutine to read or write magnetic tapes. The program "PHASE2" reads interferograms, which are punched on paper- tape. "PHASE2" can handle a single interferogram, or a combination of a sample- and background-interferogram. These sample- and background-interfero­ grams can be registered as separate measurements, but also simultaneously with a two-channel system. "PHASE2" has also the possibility to transform a series of interferograms and average the resulting spectra. Each interferogram is preceded by control data, such as step length and number of channels used, and a series of 30 BCD characters defined by the operator with thumbwheel switches on the scanner-control unit. These 30 charac­ ters are used to provide the program with an identification number for the spectrum, and information about the sensitivity of the detection system. This last information is necessary to calculate the correct average and ratio of spectra. The maximum number of interferometric data points that can be trans­ formed is N = 1024. The interferogram should ideally be double sided with approximately an equal number of data points on either side of zero path. However, there is no need to have exactly the correct amount as the program is arranged to either truncate or pad the data as necessary.

94 START

No - Yes i ' HOW MANY SAMPLE ? HOW MANY ? BACKGR.? 1 ONE- OR TWO- BOLOMETER SYSTEM ?

1 -'. READ CONTROL DATA . - " Í READ INTERFEROGRAM

REARRANGE DATA-POINT1 S

' APODIZE 1 FFT READ NEXT READ NEXT SAMPLE INT. I BACKGR. INT. 1 1 1 MODULUS '' ' AVERAGE SAMPLE- AVERAGE BACKGR.- SPECTRA SPECTRA WRITE ON TAPE WRITE ON TAPE I 1 No No ALL DONE ? Yes ALL DONE ? ¿Yes Yes RATIO SAMPLE/BACKGR. WRITE ON TAPE

'r 1 » CHANGE PLOT LIMITS - PLOT SAMPLE+BACKGR. " >

SMOOTH1 E ? 1 . гыл of C^J KUN ^,

EXIT Fig. A.l

95 After reading the entire interferogram the maximum positive and negative values of the data are located, and the data point in between is attributed to zero path difference. The average value of the entire data array is sub­ tracted from every data point to remove a possible D.C. offset present in the interferogram. The data array is then padded out to the maximum size of N = 1024 (if necessary) with zero's and then re-located such that the order is undisturbed but zero path is in the first location. The data array is then apodized from both ends towards the middle with a "cosine squared" function, after which the program calls for the "Fast Fourier Transform" (FFT). The FFT subroutine is based on a program written by P.L. Walton , which employs (2) a modifLcation of the Cooley-Tukey fast Fourier transform algorithm . The FFT program calculates the complex spectrum

. N-l . Ρ(η·Δσ) = i l і(т-Дх)«ехр(-:^і'П'т) , η = 0,1, . . . ,Ν/2 . т=0

The spectrum points are equidistant with a frequency-interval Δσ = (Ν·Δχ) , where Δχ is the sampling interval of the interferogram points. Then the modulus-spectrum is calculated as

|Ρ(η·Δσ)! = l/[Re(P)]2 + [ Im(P) ]2 , and stored on magnetic tape. If a number of spectra must be averaged, the relevant interferograms are now read one by one, transformed and averaged with the already stored spectrum. The same procedure is then repeated for possible background- spectra, and the ratio of the (averaged) sample- and background-spectrum is calculated. Finally the resultant spectrum is plotted on an incremental plotter, within wave number limits chosen by the operator. Noisy spectra can be improved somewhat (at the cost of resolution) by a mathematical smoothing procedure, and then plotted again.

References.

1. P.L. Walton, "TOFAST-Fast Direct and Inverse Discrete Fourier Transform Routines.". DECUS Program Library: 8-260 (1970). 2. J.W. Cooley and J.W. Tukey, "An Algorithm for the Machine Calculation of Fourier Series.", Math, of Computers, 19, 297-301 (1965).

96 * 0 0J0> 0000 0000 /•mn',1 F.' UAK INI KA KI К INIIKM KOfif Π 0J06 1464 F NK· NR / F KUH F ЛИ ΚΤΛΙ F · 0J12 31S2 »CA TYFPLT /sn mi Ft AG /FKFÉNli' ΙΗΓΗ UdH /tfvOS ΤΟ ΙΟ,Μ l-UINTSr OJU IS 14 PCA I FIAGTF /FIEIO^l /HhlORMS A FtH/hlfK IRrtNSfOkn CM 1 Hl· ÍHOH>» O.H 4 6046 Π ι /INITIAI I/F ГГУ /AVFKAbL . THF hi МЛ 1 INI» Sf tLIKA. 1 Al LUI All· Ь 0215 4014 RFC /ANP TAPE RFAPtK /ГНі ΚΑΠΟ SI-FI ΓΚΙίΜ» FLOT') IUI M SUI IS 021α 4C 46 JMi> I PLRIF /IR 1 F /ήΝΠ »ΜΰιΊΓΗΕ'ί THt SPtlTKlJU. ίί !•[ SIT IP· 0217 4404 URtTF OJJO J .04 MF ,bJ /•SAM It BAChbK-i" //миь г И LOHftlNbi:· U1TH •FÍKIH IL·. OJJl 4 .17 mii l ANSUfR /ЛЧЧІ МЫ ING HIUtNft ΐΜΙΙΗΙΙΛΙ hS>: 02JJ 1140 ΓΑΡ ANSUFt /AS ΓΙ !I-AKJY H <(IEAKS IhF SYNPUl TAPI f ) 0-'21 1060 ""AD MINYEb /ЛЬ I IK (ΠΙ {COHhitN F AM (S ЬА І I>) 0.'J4 7650 SNA LLA /4h t ihimi , /e 0 44 700Í JAC /YÏSÎ N1-2 1 /ЛЬ t ΗΛ',Ι J rAI< F (МП IL fbP F HASE- 0»'6 7001 ΙΑΓ /NO. N1-1 O.'J/ 10 >4 PL A NI //Г 0 FUT OM 'FIR PMA' liΑτ ι ; 0230 4404 URITI /HI At ' IS TAF-bd ONTAIhlNb "F HASF '·) ON UNII 0 0*JI 1661 Mt SUI? /•HOtf MANY ЧРЕІ TRA " 1 /•FIK ;НАГА * TAI F ON UN. Τ LfKbHOlF.UKnF INAPI t O IJ /144 STA CLL RAI /S ΓΛΚI PIAI IS о-'зз 10'4 TAU NI /NI 2 * /1 IMF 11 (Ut. (0 ГЧА it.SO 02 J4 /640 S7A (LA /ISU 4000· S ΙΟΙ . Τ rlüHL • 1/(1 FRESfT 0235 SJSO JMF 4FICTK /ыльт IS 021A 4404 URITE /YFS 0 »1/ Ч ME 41,9 /•SAMPLt:* /l Al t f Nb St OUt NOT ! У! A •FlK' 0240 4541 MS I !.i(NV /NO. OF SAMPLF4 /UK I If f NAPI 1 C241 10* S ICA STORE 0242 44C4 URITE / )OPSÏM 0243 ЛО HESBIO /•BALK>R:· 1 HOPF 0244 4541 jm Γ 'ÎICNV *J0 0245 3025 »LA PNh /ΒΝ-ΐ NO.Of BALKGROUNDS 00 Ό oni STAMI . .ГАК Г 'UHEti PY 'F íh· 0246 10Ь5 IAP SrOKL <Κ> »1 4000 1SIOKF ι 4Ο0Ο /FKtn. AfiKAY 0247 S''SI JMF .F2 02ЬО 4541 l 0000 KUN· 0 /SAM •· ΒΑ( K(j - l SFFi-TR. JHS I SICNV /NU. Of PtriKA οο·* ί 0000 0 /NU.(IF UOHWÍ If RS 02M 102/ PCA fbFLTR _, NI·· 00 4 0000 Nb 0 /SAMÍPAÍ K(. .'· 025? 1027 TAD FSPLTK 00 "j 0000 hhh, 0 /Hi (IF «AIKIiR. 02ЬЗ 7041 ( IA 00. ή ocoo N И 'К • с /CUUNTI К FOK SF Fl TRA C2S4 1С 'A If A NSFCTK /NSPOTR -PSP('R 00'7 coco F' Fl IK • 0 /NU. ü j'Fl RA 0255 4404 UKITt /•INTERFEROMETER· CtïO 0000 И OW· 0 /I ÜUFSI чГ UMLNI Y 02Ь6 34A7 MESCI ООЭі 0000 0 02Ь7 4406 RLAP /RtAD TRA'LtR TILL СОІ. 0000 0 О2А0 1057 TAP MNL /FIRST 'NEW LiNE'. ООН oooo ΓΗ ΙιΗ» 0 /HIBHFSr · iLilUENCY 0241 7440 S/A Cl A (.0-14 0000 0 02Ä2 Ь'Ь7 JMF , J 00 Vi ocoo 0 О^АІ 4406 KFAD /REAP KB 0( V 0000 ПАХ· с /ΜΑΧΙΊΙΙ1 0244 10'3 PCA MB 00 1/ (OCO 0 0-»65 /144 SFA m -tA^ 0040 0000 0 0244 ю-ч TAD NB /NB-l CR 2 » 004 1 0000 0 /ΐΚ'-ΙΟΓΝΙ Y N ERVAL 024/ //40 SMA SZA С A 004 ' 0000 nur· 0 0,'/0 45 ЗЬ JMS I ВОП t Γ4 1 0000 0 0V1 /240 STA 0044 0000 SLN· . 0 /SF NSIrjVIΓΥ 027? 1023 TAP NB 004^ 0000 0 О'/Т /640 S/A CI A 004^ >K>> 0 0274 '..300 JMF .F4 004/ 0000 .\rS. 0 /Fl Ulli uriüN 02/t. 4404 UKITF oo*:o 0000 1 02/4 i', 17 MF SC.4 /•ONE' ЭО'. ÖOOO 0 о- / ЬЗО? IMF .F3 00 ι.· 001A С1000O . 00 А lOOOO ОІОО 4404 WRITF 14 » •11 0101 3521 MFSGJ /•'UO' • ч' 4 •-oto *000 0І02 4404 URITt. 00*/ι 0000 IÜRF f 0 0303 Зі,-Ч MFSG6 /•-FILLMLIIF .YSTtM OCA 04nO IFFKSr г АЛО /F IRSI Г Wilf К 0304 4406 REA» /bAMFL tNG INTlíVAL· OO'j/ /441 »NL f 7443 / IhM NL 0103 4407 FFNTti ΟΟΑΓ /44/ hlWVfSi . /447 ' VIS OJOÄ 0006 FCB^O (C^l ///0 H'NH· ///0 / Ô 0W7 ООН IN^UT /REAP STEPS 00 S 01/1 SAHh · .АНН F ОНО 0002 CCAÍ 04 't HIM.K· PM h OUI 440/ FFUr 1 .Ό S(Fl ', t НОТ 0114 001"* aure· ir /FRINf ООА/ 101' 'FFl I. .F F ι α 1 Olio 0050 Ï.0 00/0 iJ40 1 [f*lf Ι IM лил S0S2 K.tr Γ10000 00/1 •4.4 ^A«llf MAXI 031/ 404/ F»iy RÉ-b ОО/ ' '400 NOKHIt NORM 0120 6047 t РОГ RE-ì /RE S- 10000/'.*Ч ΓΙ 00/J ΪΌΟ SMIMlr SMUniH 0121 0000 FEXr 00/4 0000 NAXI Ul .• 0 /LO( AI KIN (IF MAV MUH 0122 /132 Г 1 A TTL RTR /I (»'»4 00/'. 0000 MIMI m .. 0 /u > ATI.IN UF Η N HUM 01^1 4-.4І IMS I FLOAT 00'Л »4'JA IHIU τ INir 0124 440/ i-'tNTFR 00// '46Α Ι AS î . l St 0325 6142 FPU Г FFAL 0100 OCO ' f t. 0(0» /Ft 0124 S047 FRrr RES 0101 ню 1110 0127 4142 F PI У FPAll ОЮ"1 i/**, 1/VJ J І IO 6041 1 F U Г BFLF /DFl F 10000/SUES Π t b»10? 010 1 L/01 [NIifcXL ι. IN:.(X 0131 0000 FEXr 0104 0//? f 1 l. /-.и 0332 4404 URITE 01 оь 1000 F 'J L ' » //100/0 /SI ' 0333 3^46 MESGS /•MICRON' \>10Л 0000 l· 0 0134 4406 RbAP 01 о/ 0000 Kr 0 оиь 4404 UK I Г£ оно 0000 AH · 0 0116 1/А5 M£SG12 /•HOPUl ΑΠΟΝ AMI I I TUPF · Olli (>000 ANF » , 0 OU/ 4407 rtNfER 01 и oooo AM . 0140 ООН INPUT /READ NR 011 1 oooo ANF KL · 0 0141 ooo-î 5 0114 0000 H. 0 0142 AUS Ffur С 011', 0000 0 C· 014J 1610 FMFY I HNI'fil %Ч1А 0000 0 0144 6A0A FFUT I FNR 011/ 0000 0 014 J 0000 ΙΕΧΓ 0120 0000 Sr 0 0346 4404 Kl AD Ol '1 0000 0 0147 440/ FENTER oir; 0000 0 01,0 ООП INT ИГ /MAP MOPAMF IN i>lîï 0000 r· 0 OlSl 0004 4 /0,1 MURONS. Ol *4 0000 0 01..2 1200 FHPY TENTH Ol Ä 0000 0 03·· Ï 0012 OUTPUT /FR INT Ol?A 0000 0 V· 0154 0041 41 OU/ 0000 0 0Ï55 0007 FCPF1 /SET II .П.Τ.-1 Ol Ï0 0ЭОО 0 0156 0000 FEXT «--oo 0357 4406 RFA» 0*00 /77ГІ rtNTHr 77/S /0.1 OlftO 4404 WRITE 0?0l 114A U46 0161 1S46 ME Sit« /'MICRON' 0 Oí IM' Ϊ14' OÍA ' 1024 ΓΑΡ N1 0 'Ol 0Ï01 1 IVF · OCtM 0ІА1 '041 CIA 0,Ό4 -•400 400 0144 W 2 PLA RUN

97 0J6'. 5Ϊ74 JMI bAHUlfl 0 .4,? 3074 Dl А МАЛ! UI /LUI AI HI« IIF M *ï/2 054/ 4407 hbNILh 03 /J 0607 CHFfM. , ГНЕСК OJZO 5120 Н.ЬТ * /READ SftMI-Lb IMTtRFFRObRAtt. 05"SJ -510 F ЫІ(. 1 A IL /S A< )ì OS/ Ï 4772 SAHPLE, • JMS I (HLCM /READ NPf STtF 0552 0000 FEX Г 0374 10Ï6 ГАП TF-FRSr OSSI Ι ΙΛΟ IAD HUR Г' 0175 Ϊ5ΪΪ [ICA I KIKTf /FIRST lAftDIOIK 0554 7 7=0 SFA SNA LLA / 0 '

0374 4404 UKtTb 0555 5344 JMF . + 7 /NU OÎ77 1^13 rttbG9 /•SAMFIF:· 0554 4407 FFNTFR 0400 460^ № I L0( К /htAl' SfcNS 055/ 5510 FLU I Л И 0401 4210 тч чм 9 0560 Al^O FFUT S 'YIS. <; .Ì(J) 040J 4404 kt AD 0541 0000 FIX! 0403 4406 UFAD 0 -A ' 1106 IAI· 1 0404 Ίί -Ι JNf DATA /READ DATA 0·Α3 JO/5 DCA MINI OL /1 OIAIION III M 040·'. 0/*ΐ0 LOrK. Ι0ΓΚ1Ν 0S44 7'MO ЫА 040Λ 1003 CIINTKI, . rONTk «^45 lu M TAD NK /Il NK 1 'ι Kl 0407 742' NU * 7ft ' 2 /-IKM LI 15*4 /450 SNA /ЧКІІ HAIKGK. 0410 0000 '.KFV, 0 /SKÏF 9 LHAk. JMF .F4 0411 1217 'AH MV ГЛІ. RUN 0412 31^4 ПСА TOLKT Ь/Л HA 04 ίΐ 4406 Rf AH IMS SKFV 0414 .ΙΆ IS7 rOUHT JbZ ) c 041t. .21ï JMF , 2 1 I A С II 1 MA І1л 041A 5610 MF Ι ΆΓ9 'AD 1 ••41/ /?Α7 M» f /747 / 9 С 7/ 7440 SZA ι LA / ' IO ' 04'0 Οί,Ο/ ΙΜΙ-ΓΚ-Ί - ι HI 1 К О' 7/ 5267 IMI DAIAJ /№) 1 UN INI F /1 (ЛИ KM Kl F iilJND INFtKhhhOVv'Vl . 040( 440A KFAD /ΥΓ KIF KF .1 0421 7344 KKGKr STA III ΚΑΙ 0401 AJ' LNH 04-.·. 1023 TAli Hb 060 SZA ILA 04-· J /Α40 SZA ΓΙΑ /IF NU •» -ν -INK In I 040! 04'4 5244 IMF KACK6R 0404 042Ь 4544 ЖЧ 1 BKWF-ri 0405 04Jó 4406 МАЛ 0404 0427 1055 KtUINO. - TAO faTOFÏI ( Hf ( К Kt AK. 04 Í0 3136 DCA blüRl ОАО/ 04J1 4406 RI ΑΠ 0610 0432 З0.і5 DL A M int OAU 0411 lO-j-j Τ4Γ> -ir IKL 061 ' 04 І4 1207 IAD Ν /LUUK FUR 'U'UFR t ASF · 0435 7640 ΒίΛ Α 043Α ^•ν JH1 ΚΙϋΙΝΠ Û4Î/ 11 ΪΑ IAD SΙ ORI /FOUND' PRFViIH', /FI AD ANI· t Fil 0440 105/ IAD MNL /ГгіАК. 'NEU l INF' ОМ? 7<-40 0441 7Λ40 SZA CIA Ол 0 4.1. 044J ^2/ JNF KFUIMD ^4 ι 440/ 0441 4'*45 JNb I h KURD /YF-tf F IRUARD )А2 44t* 7 0444 4620 ВЛСКЬК.. JM5 1 LMl'-42 >Í_1 ООН /RtAD AND I UFI F It F 044.» 4-40 JH5 sK'9 ч,424 0002 044Α 4406 Μ Αίι •v..·" _4'> 0447 4406 R-AD 04 А 0000 04',0 4404 URITF 0411 1 40 M"1 "Ji.lO /•ΒΑΙΜ,Κ:· 04').? 4405 IMS I LOCK /READ =FN. /•ÎEAD ÏNTi-Rf-cROGRAM. RIAD ΟΑ',Ι 71Ϊ2 ИЛ Iñf CI Α (·ΓΙ ΚΓΚ /TNITtALlZf MAXf MN 04 tl F Ι Ν1F h 04^4 J12Ï IK А Г /AND л екмл CNF Ul 0005 04Jb /133 CLA ГАГ ЧТ1 RTfi ОЛ ÍS 045Ä J124 Г<ГЛ ГИ /MAX 0.*>»· 10'4 04 14 AUS 04І7 '332 CIA ЬП RTR \>S37 OOI 1 /SKIF A I Unk 04Λ0 3120 DCA S 0440 0005 04¿1 ?33^ CIA SU Rfk 0441 ОО Ю f (XT 04 Α2 3121 ПГА Stl /MIN 0.5*2 1024 044 · 440А RIAD /100 0463 312/, ILA III ИГА υ .АО/ 04Α4 1127 DCA V+l JMI I CHI I - 0000 04Α5 ЙГ A υ-íJ 0Л4' . 3130 /AVth 0 0000 04AÓ 064/ 3106 DCA J 0000 0447 4406 DATAIr JM', 1 CONTRI /MORL DATA » О/. 4 7 0470 1106 TAD J /LOC К ]N AMFI : ÏEK StrTINbS. 0471 4503 JHS 1 INDtXL /FIND FlUAIlNb AHM I Sb LUC MN. O 0472 31 10 DCA AJL UK1 ft 0473 1023 TAI NK /IF NK * AND KUN 1 MFSGÏ 0474 10' ' TAD RUN /SKIF SAM.. KFAD КЛГКО, 0453 4407 rtNItk 047*> 7740 '>MA nZA t LA 511 F i.F Ι Г 0476 4210 JM4 bKF? 0012 ui m иг /FRINÌ NR 0477 4407 FfNTER 0050 ο*-.οο 00*. INPUT /RIAD DATA 04' / 0000 0*01 ÔÙO'-j 5 /(S DIGÏ1S) 0/60 4404 0Λ4Ι Ί 0502 0000 F F XT 1/1 0462 »thsti miv OCOÎ 4404 ftêAD 10 2 7 044 î 4541 0Ь04 /041 Ι ΙΑ 06A4 440/ ОЪОЬ /001 I Al 04A' AIA ' 0504 7440 S7A ΠΑ /OVF Kl OAD * 0444 OOI 1 050/ Ы14 IMF .+5 0A4/ 0001 /SFNStl IWIY ОЫО 4407 F E Nif К /VF i> 04/0 A12C 0511 '05 > Fl FT L10000 /SF Ι *Ό000 0471 0012 0512 1СІ2 FA:: cioooo 0472 0030 0513 0000 FEXT 04/1 51 'О « 0* 14 4404 kl АГ' 04/4 4142 FUT Ъ OMS 704. 1 IA 06/*. 4044 Г* IV Fl Al I CilA /001 (Al 067* 0000 FFUI SF NS Il XT 0*117 7440 'JZA LLA /HATA ΝίΠΑΤΙ^' ' 06/7 4404 0520 54 Μ IMF , f4 0700 4 .4/ RFAD 05 η 4407 FFNIFR /YH,* Ч' ,ΑΓΕ. 0701 105J JMi> I CUNURT 05" 0010 NCCATt 0702 /Î44 DLA STORI 05^і 0000 FfcXT 0701 lOjj SIA I I l RA 0524 4404 ht AD 0704 /,.00 IAD SI livr 0525 4407 FFNltk О/О" 5311 SIA 0'. Ά 40'Ρ FDIV LI0000 0704 4404 UM' .+4 0527 3044 I HF Y Sf Hb 0707 ÏA23 URI ft OUJO 4510 FFUΓ I АЛ /AC Ι) -ΓΙΑГА* Ι Ν' /10000 0710 51 >0 MESOl 1 0531 11 'Α F AU» υ /J st+Al 1) 0711 /440 IMP .*.0 0532 4124 F F UT У 0712 0316 SZA 0713 4404 0533 5510 FbfcT I AJL /A Τ ? JM"" . F4 07.4 1/24 0'"<І4 FSUK Г iJ-vITt •н?з 0715 5120 0535 0000 FfcXT ME J(J14 071* 4404 JHF . * 1 0Ь34 1160 ГАЬ HOkΠ 0717 1412 URITE 0537 /750 S*A "ÎNA Π A / 0 ? 0720 4404 MfSùlS 0^40 5347 IMF .*? /NU 3636 0541 4407 ItNFFh /Y(Sf Τ A« i URiTL 1055 1 0542 5510 FRET I АЛ Mt "!»!* 0543 4123 FF UT Г IAD STORI 0'".4 4 ΟΟΟ-ΐ fi ХГ /04 L < ІА DCA LOHNT 0%45 1106 TAl· I Î156

98 0/?5 44C/ FFMFfc 1104 A"11 I 07 Ji 5044 FUL <,fN 1101 34.15 FHFY tlOOO 0?^? 3141 1106 20 > JSZ S F I /< JF: 6044 FFUг SENS /lEhS bFhbtUOOO ЬЕМ J O;JÜ 1107 530b 0731 0000 ρεχ- 1110 6201 Jlw 00 07J? 2156 IbZ COUNT Uli 4716 JHS I Ar »DI /PREPARE FUR JHF .-A C733 '.325 412 7200 Γι A / AFODISAftílN 0714 1346 TAD N7 /к A-ÍRANG'· DATA э I FIAT (fcNTRF IS N LOCATION ¡ 0735 Ï156 OCA rOUNT 1ПЗ 01 FAD 1-512 0736 4406 RtAI lii4 7041 'ЧА 0737 2 56 .Ы 1 OUNT 1115 074 0740 5336 JHP .-2 1116 7440 HAXLOC 1 2 0741 7100 CLA TLL 1117 1JA4 ІЧ> ^Ч.І-І /YFSr PIIHF 0742 5650 JMF I LCCKIS U '0 1114 DLA Η /И HAXLIh * 0743 0012 C1000* 00.2 /1000 11П 1Ό7 DCA R 0744 3720 1/20 112 114 FAD H 074-, 0000 0000 1121 //10 Ь^А .A 0746 ///1 47r 7 1124 111/ J4 ÇhNGl /^АГСН IIR АРОРІЧАГІОН. 1125 1107 TAD К .-->НІЬ LEFT Η Fl Al 0747 0000 'ODt 0 126 4Ъ01 141 f INDEXL 07 i0 1074 TAO HAXLlir DCA AKI 0751 7104 \ LL RAL /.*H FAD К 07-.2 /041 CIA TAD H 07'JT 1106 TAD J /J-2*M JMb I INDFX 0754 7510 SPA / »-o ·* ΙΙΓΑ A Jl A<-\FMAXLOL-M-> 0715 7200 TLA /NO» SFURF H -1 JMI- XKNJ' 07Г;6 1074 TAC' HAXLQ« /YES. 11ORF J H 1/ .. гм . FI FMJO 07S7 7041 CIA 0/4/ Al OHI . FOD 0760 1105 IAD H 2 IIJ/ КЧЧІ>1 . IAD Ч O/'Sl /041 CIA /(H-512) OR (J M 512) /041 LIA 076_' /ЧОО Ϊ>ΊΛ / С ' 10/4 FAD HAXLOC 07A3 /200 (1A /NO. Sit Rf 11' 11 04 IAD Fill ГАИ PSI2 /vtS. b+DRE-tt (>R M 0764 not* 4101 JH^ I INDFXl 0765 3055 KCA S Г )Ч- Il 10 DCA AJI 0766 1055 TAIi STOKt /33 1 tl A S Fl lAC R 0767 /104 CCL RAL /2*bniRE 110/ l IAD К 0770 4 ,43 JMS Ι ΠΟΑ Г /001 I AC 0771 4407 fLMlCh 7041 ΓΙΑ 0/72 4100 FlUW PI 4Ь01 JMb I INDI XL 07/1 6123 Hifi Г /T 2*S~I]F!E/F I 1112 'AKI A U 02 1-М 07/4 0000 ILXr 440/ 077 ι 3/4/ JMf I 1 UÜ ι ilO Α112 «1000 Η UI Ι AK 1000 /746 M/FRO» 0032 /-^DM 0 0000 -10/ ι Ι ΧΓ 1001 7652 MFNt». 3 · 0160 /-.DM 1 ІЬ/ К 0002 HLC. 160 0116 / IBHtLOUER 1 AIE /333 IOO-· Π Л STI lAC КГ-ч DATA 1 END'. LUU TAF E НО/ /CONTfcOl OF ОАТЛ. IIAJ 110.. RRNG1. Ι AD Κ /INIIkC4A4. Ι κ- I 1007 1603 JHF I CDNTK /YIS. EX" 1166 3106 TAD 111? /AND МОНТ ΙΑ! %"S 1010 1*Ό1 IAH Mt NU /fcND IJF DATA "* IIA/ 4/it, DCA J 1011 7450 SNA 11/0 ПО/ JHb I (I FHV іиіГГН A< J) AND Л(К) 1012 5221 JHF CALCU /YfcS.S-AKT ÍAL(. 11/1 110/ ІЬ/ к ίου 1 '02 ГАИ Hl Г /1 OUfcR ( АЧе ' 11/2 7041 TAI· К 1014 7640 S/A CLA 1171 110. CIA 10 IS 4Ь35 JHS I BUG /NO» ERROR ι 11/4 FAD f .f 1016 4406 READ /Ybl. ^KIP 11/ » b¿A CLA 101/ 1200 TAI· HZERO /Fill NfcXF ZIRO /NO [ IN 11 NUF ιο-·ο /*Ъ0 bNA CI A JHF KKNG3 1021 S603 JHF I CONIК /AF OHI/I UHM Γ01ΙΝΙ-2 FIIN^IION. 11/7 310/ DC A К 1.216 JHF . 4 lo^-· 1 ·00 1107 AFOD. TAD К /ЬГАЬТ Ot ι Al CUI AUONS. , 1-Ό1 4 01 JH> l INI* XI 10JJ RFAI· 4406 CAL Ut» L.02 JU2 Dl t AKL /AKL Αι,Κ) 1024 7300 Cl А ГЦ 1 '03 /111 ( LA SII ІАГ MR 102G 1074 Ι ΑΓ· HAXLOC /f ALC. LUI . ПГ ((NTRE 1204 1107 IAD К 1026 1075 IAD MINI U£ 1 'Ο'. /041 ΓΙΑ 7110 CLL RAR /MAXLOr= 1206 4103 lo-v JHÍ. Ι INI« XI 1030 30/4 ИГА MAXIOC /(MINLIH +MAXLO( )/2 Ι^Ο/ 3110 DI A A JL /AJI AClO"*» KJ 1031 4404 URI FL 1210 110/ TAD К 1565 HEbGll /•NO.OF DAFA POINTS· ion 1211 4143 JHb ( FLOAT TAI. J 1033 1106 121 ' 440/ f FNItR 1034 4543 JHS I Fl OA F 1213 4121 FDIV Τ 103b 4407 FCNHR 1214 0004 ( 1016 6111 FFUT С /t-FlOAT W 1246 5112 FûtΤ I AKL 1071 6512 FfUT I ARI 1247 6115 FFUT Γ /C-A0 SNA 1255 1262 1077 7640 S>ZA CI A /k J ' IMP .tl 1100 1256 7041 5263 JMF CALC /NO-CONTINUF 1217 1101 CIA 1101 1106 TAD 1 /YFS 12/0 •»^40 TAD PI12 llOJ 450 1 JHS I INDEXL J 261 IZA 11 A 1103 lO^S FtCA SORE

99 i JA J 112) /K*0 OR Ы>> SET S 0 1441 4407 FENTER 126 J Î121 Üít\ SU 1444 5047 FGET RES 1J64 11?** Οι-A St 2 1445 1047 FADD RES /CALCULATF 1JAT 440/ FfcNTtft 1446 1047 FAtr RfS /RESOLUTION. 1266 Jllb F Cl Τ ( 1447 6047 FFUT RES /kFS-3«RES І^б/ 0001 ЧПКГ 1450 6010 FPUT FIOta /FLOW-RES i^/0 61 >l HUT f 14S1 0000 FEXT FGtr S 1452 1105 TAD P51? bOht 1453 4543 JMS I FLOAT f/S 11 'J f Äfft Γ 1454 4407 FENTER 1 '/4 OOC ςοκκΓ 1455 3041 FMPY DFLF nui ι AKI 1456 6033 FPUT t-HIGH /FHIGH 51?*riFLF 0000 tt ΧΊ 1457 0000 FEXT 44// (HS 7 Ι Α' г /K-51. ' 1460 7344 STA CLL RAL S J (A tMF F DUI Ь /Nil. ΓΙΙΝΠΝΙΚ 1461 1024 TAI NI HCl 10'7 IAI· F SF Lik /F IRSI ЫЬГГкіІН 1462 7640 Ч7А ILA /Ν1-·2 » ПО.' 10 'A tAt N'.FÍTN 1463 5320 J« DIRCT noi /A'O SNA ΓΙ A 1464 4404 URITE /YFS L '04 JHP ΝΓΧΤ 146t 33/3 MEbü23 /PLOT ilO-ì tn ei h 1466 4404 WRITE /SAMPLF" AND НОЙ IH·, l INITL 1467 1504 MESIV /BACKGROUND ' I W7 hENTh 1470 4537 JMS I ANSWER 1110 H.E* t AKl 1471 1140 TAD ANbMk ΠΙ I ff-IIT [ AJI /АСКНЫРкЕ) A(K) 14 72 1060 TAD MINYFS 0000 Κ·ΧΙ 1473 7640 SZA CLA ПmИ. 447/ MS I l AS Г /К ^12 ' 1474 511? JMF DIRECT /NO-PLOT RATIO 1 Ï14 *Л06 (Hf HOOF /NO. CONÏINOt 147S 1056 TAO 1FFRST /YES 1110 lOAl IAH мша /YFÎ>» hFAD FRtVIOUS 1476 3531 DCA I »LKTP /SUH FKOM l IftFt UIA 4',-i¿ JHS I KHIAFI 1477 1061 ТАГ' ΗI N8 /READ SAMEI f 1J1/ 10A1 • Ali MINO 1500 4532 JMb I RDTAFE /FROM I-TAPE u'o i;i3 IA[i Г Ы MI 1501 4472 JMS I N0RH1 /NORMALI/E TfHlK IFBLK-fl Π 1 Î'ÎÎ N A I bl KU 1502 4466 JMS I SFFIT /Fl ОТ SCALES lï" no/ l'< А К 1503 4467 JMS I bFFLT /FLOT SAHF4.E И '3 44/A Ih', I INI It 1504 1061 TAD MIN8 1 l.»4 4407 FfNltl·. 1S0S 4S1> JMS I RDIAFL /kfAl« BACKGROUND F (.F I AKI 1506 4472 JMS I NORHl /NORMALI7F F AM· 1 A H 150/ 446/ JMS I SFIIT /FIOT FHJl [ Ahi •ΆίΚ) AtKlfUINIK) 1510 10A1 TAD MINA /hFAIi КАПО SPECTRUM 1110 0000 FCX1 1511 4512 JMS I RDTAFE /( ROM I TAF L 1111 447/ JUS I LAM 1512 44/1 DIRECT-r JMb I MAXI1 /FIND MAXIMUM 131 » Μ2Ϊ JHI Al'I· /NO· I (INTTNIlt isn 51?! JMF DIRCT+1 /.Ol Ι Ι А 1ΑΓ 1514 0007 HNDRD. 0007 /100 IO Ά TAI· N'jFLIk /Nb» С IK 1 ? 1515 1100 1100 7A40 S/A I IA 1516 0000 0000 l НА S143 mi .+5 /NO 151/ 1601 F-tOTSli. PIOTS? 7144 m/ SIA 111 RAI /Yl Ь it-^o 447? IURLT. JMb I NORHl /IF N1-1. NDRHALI/fc 10.4 /NI ·* » 15^1 4404 Ukllt 1140 7A40 TAI· NI 1 141 S/A ΓΙΑ 15->2 173? MFbG28 /•FLOW S/АО /NO. CAI CUI ATI FREO. 1142 tOAÏ mt- l kAl ΙΟΙ 1523 4407 I ENTEk I 141 /YFSf «ΚΠΙ 1524 5030 FGET F l OU 4,11 TAC тын /ON t I Al I 1144 /144 JMS I UM Af f IS25 0012 OUTFUT I 141 1021 SIA ( LL ЬАІ 1526 0040 40 /PRINT FLOU 114A 7A40 TAD NP /Nb *» •» 1527 0000 FtXT I 147 S162 Li¿A (LA 1510 4404 WRITE 1 ГіО -.0 2 IMF NX! /NO 1531 1736 MFSC2? /•FHIGH· 1 1 il *4А1 I ,Z KUN 1532 440/ FfcNTth г VÍ' /344 JME 1 Wkbfc 1533 5033 FOfcT (HIGH 13Γ.ΐ 1022 STA ( U (sAl 15J4 001"» OUTPUT ІГ>4 »026 ICA KUN /RUN 2 1S35 0040 40 /PRINT FHIbH llliü Ί4Α2 IS' NbFCTK /I A .( SFtf ΓΚΙΙΜ ' 1536 OOOO FtXT 13ti6 %/Al jm 1 SAMF /NOfhi AH NEXT SAMPLE 1537 4404 URITE Ι Τ, 7 1412 JHI I NX I 1 /CALCUl Al- KAUO 1540 3652 MESG18 /•HAXIHUMÍIN *>:· 1404 RATIO 1 1541 4407 TENTER 1024 NX1 I*'i4'' 5016 , TAP N1 FGFT MAX 1 A2 1541 3314 FHF Y HNDRD Í lAl IAD ЯUN /kUN NI » 1544 0012 OUTFUT 1364 S/A I I A 1545 0010 30 /PRINT MAX HAS )HF NX 11 1546 0000 FEXT 1 IAA fS/ ι ' F( Tk /YFSf I AST SAMPLE 154/ 4546 JMS I PCRIF 1367 MF I SAHI /NO. rONUNllb 1 Î/O 1550 /201 CLA IAC ΊΑΙι BNk /YLS 1551 3022 PLOTS. DCA RUN 1371 IiLA I SfLTK /f SFCTR-HNK 1 137' TAI· I 51 LT h ISS" 4404 URITE /NEW FREO.LIMITS τ 13/3 Ι ΙΑ 105! 3715 МЕЬЬ?7 1554 453/ IMS I ANSUER 13/4 Γ·ΓΑ NSFCTR /МЬИСГН -PSFTTR 1375 1555 1140 FAD ANSWR 1 l'A ІЬ.7 kIJN ІЬоб 1060 TAD HINYES 1 (// >rt i Ы M.» /RFA» FIRST RAI M>· 11.7 7640 S7A CLA 1400 fΑΠ ΜΙΚΗ 1560 5717 JMF I PLOTS! /NO 140*. 'AD I Ы KIF 1G61 4404 WRITE /YES 1402 1533 DI A I PIKTF /Il hlK^IFBI K-8 1562 3732 MFSGSB /•FLOW 1401 2026 íbZ NSFCIk /LAST PACKÙR » 1563 4541 JMb I SICNV /INFUT 404 '461 JM I liCKGft /NO)CON tiNUL 1564 4543 JMS I FLOAT 140в TAP TFFkST 1565 440/ FENTER 140Λ ILA I DLKIf 1JA6 6030 FF UT FLOU 140/ 106 I TAL· Μ1ΝΘ 1567 0000 FEXT I I I kAI 1410 /104 1570 4404 UK I TE /•FHIGH' JHS I kUTAFF /RL AD SAHPbf AND («АГКГ.Р. 1411 4532 1571 3736 MESb29 CLA 141 1572 4541 JMS I SirNV /INPUT TLA К 1411 1571 4543 JMS I FLOAT 1414 ,MS I INIM 1574 440' FENTFR 14 IS STA CI» kAL IJ/ 6033 FFUT FHTGH 1416 TAD Nf 1576 0000 FEXT S7A HA 1577 4546 JMS I PI RLF mt FREO 1600 2022 IbZ RUN FFhTEk 1420 4407 1601 4404 PIÜTS2I WRITE /•NEU MAXIMUM *· FbEl I AKl /CALCUlATE RATTO 1602 3641 MESbl? FT IV I AJI /A(h)- F FIJI I AKl 1601 4537 JMS I ANSUER /A^Í/AtK+FbTORE) 1604 1140 TAD ANSWR 14*4 0000 Ff XT TA|i К 1605 1060 TAD MINYFS 142b 110/ /CALCULATE FREUUFNI Y 1606 "640 SZA ΓΙΑ 1426 4b4J JMb I FLOAT 1607 5222 JHF SH /NO M"·/ 4407 FENTbR 1610 4404 URITE /YES 1430 Î04I FMF Y DELF 1611 3652 HESG18 /•MAXIHUMUN Zìi' F F 111 f AJL 1431 АЫО /A=BFLF*FLOAI 161? 4541 JHS I SItNM /INPUT f f KI 1432 0000 1613 4543 JMS I flOAl 143J 447/ ¡HS I LAST 1614 4407 FFNTEk 1414 5213 JHF KAT 10 161S 3243 FHFY HNDR 14 Κι 7344 ЬТА CU KA1 1A1A 6036 FFUT MAX 14 16 1024 TAD N[ 1617 0000 FtXT 14Ϊ7 7640 SÌA ι IA 1620 4546 JHS I FCkLF 1440 b-4ï JUF .·ί3 16-4 го-»' IS7 RUN 1441 lOAl ГАГ HIN8 1622 4404 SH. UMTE /•SHOOTHE •*' 144 ' АЬЛІ IHS I UklAII 1623 1743 HESG30

100 16-4 4L 1/ JH4 1 ANSUÍK /COHFLEX DATA, 16Jb 1140 TAI· ANSUW 2000 0000 MAIN· 0 Іб.1* 1060 IAH HINYtS 2001 /201 CLA IAC IA"1/ /640 S7n CLA 2002 3366 DCA DJ /SIART UITH DJ-1 lòSÙ 5?3Í JMF .+3 /NO. STAM FLOT 2003 Д275 TAD Ρ? JÄil 4473 JMS I SHTH1 /TES» SMOOTHC 2004 7041 CIA luíJ ?0¿2 IS7 RUN 200S 3367 DCA MINF /? INTERMEDIATE TRANS. ι* л 10?2 TAU KUN 2006 4304 PLOOP. JHS LO0P1 /SET UF FOR INT. TRANS. ІйИ 7650 SNA LIA 2007 33/0 DCA L /L=0 1*10 '>A46 mi I MGN 2010 1114 ΓΑΡ Η léJA 44AA JHS I SCfl Г /HOT SCALES 2011 7041 CIA 1¿Í^ 44A'i JHS I R&SNR /PLOT NR AND RES 2012 33/1 DCA HJNL /H PART,/INT. 1640 4467 JHS I SFU f /PLOT SFtCTRUn 2013 1370 LLOOP. TAD L ІЛ41 ',642 JHF I .Fl 2014 3106 DCA J /J=L IA4-* lí.t.1 UOIb 2015 1106 JLOOP. TAD J 1641 ìf?'' HNI.h. /0.01 2016 1114 TAD H 1Ó44 '4 16 241///6. 2017 3107 DCA к /k-'J'FH IA4', '^60*, 560· 20J0 4674 JMS I SETLOP /GET ADDRESSES 1A4A J JA i у\ш, Wf.IN 2021 4407 FENTFR «16 .4 2022 5513 FGET I ANFkl /FAST FOUKIlb IkANSFIlRM. 2023 3120 FHFY S lAZtA 0000 FFT. 0 2024 627A FFUT m lóbb 411.? JMS tl UHI /PtRMIJTE TU 1 ОНІІГХ 2025 5512 FGET I AkL lAlió 4 Α Α.' JMS Ι ,ΙΑΙΝΙ /I'O FFT 20-Ά 1115 FMfY Г Ιό',/ 4AA1 JHS Ι UNSI RI /UNSIRAHKLE 2027 127A F ADD M ΙΑΑΩ '^•.4 JHF I II 1 /EXIT 2030 4274 FFUT Dl /Р1*С*А(Ю*5*А(512+К> 1661 ' '00 UNbCF-l . UHSCKH 2011 5512 FGET I AkL 166.· '000 ИЛІЫІ . MAIN 2032 3120 FHPY Ъ /чимдшпнг Ш 1 INI· 1 LltATTNI» AM'RtSStS OF 2033 6301 FFUT El /ή( І).п<Ы >і> J).A(K), ANP AíM.'+h) 20 Î4 5513 H»ET I ANFM 1AA1 0000 st ног. 0 ¿035 3115 FHFY С JAA4 HO* ΓΛ1· 1 2036 2301 FSUP El lAA'f 4 10 S jn4 IMPtX '037 6301 FFUT El /El'C*A(512+K>-S*A 2040 5510 FGET I AJL I ΛΑ/ UOJ TAD FMJ 2041 2274 FSUB Dl 1Λ/0 1106 f AD I 2042 451? FFUT I AkL /A=A-Dl lA/l 4Ï0J mí» IN Ut X 2043 5511 FGET I ANPJL I A/.' 1111 {•(A ANbJL /At'I'RISS OF AC&12*J) 2044 7301 FSUD FI 1A/J HO' Irti. h 204b 6513 F PUT I ANPKL /A(512+K)=A(S12tJ)-El 1A/4 410 1 JMS IMt'EX 2046 5510 FGFT I AJL lA^-i m.' IK Λ AM /AT'DRESS OF A*A< ))+Pl IA/; по/ I AT" К 2001 5%11 FGET I ANPJL 1 /00 4 101 JMS INur Χ 2ÏV 1301 FADD EI l/Ol 1113 ANfKL /API'RESS OF А(Ы2+к) 2003 6511 FFUT I ANPJL /A<512*J>-A<512+JHF1 1 /ο­ '.661 JMI 1 SI Π or /С X 11 2054 0000 FEXr /bUPkOUTlNt Π) ΚΙΝΓι FLOAIINI» АГФІ.ГЬЬ OF А(Г(АС>> 'OVi 1104 TAD J ι/ο І ОООО INK*. Χ. 0 2056 1366 FAD DJ 1/04 1311 Ι"ΓΑ 1NX4TK ¿Ob 7 3106 DCA J /J*-J«|J 1/OJ 1111 IAH INXSIR 2060 1104 TAD ì 1/OA '104 LH RAI 2061 /041 CIA I/O/ 1111 IAH JNXnrK 2062 1104 TAD PS11 1/1 O υ/03 JH( 1 INF·! Χ 20A3 7700 SHA ΓΙΑ /IS J 511 * i/ii 0000 INXSIF.. 0 2064 5215 JHP JLOOP /NO-NEXT PASS OF PART. /ьиьммпіш ΠΙ IUI KEVERSF FERHUll 1024 20A3 2371 ISZ HINL /YES-AKt AH PART.S PONE /UOftUMb ItATn 206A 5272 JHF HOREL /NO-NEXT PARTIAL 1/1 ' 0000 FI TI Hb 0 2067 2347 ISZ HINF /YES-ARF ALL INT.S DONE 1/1 i /Uí (1 A S FL lAC MR 2070 5204 JHP FLOOP /NO M XT INTERMEDIATE 1/14 /001 IM 2071 5600 JHP I HAIN /YfS-EXIT 1 1/1% /001 IA< /ΙΟ" ? ΡΑΓΑ 2072 4340 MOREL» JMS SETUPL /SET UP FDR NEXT PARTIAL 171A U/J CK A ( TRI / NO.UI ΡΑΓΑ 2073 5213 JHF LLOOP 171/ '-Ol 0000 riTHOV. 0 212/ 7201 CLA IAC l/M 1106 TAU J 21 JO 3115 DCA С 17^4 41,03 JMS 1 INLtXI 2111 /132 STL RFR I/'JJ 3110 t'CA AJL /ADDRESS OF A< J) 2112 3116 DCA C+l 1/iiò 1107 ТАР к 2111 3117 DCA C42 /C-l 1/b? 41.03 JMS ] IMUF XL 2134 3120 DCA S l/AO 311 * PCA AkL /ADDRfcSS OF A(k> 21 15 3121 DCA S+l l/ól 440/ FftHIFi 2136 1122 DCA S+2 l/A-· Ь512 FGn I AM 2П7 5704 JMF I L00P1 /EXIT 1/AJ 6374 FF UT T3 /T3-A(k> /SUDROUTINE TO SET UF FOR INTERMEDIATE FART1AL 1/A4 SblO FRtl I AJt /FRANSFORH fcXItPT FOR FIRST ONF 1745 6512 F IUI I AkL /AiKi A 13 2142 5HS FGET С 1//0 0000 F F XT 2141 617 · FFUT M /R4-C I//1 S/ , ' JHF I FLTHOV /FXIT 2144 51 '0 FGET S 1//2 0000 CTRL 0 2145 3124 FHFY У І/Л 0000 Crh2. 0 •146 6115 FFUT L 1/74 0000 13. 0 2147 5372 FGET R4 17/b 0000 0 '150 3123 FHFY Τ 1/76 ОООО 0 ,•151 2115 FSUD С 17// 0012 FIO. 12 2152 6115 FFUT С /CeR4*T-S*V M 53 5120 FGET 1» 2114 3123 FHPY Τ

101 •ч л. 4120 ПОТ Ь MÏ4 V.li 1 (>( 1 1 ANI II J15A С. - FGH M _U' 2'» I 1 f .UI« 1 ANI M ?1 >' Ч '4 FMFY V -51^ ΑΛΙ FFUT 1 ANF II /A(J1 't 11 Л 60 1120 FADO Ч 2137 1347 F АН» F 5 / AC J1 't J) A(J12+M Л 61 4120 1 PUI Ь /i>=S*T+R4*V _140 3341 F MF Y IN ?1AJ 0000 FEXT 2141 4513 1 Hit I ANI KL /АСЫ 'tKl- 2164 2Ï70 ISl L /L=L+1 2342 5347 1 Ы I 1 . / <Л(М 4 l)l('»)*f M Л 64 7000 NOP 2143 ...11 ISIIH I ANFJl .445 *>740 JHF I StruPL /EXIT 2144 1141 1 Ml Y IN Л 66 0000 bJt 0 214 . Α511 F PUI I ANI Я /Λ(51't!) J167 0000 HlNP· 0 Í44 0000 I 1 xr / U , n<512t »>>*TN 2170 0000 L. 0 . 44/ 4 7S4 JMS I SF TUI t /Ы Τ UI 1-OK NI XT líhOllf 21/1 0000 MINI , 0 21 ·0 >6/1 JMI I L0UF4 /tXIl £1/7 0000 R4, 0 23^1 ΟΟΟΟ /f5. 0000 71/S 0000 0 23^2 2Ο00 2000 21 ?4 0000 0 4 .1 ΟΟΟΟ 0000 »2200 M'4 2140 SE Τ ULI r SfllJFl /SUBhüUTlHL ТО UN-bCRAMBLE ΓϋΕΡΡΙΙΤΕΝΓί 1443 SI TL OL , SI Π 1)1 І · ?200 0000 UNSCFsM- 0 21 »ή ΟΟΟΟ lb 0 -VOI 4-40 IMS SEFUFH /DO A(0)»A210 31Ò6 Μ,ή j /START WITH J 1 •444 ΟΟΟΟ 0 , 2211 4' 71 UNIOOF· JMS LCÜF4 /UN bFRAMBLl ΙΑ/ ΟΟΟΟ ε't ψ 0 2212 2106 I'ÍZ J /NFXr J 21/0 ΟΟΟΟ 0 »213 2114 I'>2 Η /IS SLKAMHLING IiONL 24 71 ΟΟΟΟ 0 2214 ^ІІ JMF UNI OOF /NO NFXl 172 ΟΟΟΟ 5» 0

2215 2441 TS? FN /YLb PO Α(254)(Λ1/4Θ> 2171 ΟΟΟΟ 0 r "•гіб 4 / Z IMS I &t rtOL 23/4 ΟΟΟΟ 0 221/· 44С7 fCWTER 2 1 "ι ΟΟΟΟ Α.* 0 2220 "Λ IO FhET I AJL 23/Α ΟΟΟΟ 0 22 4 1341 FMFY FN 21// ΟΟΟΟ 0 1 2' 2. 6Ы0 F PUT I AJL * '400 2 ι >т 5511 Ft,E Г ANF JL /ΝΙΙΚΜΑΙ Ι/Ι .1 t. ThlIH. 2224 Ϊ34* FMFV FN 2400 ΟΟΟΟ NURMf 0 222Ь 4511 FFUT I ANPJL 24*4 4 ' 1 JM MAXI /Dl'EKM NE MAX. 2226 0000 FEXT 402 1 07 Ρ •% <\ 1 222? 5600 JM - I JNSCKM /ΕΧΙΓ 2401 1107 IAH К /bUBbOlíriNt ГО UV »fRAMBLE AÍO) .ή<''.12» » ANb «04 4 -.03 JMS I TNPFXl /IK Γ UH r J-i Ч ЧГ 40 > 1112 ПСА AM TÍO 0000 st rur Г » 0 4>Α 440/ II NTIR 2231 1105 ΓΛΟ P512 .40/ JJ12 t Gt Τ I AM 2232 4'>0Î JMS 1 (ЧГіЕХ^ 2410 40 ΪΑ IUI'. MAX 223J 3112 ПСА AKL /ADDRESS OF ACÏ12> 2411 AJ12 11 UT I AM /rt K) A'K)/MAX 2234 Юо-э ИГА 4T3RE '412 ΟΟΟΟ IIXT 22 il 1105 TAD F512 -411 4477 mi ι ι AST /R jl ' » 2236 4543 JMS 1 FLOAT '414 520 Î JMI N0F(M+3 /NO. Г0ЧГ1Ч It. 2237 4407 FtNlLK •41 > 7 '01 CI A IAI /Yrs. ЧАХ 1 2240 ¿f61 MUT HN /FN-312 -41ή (03Α PCO MAX 2'M! 5455 FOtr I STORE 2417 /112 STI MR 2242 бПЗ tFUT Τ /Γ A<0> Δ ") 1017 lit Λ MAX tl ."43 151J f ПИП I AM­ Λ 4 3040 IK A ΜήΧ + - 2244 4341 PI ιυ Fh 24 ' ιΑΟΟ JMF ί NOKH 1 2-'45 4455 F F UT I STORt /A(0) = (A<0J+A'51' ))/2 /PFTIRMÍNt MAXIMUM AMfl HUIT -"46 5123 FbtT Τ .4M ΟΟΟΟ MAX Ir 0 2247 2512 Fbl Γ I AKL '4 4 /-Ό0 ΓΙΑ 2250 4341 FIIV Fh Μ ""i 1014 Π A MAX 22Ы 4512 FPUT I AhL /Λ(51",) = (Τ-Α 512)>/512 •4 "Ά 30Ϊ7 ПА МАХЧ1 225-> 5100 F6£7 H • 4 ν 1040 ZLfl PflXi » /« Г MAX 0 22ЬЗ 4341 fr-iy FN '4(0 110/ Di A К 22Ь4 417-» F F UT F5 /F 5^1/512 '4ιΙ 4'54 MAX1> iM5 CK II 1 ?-гЛ 0004 COS ΜΙ 4407 FtKll К 2254 41 'M FFUr Γ /T-C04(F5) 4J1 5510 Fbb I ( A JL 22*57 4115 FPU Г С /Г-'T '414 ΟΟΟΟ Ft XT 2260 51/2 F OF I F5 Mij 44/( IM' Ϊ LTMl /PATA PFIUIfN 2'61 0003 SIN '4'6 7Α40 S/A UA /FRKHftMY I IMIIS ' 22^ 6126 F »UT V /V-SIN(í5> 2417 ΓΓ53 JMF MAX2 /КС dt T NI XT 2^63 6120 FFUT S /Ь> '440 44C/ 1 tH FR /ft S 2264 5351 F CF Τ ZP5 441 "»12 Hill 1 AM 224Ь 4361 FDIV FN '442 .ΟΙΑ FSIIP MAX 22АА 6361 FPUT FN /FN=1/1024 441 ΟΟΟΟ Ι ΙΧΓ 2267 0000 FFXT 444 АО IAD HORp /A2 ΟΟΟΟ ILXT 2'/о 310/ ИГА К /K^Sl-'-J >4М 447/ MAX2f 1Mb Γ IAS f /'s Ы2 * 4/Vi IMS 1 SfTLOL /GtT APPRESSCS 444 . ·11 IMF MAXI /NT. (INIINilt 2'· 77 4407 FFNTLF. .-421 IMI I MAXI МОО 5511 FOET I ANf JL ">*,-. /FINI' FLOftUNO rtliPhl' iS ΓΙΙ A(K> ANP A^KFFSIilKF) 2301 1513 FAIiI« I ANFKL >4οΑ ΟΟΟΟ tNIT. {, е 2302 417 · FFU1 ЬЬ /Rb^A(51''+J)+A(512FK) 24 J / 110/ 1 АР К 2103 3115 FMFY С 'IAO 4^01 IMS I INPI XI 2304 4 164 F FUI I'S /D5 C*R5 441 m * PCA AM 230Î) 5375 FGET F.5· 442 ui-* 1AP AK1 2306 1120 FMfY S 441 ΙΟΊ ΓΑΡ ISTORI 2307 6375 FFUT R5 /R5-S*R5 '444 3110 PCA AJI 2310 5Ы0 FGET I AJL •44''. 5Α5Α JMF t INI! 2311 2Ы2 FblJfi X AKL /Alt 511 2 PATA POINTS PONI f 2312 6354 FFUT Q /0-A(J)-A

102 uoo 3100 " 04 TWNTY /20 O'ÍOO 0000 ΆΟ/ F IFTY /50 /SUfcMHJlINlb [0 H ОТ THt ЧРЬС гкин- OJOO PtLT, TENTH /0.1 /i: :ΙΙΟΓ THF SCAM',. 26 7 J 1A43 HNtiK /0.01 / 9 JA/Ï OOJ? FIO* 0022 /16 /A·.', MV ΙίίΜ. /4,Ь\> 0006 M' 000ό /4 7 .'A/4 ΟΟ'ίΟ F40. OOIO /40 1Λ40 JA40 JA Л 1110 Р600. 1130 /600 0000 0000 'A7A 4770 F4770r 4/70 3070 'AA* PI Ι Τή. UFI JA 77 XrOKDli ХГООКГ 1100 '.7 Ό Hit I SCFLOr '700 Y( rUDli YFOORD J701 440/ 0000 Sí f юг. 0 SrALE2i FEN II F. J/O ' ЬОЗЗ 4404 Uh Iff /STAKГ Fl ОТ f ut Τ F HIGH ОІ Μ-Ό lA/4 mst,->4 гчи* ς '•/04 0000 ΊΉ/ Mb 1 ANSUfR F EXT Э70Ь ΤЛ: ANSUK tuo TAD FIOKD U40 V04 1 л, ньтлм SHA CIA 111. J/O/ //00 'j/ή (ΙΑ JHF SCAlFl+4 /Л АО J710 &J24 t'CA ASLIX IHF 4 J/11 ЗІ-ІО ГАГ1 FAOO 44-)/ F bN-ЕЬ í/l-· IJ/Ь 000ή ' UFO ЗПІ DCA ASCIY >>tt Fl.r FH(t»h j/n 4404 UK IM /•FREQUENCY (CM >' „Ό 10 Γ« ΙΙΙ< FtOU ''/I* 3161 ΛΙ 'Α Ι-ΠΙ V /V FHIGH Fil 111,0 TA» ASCIX 0000 ι f ΧΓ J/l* TAI) Fie /'Λ-) '.ΤΑ ?71/ DCA ASCIX 440 ϊ t ΙΪΓ /INITInH/t TAD ASCIT -"01 ι А ТАГ TAD F 40 440 f Γι,ΊΤ /FLOT AXfS. 3101 DCA AS2IY 01 '0 01 '0 7Î04 С IAC RAL OOAÖ ΟΟΑΟ 3153 DLA SIZE /•00 С Α 4404 URITF 440 ϊ (ΙΓ 31/1 нечозА Ot JO /30/ Ο'.Ό J/'/ ΠΑ TIL lAC RTL 31^3 4 AJO 4Α·0 2/30 DCA SIZE 3120 7 '00 ι Ι Α 2/31 DCA S /PLOT AMFL. SCALE 1121 440ΐ HÍI- DCA ЧП -ι44 J',44 2/33 31J DCA 4F2 4AJ0 4Α.0 J/14 4407 FtNFF^ / 00 IIA 2/ЗЬ bOJA F CLΤ MAX 440 f f-ΙΟΊ 2/36 2A71 ".UB I DELτ .44 '-,44 J/3/ 0000 F-XT ΟΟΑΟ ΟΟΑΟ •*740 11 АО ГАГ· HORD 7 00 f LA 2741 7700 SHA LLA /MAX 0.1 » 440 Î НОГ -74 414'', JHF .+3 /NO -/4Î TAD DELT+1 /YFSf INFtRVAL-O.Ol J744 ЬКР IIA (Af /*.F Τ TYF E FLOT FI AG J/4b TAD DFLΤ DI A TYFF-l Τ /ТО ПОТ. J74A DIA Η Iti (A( h 11 /4 2/4/ 440/ SrALF4,. FENTFR /n/ Un 'it/t /M Г SI /I-. J/ЪО FOE Τ !> Il Л [AI J/'.L 0000 FtXT /101 MA OMINT /41-Г ORIENTAI IHN J'S 4A7/ IMS I XI ОКР I f INTIh '7r1 TI'ÎA ΜΑ .-Л H ( 1 f4*, . 'li4 /001 I AC nui (. /Γ 4ΐ J/ .*• 4403 FLOT /FLOΓ NARK FfXT J7',* 0000 0000 IAI· Ml TA J7*.7 4A '0 4AJ0 IIA >TOM /1 (ЫІІКІ > АИПМГЫО) >7A0 /JOO CLA 1 ПННК •7A1 11 ".* TAD ,-З П.І 1 L J/ÓJ J3«4 DÍA .tj F IIP V 4401 FLOT FtXI 0000 0000 Irtli HOWi 4A0'> 4A0A Λ Λ IIA /υ с ' 7200 LLA 1 ·7Α ІИІ . + J ТАР Г 4//О IAK I S1 OKI /rt'.. INIFRVAU LiSTdftf) ΡΓΛ A4LIY IHf ''t Al 1 1 TAD . Ь η N1 IK /NO DCA ASCIX ЮІ 1 ( ?7/3 4407 FÌNTE К F Hf Y I Ht L J//4 MJO F (iE Τ S /Ι .'»Γ 001 ' ÛUTFor /PLOT NUMBER 1 ''//А 001' Τ /f ( 4 TORE > NFXr ADIifiESS '/// M*»© F OE Τ S B JOOO 1 14 F API· Ι H MA и /H INTEKVAl 1001 АПО FFUT S MA 100. J01A FbUb HAX MA (•>t, l JOO! 0000 FtXT ι I/O M A ' t ' Ï-- 4 TA: HOKD /7E0 UNII \ К /FLir FKFl.t (NCY SFAI Γ ЧООЬ '-FA SNA CLA /S MAX » S614 FIFI s 300A JHP I SC Al LS /4T-10NTINUE 100/ 440/ F AHO I H /ήΜι [hUKVAl FFNTFR /YES Î010 0007 FCPFl <Öll 0000 FFxr 30 IJ 561 t JMF I SLFLFZ ЗОН "jl/ ' /4 7 І SCPI 0Γ-1 sCAl L4 IM 1 Y ihÜJ спсткин. ( 11 M A . f 4 OOOO •5F^^0Γ. 0 /001 TAL (wtA /'•00 IIA 4101 nor /FL HT MAKK ГГА k 01 »0 OI.'O 30 >0 1114 MA Η ΟΟΡΛ ОЯІ 10 "'t 44/А JH4 I INI FL /.00 1 I A 30-" 440/ IFNIFK /"-LOORDTNATE 1 '41 ΙΛ . J Í0>3 ЪОІО F dtΤ I AJL 1>4' ΡΓΑ .+3 ІО'4 0000 FF ΧI 410} ПІ 1 ÍO"". 44/0 IMS I 111 /BETUEÍN FKFO-LIMITb 01 < ( И' 30'6 /А40 SZA 0000 ОУСС ÏOV >"1/ IMF YC Ы»12 /NOг SKIP 10 ( -A 3030 4Ϊ00 JMS YCOOKD 1 '74 IA. F40 303Í 32t. Ь D-^ Y- 1KD Η it- M A A* t IX ÍD3J 440/ FLNTt-x IJ4 ГАИ . 4 ІОІ* t,01A F Ы Г MAX 1 '/4 ТАГ F 40 30 Í4 rSJK I AKL •Ы · U' I PI A AM IY 103 > 0000 FtXI 440 FtN'l t І016 1160 TAD HORD 'Í.^O F Ы Τ •> ΙΟΙ' /700 SMA CLA /DATA MAX ·* ОИТГ ОТ 001 ' /f' 0Γ NUMPti JC40 5J4 1 JHF *1 OOJO ÍO 3041 1U4 MA H 0000 FfXr ІСА-· 'MF YCORIHO ц s-'c? . "4 •MF 4CAlt 1+4 1041 4407 hFNTFK •Л ,6 Ml run / , 1044 *-Λ1 * F Gl Τ I AM ο η F IVI ' 414·) 0000 Fl-XT JSO1 UN /10 104Α 4'70 JMS XLOOKD

103 J04/ 1«,Λ XtübO 3254 32'/ HO/ ТАР К ÎOÏO 1114 I Al· Η Wíl 7640 SNA CLA ( '10 410 ί IMS I INPFXL Í- Il 1113 Pt A ANI M 3052 7001 I AC 4407 305J 4403 I LOT 3212 FtNTEK IMI Il '0 3054 0000 XCOKB. 0 FRF Г S 3234 AHI FfUl С /С S lOST 0000 YCOhO- 0 Ι-!·". jJ-M fOF Γ Τ lO-îi 2114 ISZ H F PUT S /I-T Э0^7 4477 JHb I LAbT /h=112 * 1216 Al 20 F CF Γ I AKL 30¿0 J№ PLTSP /NO, fUNTINUE 3237 -.Л2 •>221 1-40 A123 mir Γ /r-A(k) 30 Al 31*;2 PCA TYPFtT /SFl TYFF-flOT F1 Ab 2U0 r 40ft ς 30* » 7001 1ή( 770 TYFE 1241 1 '4 * 2110 FSUB I AJL 3043 4403 FLOT /NFU FACE 1 '43 A12A F F ur υ 30ή4 4160 41A0 I'44 lU'A FAPU υ 3065 0000 0000 3245 1121 ΓΑ PP Τ 304« /300 CLA CLL FFUT υ AOò/ 5615 mr l SPFLOl FAPP υ 3070 0000 XCOORfl. 0 /CAI CUI ATE FAfip L 3071 4407 FFhTf R /X СООМИНАТГ. Ι-APO I ANPKL 30 / J HIV MAX 4036 Fuir υ /U UFOFt FAÍk+2 3073 3320 F MF Y LI 100 FEXr 3074 0000 ρεχι STA i I I RAL 30/Ь 4373 JMS INT ΓΑΡ К 30/А 1314 TAP F 80 b 12 6 /640 /А I LA /k-2 30/7 SA/O JHF I XCOORb 1 '1/ ' . / l IMF ΊΜΤΗ2 /Nu 3100 0000 YCOORPr 0 /CAI PUI AFE < 40 44C/ FENibR 3101 4407 FENTER /YF1 /Υ ΓΟΟΚΡΙΝΑΓΕ. 'Al 3327 FMFY 1,1 3102 2030 F SUP FIOU •> Ά2 1111 FA:^ I 1103 Al->6 FPIO υ З-'А) 6114 FFU1 1 Η \<0/ Γ .014 ΊίΙ/líV 3104 3315 FMFY C2400 3-Ά4 SI-»A FDtl V ЗЮЬ 2315 FSUB C2400 1 'A' 1332 FMFY (, > 1104 0010 NFOATF 1 64 11 '0 FrtIP Ь 3107 0000 FLXT , l'6/ 6111 I Fill [ ANF II /Ad) 1+.01/14' ЯА* 3110 4Í23 IMS INT I 1X1 il 11 1313 TAP F4e 3112 JMF I YCOORD ÍFMUR 5700 HF I V τι із 0060 Ρ4Θ» 0060 FMFY t,i 3114 0120 FÍ10. 0120 i/i mi 31 Ie- 0014 C2400. 0014 /2400 Ft·',. Τ FF Π (Akt /A-> 0000 0000 (10 · ito/ Γ Al k /CONWRT ^i .PNT. TO UN•TbNE' P S.NbLE-FREL S.O HOI /A40 S/A IIA /Κ jl I ' /INrtetR. l 1104 -21/ JMI SM ΓΗ /NU L H ΓΙNUF 31 3 0000 ΙΝΓ· 0 ilOí HO/ ΙΛΡ k /il s Î1J4 1160 Γ AI· HOR Ρ llOA 4 01 JMS I INPIVI îtJ'-. 7710 VA CL A / 0 110/ 1114 PI A H 4126 5/23 JMK I INT /YEb» -0 (HO 2107 Ib/ k τι-·? HAI TAD IRИ /NO mi HO/ ΓΛΙ· k M 40 /104 CLL 4AL 1112 4,03 JMS I I NUF XI 1131 7200 TLA 1(1 1 UH ULA ANF Jl 3112 UAO ΓΑΡ HOhO 1114 4407 IINTIk 41 η 7004 RAI IH . 512 A FUI 1 У 11 14 1160 Pf A HORD 131A 1(12 F MF Y 0 > ini il'*-' IA[I t XI ni/ 1114 1ЛРР ( H 31 ΙΑ 1353 TAD M12 7 40V5 f 1120 Ail4 FUIT 1 H /Adi I) AdlDt 31 Ϊ7 /MO SPA 1121 1I2A H.L Г У / .01714 lift*' JMf .Fl /YES 1140 5345 1122 11 '7 FMPr (il /NO. 40V1 » 1141 7640 SÌA CLA 1121 l' Il FAPP ( ANF 11 JHP Ι ΙΝΓ /YFS. 0 1142 572Ï ti'4 AHI F HI Г L ANF II /Aíll ) Α<11·) 1143 TAD HORD /NO. 40V5 1160 11'1 0000 FEXr / .0142Η1/1*» 3144 •Î721 JMF I INT 132A 1600 JMF I SMIIOTH /(ΧΙΓ 3145 11 .7 DCA EXP IS2/ //72 ait '/72 / 014*0571 1146 11A0 ΓΑΡ HORD 3310 421/ 4217 3147 7110 LI L кЛК «111 4. A 2 4242 3110 21 J7 іьг txp 7774 lt>. if 74 / ""-.'M'HA ÎIM 534/ JMF -2 Ul · 11(1 1^20 1,-0 31'..' IMP I INT •J723 1114 (120 1-.20 3151 //64 Hl2r //A4 1131 7/71 tu, '/1 /-.0Н17142У /TFXT-<.rRIN(V. FOR FLOT -ftOUTINFS. H3A 1201 1201 31Ъ4 4040 MF^RZO» 4040 111/ 5 '03 '.-01 1151 220^ 2201 /KF /ΡΑΓΑ Ht IblIbN 1 KHÏUtNlï Ι IMI TS f U*»A 2340 2140 /b 1140 0000 LIM. 0 31 ·Ϊ7 7600 7400 Π41 4407 Ι ENII k 31Ó0 7400 Ht SG?1f 7400 114. A1A2 H 1Г І Ач 1 HAI 0622 rtkb'.Jb. 0A22 //F R H4 1 2010 • S IP · »и 11А2 0··»21 0121 /ta 1144 0000 FtXF HAI -"-.os 2505 /UE 114 , И АО ΓΑΡ ΗΚΡ 31A4 1603 1A03 /M И4Л 7110 SEA 31A5 3.40 3140 /Y U47 ι740 t4t 1 LIM JIAA 1003 1003 /(L 11 0 4407 FFNTFk •167 1140 •440 /M 53' 1 1011 H.L FH'bH 3170 1100 1..00 331' 2162 FSUB FPAI . 3171 IIA. Mf1G24. 514* / )1 J3* 1 0000 FFX- 3172 0000 0000 U'4 UAO ГАР IKIRP «3200 iV 71 0 . A /aUSRIJIlNt ГО ',МШ.ГН *HF 1FFI IMf. 11V ^740 W [ • IM / ,- TINІ Г ЧМІЮГНШі U"lH FOLYNOMAt П ¡; t ORI ( ili/ 440/ Ι-^ΝΓ h, 3200 0000 bhDÜTHf 0 * 31Aii ЫА2 ur 1 r1 Al 1 1 '01 7200 „LA HAI 0000 -ХГ ÌJ02 HO/ ПСА К Î3A. .740 JM 1 IM noi 1114 P-A H (ІчМ 4404 Bl 'fiHt -IKII«· /•MORL 1204 210/ I-.7 К 1(A4 1711 MF SI. 31 / Ν" F RF E ROIJRÍ 1205 1107 ТАР К HAI 413/ JMS 1 ANSULn J20A 4103 JMS 1 INUEXL ЧАЛ 1140 ΓΑΡ AN >UR 320/ Ϊ * PLA ANFJL 1Ά7 ОАО ТАР MINEES 3210 2107 ÎS7 К ((/0 /A40 >¿A < LA 3^11 4407 FtNlfcR 1171 740. HI Г 1212 1514 FObT Ι H 1172 .420 JMP Τ HAR Π 1-43 6120 FFUT S /S AÍO) 1171 1717 MF ->3 » (/1/ 3214 1511 rr.t- Г ANP IL 11/4 2014 2014 /PL 3 4*5 Al 21 FFUT Τ /T-A<1) U/1 l/'4 1/24 /ОТ 3216 0000 F EX- U7A 4000 4000 3217 no/ SN ΓΗ» TAP К »3400 3220 410 3 JMb I INULJÍL /SUSROUHNE Γ0 FLOT 4* ANP RESULUT KIN. 3112 PLA AKL 1400 OOOO NRhES, 0 ,->322» 2 1107 ΓΑΡ К 1401 121A ΓΑΡ Ι θ 3223 /001 I AC 1402 1103 PCA SI/F /SI Τ SI л «2 4 4103 JMS С INDfXt (101 1 • ./ ΓΑΡ У ΆΟΟ /,tr UMIRDINAIt 1225 H10 DCA A il (404 (1 i РСЛ Α<4 IX 322A 73 2 A (Ι Λ Ml RTL

104 ІАОІ JIM m л л.і IT J-ÏAA 4040 4040 І40/ 440/ IfNrt^ ІЬА/ 4040 4040 1 MIO t.' A 4 F Ub I Nh ¿'j/O 4040 4040 f411 001 · OU FF UT /Fl ОТ NR •Jb/l 4040 4040 1 Ml" ОО'Л Ь? л /г 4040 4040 1411 0000 ГЕХТ fb/l 4040 4040 (414 4404 WMTt J5/4 4040 4040 Ï4l'b 11·-,4 M 'oG JO /· RL'. · »'./S 4040 4040 HU /.'Ol LIA ΙΛί ІЪ7А 4040 4040 Î41/ 440) НОТ ЛЬ/? 4040 4040 '4 0 "•JO -»0 /F 1 ОТ MARK 1600 1A17 1617 Í4 '1 f440 1440 JAOl ЬА17 S61/ 14 » ' / 00 I 1 Л IAO' 0640 0640 WM 4404 (1 ül IAO! 0401 0401 /DA 14 4 A70 .••б/о IA04 ?401 J401 /TA (4.". І440 KE 'lit 1440 ЗАОЬ 4020 40'Ό / Ρ 34 >ώ 1407 ftNIt-K IA06 1/11 1711 /01 (4V Ί04/ M l· Τ HF Ч 1607 16 '4 іб-м /NT 1 J4I() 41- A FliIV У 3A10 M?1 •47? /s: 14 11 t.'Al 1 4F Y M2400 ÏAU 0000 0000 Í4 1 · 00)0 FF XT lAI"· 4040 N18012.- 4040 Ï4ii 404 ' JH', I F 1XK JA1J 4040 4040 (4 f4 I •.» ТАК МЫ Î614 -•зоь J30S /ЬЕ Í4J'' 1J4I IIA H4 3A1 j 16'3 іб-^з /ЧЬ t4 f A /COI ГАГ JA1A 1124 11-·4 /IT Ï4(/ 440 i F ЮТ lAI? 11 »A И-'б /IV f440 ."• '.0 ΪΑ-Ό 1124 1124 f441 000>· ^0< 0 fA-M 31/2 3172 J 444 •> / oo ( IA S62> 4000 4000 , f44 Î l' 4l тли , ·> JA'f 4016 МЕЗОІЗ. 4016 f444 i '4/ IiLA . + f 1Α-'4 0116 0116 f44 , 440 f II Ol fA'b 1700 1700 ί44Λ 'А/С JA/O ΐΑ^Α 401', MF4G14. 401 "Í Î44/ C<00 С JA'/ 1103 1103 И'.О / ОС (In JAJO •vi? 221/ tl .1 l-M/ ΙΛ1 .-' 5631 0000 0000 Μ ή ASI 1Υ f4 . ' Il M J63J 40 i«. WSGIS. 4015 І4 ,f 4404 bKITF ЗА η 1114 1114 (4 4 ЧАО fi Sit 4 IA f4 1411 1411 f4'.. A(.C IMF I NMvlb /ηα/· τ* 1611. 0000 0000 »4 ,/, 0010 f 11 10 ЗА JA "'Al? HESGIA. 2617 (4 / 'AOO t ΊAOO , •AOO ÍAJ? 14-·4 1424 ί4Λ(> 4 .00 4 .00 14' '.001 ιΑ40 3/00 3700 •.4Λ1 (KÍI4 M .100 . 0014 / 2400 ІАЧІ 3716 1 3716 MbSDl?. / Ν f4(, .' '0 * 'J •>() 3642 00 V 0527 /EU IIA f 0000 0000 »A4J 4015 4015 / M І4А4 ΝΚ 0 oooo /Uh. OF 'К 3644 ОНО ОНО /ΑΧ Í4A , 0000 0 1640 1110 1115 /IM f »AA 0000 0 1646 ^010 2.ІІ5 /UM /ИХ) MKFNbS, 164/ 40// 40/7 f4A/ 1/1/ MF' SI If 1/1/ ÍA-iO 4040 4040 14 Λ f/1 t T/U / 1 3601 4000 4000 (4 1 ІЛ '4 1A '4 /NI 3A.J 371. MFSGie» 3/15 f4' 0% > 0*. ' • /ih 16.1 0130 0130 f4 M ОАО'. OAOS /Ft 1A*;4 0011 5011 Í4/J /Ml ¡60'J 1640 1640 1* 0*. )4/*J r,o*- /Ml· J6.6 40.1 4S01 f4/A '40·. '4«'. /IF 16·./ /240 7240 J660 4000 4000 3661 3/3/ HESG1V· 373/ 3AAJ 101/ 101/ Ï6A1 J/40 J/40 3664 1 .01 1501 3661 1A11 1611 ÏA6A 4023 40J3 <·.ΟΛ 4A40 4A40 366/ JOO'. 200S /FE 1W>/ cot OJO I /КЛ 3670 03'4 0324 /CT С IO Oïl 1 OUÏ /CK 36/1 "'SOI 2201 /RA S .11 0/V /Gh 16/", //40 //40 JM ' 40// (,/40/"7 / f 36/3 4000 4000 J-il I 4000 4000 16/4 37'Ϊ HESG24. 17?! / S Г.І4 ΙΑ.' > HtbbU ΙΑ 'J ÏA/S 0424 0524 /ET Î6/A 40'Ό 4020 / F 4677 Ο'.ΙΑ 051A /EN 3/00 4440 'Î440 /f 1/01 2410 2410 /TH 370J 0416 OM 6 /EN 3701 40J4 4024 / Τ 3704 3120 31 JO /YF 3/0'. 0'І40 0.40 i/06 4JJ3 4'23 370/ 4J40 4240 І/П '•At? 2*17 /TO 17U 40 J3 40 J1 / S i/i-1 2401 2401 /TA 3713 _>->->4 2-'",4 /RT fill 1 .i/ l'.f/ 4714 /200 7200 l,f4 (01 •JOl »/li 171Δ HESGJ7r Ï/16 / N fill ι .·0 IJ'O 1/16 OS'7 OSJ/ /ІЫ Í ,fA 1411 1411 1/t/ 4006 4006 / Γ I .f' IAO/ 1A0/ 3/JO ..-04 220S /RL 4011 1 40 4011 17J1 2125 21 'S /OU , * .41 IA '4 1A" 4 3/JJ ΟΟ,,Α 03. A /EN Î 4'" O'^JJ Ol" /th 1'Jl Oil om /CY t ,4S PA01 "ΆΟΙ /\ÍA 3/24 4чИ4 4014 / L 1 .44 14/ ' 14/' /ι : l/.S its 1..S /IM 1.4.. 0000 0000 Í7 '6 -.24 1124 /IT f 4A 401·, MFSliBr 401b 3727 .140 2140 f .4/ 11H 1103 3730 7/40 /740 1..0 τ .,7 JM? 3731 4000 4000 I/Ï7 lil? 37Î2 1/06 MESG2e. 170A ÏSS!/>J 00Э0 0000 17Ή 1417 1417 f Л f 17 *t Mt4G

105 174/ 40// 40// f IHf\ 040 j tlbJ Г Îbt l· î/эО 4000 4000 / * 1 ULK IN 0Α*>0 І7.1 3/15 MFSG3b 3/1^ / M 1 (ІШ 1 -104 CIJ4 1752 1/22 1722 /OR >ІІІІ 132Ï ιαο»4 •».vi о юг Ï75J 0540 0540 /E Λ L one Ι ΟΜι 0161 267·· 37*34 1116 1116 /IH Akt Oll"1 1 tK 7417 3755 -'405 2405 /TE ДЬН iL oui 1' г **4ΑΑ J75A 2*06 2206 /RF »M KL 0113 ΗΛΙΝ •'ΟΟΟ 3/Ь? 052? 0522 /fh пКЗЫІ К 013/ НА INI 1662 3/60 1707 1707 /OG .h'UR 0140 МпЧ 0016 Ч7А1 ¿•ми 2201 /ЬА AFC. V 00 ИАХІ '4 ' ί 37¿J 1·5_4 .521 /НЧ r tu I 1116 rtrtXIl 0071 Hl JJl, /f 3763 7740 7740 f ι IK 0 '.0 Μ Ό« ОС 00/4 k.iTIO 1411 3/64 4000 4000 ι.' IT 01*1 «ИХ! 431 kAl fill HAO з/б·; ΠΙ? MESb32. 151/ /МО Λ h '4 •; Η.''Χ 2 4* J F t'A 6AJ2 1766 04 2Ь 0425 /DU LiA( KbR 0444 i-F Ν: 1001 кіч AA31 3767 1401 1401 /LA H M,R оол* Hl .Gl 146/ klUAFf 01 3> 3770 2411 2411 /U I.M.lN ÎÏ6Ï hl b.O ϊ ./0 1 37/1 1716 1716 /ON IHJN U46 nf Uli "Ί',Α , 377J 4001 4001 / A fMrh 04 >1 Η (>)1. 1ΑΙ ' 3774 Ib-'O 1520 /HF l KU» I' 0144 Ж' Ы1 162 Ι 3/74 1411 1411 /H '•IMF OLM ИЬ f.4 16- . kFUlNU 04 '/ 3775 242Ь 2425 /ru (f Ü 6614 3//6 0405 040·; /1"C 11 ι ιΛ »/ Ϊί f KHl. И *' 37/7 /200 7200 /: ЖЧ.І/ -Ν kkNul Il 1/ »4000 dl -.t. ΙH ie .2 ι Ni ' И .1 /ROUTINF TO FIJT FKOGKAtl1 OH 'Flft-HATA· TAFI HI ,Ι/ΐν lAAl 1 kNf. ^ Un» 4000 /^01 CIA IAC Ι AI Cl 0606 »I '.I ' Α'ΜΛ KUN OO · 4001 3247 I'Cn TFflAlj /F IE l l'-Q LHf 1 К ОАО/ m »020 31'.4 h4 1 400' 1207 TAP f440 /FIRST TAFT H.OLK ι 111 ι M OW Hf ,Г. Ч ЗІАО 4003 3261 t'CA ТІЫІч I IKh ' 04 '0 Ж »li'J 3 1/1 Í L ì 4004 1210 TAP MH 1 114 П\ tOOÏ Ж SI. M fft/4 ъл\ ж « < f 400Ь 4235 JMS Ufi π Tl· /WfvITt θ Βί OCKS Of 1 ІЧГгІ UJ6 rtl .O^D 3161 bAMF1 f 01/1 4006 /402 HL Τ -JWO 014/ Ж Sb Ά 11/I í' A -'411 400/ C440 P440· 440 I 0004 Ж SO»/ ï/t'j ΊΙ Al I 1 'A '0 4C10 /770 MR. //70 /-Θ r IN! Ol .4 Жb02Ü J/l' SC Al I '/01 TFFLAG 4047 /FíM Tit 1//' Ж S '9 3/36 sCAI F 4 -/4/ TPBLK-40AI Ih |· 17/í MfSfjl 1Ъ14 A j П1 4 JkirT·- 40*** t ·ύΟ 0/4 î Ж 41.10 3/43 SU AOO \ 1 »00> 00J2 f F •>< 11 1/·"1 S( F ..Ol ', '0 ( Ι ι '0 « Ό , r ltU f •OC A r F fJ12 ι//·; I biQ Ï115 • f f Ι Τ 101 1 Uri-A 04'.J Ы NS 0044 »К IAI 046/ • I II IX 1661 1» ι 16A4 M II Ol ('11 1 0041 .f 11 (F ( /A ΓΊ 1 1 '6/1 F IUI I M' 4 Hi L 1 . ' JLA ( 1 ur I ' U и|1<( 1 1 j 20 MUI '140 ItJkf-C 1 1 .1 > ΙΙΝΥι " OvoJ .HI /41 1 Hi »IAA 41'MB 00Λ1 HVl /40/ m С 1002 Ml ^O/A HNL 00./ )l . 464 MU hfl -07' 1 tub ОбО » HOVh t 10A IX( Olii/ hilft /SOI t 1 401 HUI 74 4 I'. MA/ m« MUY /4'. • M HI Λ 1 F ..Ь<, OOÖ' HS 1ok г J'.l? MT H' > /ι F .11 i' 1000 Nili /40'. >F »1 t T l'A I t I0 •» H 1 ΙΑ'4 Nh «o •» 1 I AM 0'Ι ι nu ΛΟΑ4 NI ÜAII 0010 ΜΛΙ 11 ·)0 '0 (Iti COUO NI XI 1 113 HI <>>0/ FF Ihh ÍH И NI (W4 SUIS OfìA'i 1 IMi 'f.07 NI L 040/ .Г ONI Wî'l 1 IVI *ί.*ν » HN1 /411 41 ом ОНА 1 LO 0142 NIlkN 2400 ι Cl 23 FlrtGFF 01J4 NMhHl OO/"1 IFN '.Öl I 1 DAI 0141 NI 14A4 UMI 0200 KÜU 0030 Nkkf S '400 flik 4061 l/T -s fLIk CC A FHAt 4<Ч' H l· M Fk l/^l k4 «. Ч mo 142J f 1 Itk АЛ . UM I IF 40 *' F I WKli 014'. F ι KU 6,12 41 1 AF F om l S 1 ill Í 0021 H OOI 2006 ХІ UHM M) 0 f'UK '000 м υι 4403 1 ^J -".13 nors 1 ..1 F'. "Μ/-· Ì orsi 1 .1/ II 0114 HNHh 1643 UHI Ik H IM 4 UN J'kl 0210 HOM' 01Α0 FIFU ΑΊ04 INMX 1/0 3 »LSF 6501 INItXL 0103 11 14F 30'1 INI I »4SA FI UH *•> '2 LNITL 00/6 H OL A',23 INF J! ООН f Ulk A*ïl3 INT 31?ΐ FMThXl 1/ 1 INXSTk 1/11 Fill- 074/ 1 0106 FflWCk 12 IA ll ПОІ 2015 f'ICTR 00-/ h ΟΙΟ/ HO 21/0 flfl 26///1/ w1 AST 00/7 F.600 Ϊ4·>/ Ι ΓΗ 3340 ••40 '6/4 LINI 0070 •'44!> 400/ LLUUF 2013 4,00 3460 106 01/6 0000 (WOL f 0 Û1T/ 0000 FLAG f 0 /AR.ERROR FLAb «4035 /URITE 0« CINC-TAFE. 4035 0000 URITTF, • 0 4036 3356 DCA PLOCKN (MW INR bfctNJtNLfc 0 lïhf- IMS I *( ^О^О 0450 AZE /TFFLAG=0 •* hl АП МЧ τ Λ ОО'Л 6055 JMF .+4 Ч.НГ ι\ IMS І / /Lhílh fil, FT. OOSJ 1020 LDA I /YtS. FIFLD-1 H XI 0000 /EXIT (Π. M. 0051 1020 1020 Sllhl )Э01 /SIHJAKE 00S4 60". 7 IMF .+3 COKS Г OJO.1 /ЬЫ Ahi КОП Г OOSï 1020 i_DA I /NO» FIFLD-O SIN 0001 /SIM 005A 0020 0020 LUS 0004 /Ι 0·>ΙΝΕ 00S7 0001 ΑΧΟ F ABS ΟΟΟΙ /Al'SI'l LIE OAlUt 0060 0736 URI I U /URIIL ONE BLOCK НПО OOOA /SET H.DF 0 0061 0000 TPBLK. 0 /ON I INC TAPE i-'IÌ-l 0007 /SE I f l l'i ~1 006' 0002 PDF N(..Arl -0010 /NtGATf PMODF IN· IH 0011 /INFU1 EAESRTAK. 406? 2261 SZ TFBLK -HITHIT 001? /H ÜAT1N0 OUIEUT 40A4 7300 CIA CLL ГAUD-IOOO /AMI 4 06Ь .244 TAD MEMO ι- S № .'000 /bljblhALT 4.66 11S5 FAD PLCCK t HI V 1000 /Mil I IH Y 406/ 2354 ISZ TFCNT /ALL BLOCKS WRITTEN t-niV 4000 /ШУИ'! 40/0 5241 JMF URTTF /NO. CONTINUE r^t Γ-ΊΟΟΟ /UFF ELI.I Г.NUMII 4071 7200 CLA /YES. CHECK. •UI ήΟΟΟ /FUI Hi.f Г .NUMK 4072 1354 TAD MOLKN -Ν ih-/000 /NÜfvMAl l/l 4073 33S4 DtA IF I NT КІ^ ΛΑ 1 ' /hEAI'EK HACKbAfit· 40/4 1261 ичтты. ' FAD TFMh KfO 6ΑΪ4 /KE AM К FUrUAM· 40/1 13J4 IAD rptNT KUS ÎAii /SK1F IF KAI KU. 40/A 3301 DCA .+3 ' l «îl Α-ΪΟ ' /ЪКІІ ON HOIIlk fi AG 40// 6141 LINC ( 1 АЬО ' /ΓΙΕ·ΑΚ H OTTI R HAG LMOOE HHJ AS04 /Filli ΓΙΚ ΗΝ Uf 0100 0/17 CHK и /CHECK ONI BIOLK 1 It К AMI /Fí« fíIGHI 0101 0000 0 Fi Wl ΔΊΙ.' /ІіМіМ Uf 0102 0002 FDF t 1 ГИЧ-А' 14 /IiKUH fiOUN PMOOC К IL 6Ъ.Ч /f IN LLF 1 4103 7001 I AC tLUH АЪ. /liHJM UI 4104 7640 S¿A CLA um Ab M /IIN KOUN 4105 5311 JHP .+4 /ERROR· HUK ADII /UF h IONI 4106 2354 ISZ IPCNT /All В10СКЧ CHECKED H UL AS.'Ï /UF UM 410/ S274 JHP URTTP1 /NO. CONTINUF HOK ¿•âl'î /I.OUN hi (.HI 4110 5435 JMP I URI ITP /YC4f tXII AUK /41S /ЛКІТНМ, SFtIF Γ hlGHT 4111 1261 FAD TPBLK /URITE AGAIN ISK /417 /MMJICAI SHIf Г (UGHI 4112 U-î* FAD SLOCKN 3261 DCA TfBLK HUA 7Ί0Ι /INLL .(Ж,МП Ul ΓΗ AC 4113 MUI /4 H /AC INFO ЖЫ-ІЛАК AL 4114 ο?3Α JMP URIITPtl МИГ-/40*ι /HUI I IF Ι Y /KLAD FROM LINC-IAPe. KtAliTFi NMI /411 /NUKMACJZt- 411b 0000 - 0 SÌA /441 /KlAK ЧГ IMJO At. 4Л6 33.4 DCA TPCNT SHI /4M /SHIFT l FF Τ 411/ 1244 RDTPf DCA MEHO Hl. ( 407 /ItlOIIif 4J20 6141 LINC MUI MUY /4Л LMOItfc 0121 1000 LUA 0001 •400 FLÜIX 01 .S? O044 НЕМО >J004 Ή-Μ IYFX ΟΙ ΛΙ 0023 THA ooo- ИО.' TYFtl 0124 1000 LDA 0)0A S.>00 RFADI 0125 004/ TFFLAG OOO/ ААОО FFNT 0126 0450 AZt /TPFLAG-0 ' *1U 0127 6133 JMF .+4 OUI 401"'. Uh TAI E •· UhrrTF 01J0 1020 LDA I /YES. F1ELD-1 < 1 J.' 411 , MiTnHi KtAIlF 0131 1020 1020 om 40А1 blh'E · IF Μ К 0132 6135 JMF .t3 0114 404' ЕІЛ< IF . IH l Ab 0133 1020 LDA I /NO. FIELP-0 01 ÍS 4(Α· H'l . *Ы>1 /LkKÜK 0134 0020 0020 0 1 1/- 0000 ' Uhi f 0 0135 0001 ΑΧΟ --11 4.»ОС AN]Uthf • ANSI /Ti Ι E ΓΥΙ F INf UT 0136 1000 LDA 0 14C Οι. 00 AN >Uh r 0 /blinhTjriNr 0137 0061 TFBLK 1H41 4 46 SU NO. bILONO /INrU.LS INI II 0140 4142 STC .42 014^ 41' 7 F iXK. F IX /F IX F_ A fU 0141 0710 RDL U 0141 ¿"JO Filini. HUA /FLOAT HOKD 0142 0000 0 0144 S 06 liKUhlit M KWhl /fit AUtk trtlKUAKD 014Л 0002 FDF 014b S '17 f Kt-KI . F Oh Uhi· /hF Ati^S OhUAhl' FMODt 0146 bïAS F Ι M F . Chi F /IAKK.nff.fL INE FEED 4144 2261 ISZ TPBLK Oli/ SJ30 ι LNVhb CUNO /ÏK4 10 HiNAK* 4145 /300 CIA CLl Ol SO 0000 AS(IX. 0 /CÜOFÍtiíNA'FS FOh 4146 1244 TAP MLMO T Ol .1 0000 AS( IY. 0 /A >i II f L(1 414/ 1J5S FAD МОСгч 0000 lYFFll. 0 /0 TYFfcfi FLOT o\J· 4150 2354 ISZ TFCNT <І1Ъ1 0000 JIZL. 0 /GlZfc UF LHAh. 4151 5317 JHF RDFP 01Ь4 0000 Oh El NÌ. 0 /ΟΚΙΙιΝ-Α'ΊΟΝ. 41SJ /300 CLA C-i. 01 ÍJ 0*40 SF M t f OMO 4153 5/15 JMF I RtADTP ÖIJA 0000 l {HIN 1 . 0 41S4 0000 TFCNT. 0 01 J/ 0000 tXF. 0 /FL(IAT:N(I AFEUMULAIUR 4150 0400 MOCK. 0400 Ol АО 0000 HUF. И. 0 4156 0000 BLOLKN. 0 /-NO.OF BUMKS 0161 0000 1 URI'. 0 /FIX FLOATING ACCU. 016 ' 0000 HAI 1. 0 4157 0000 FIX. 0 (HAI 0000 0 4160 1157 TAD ÉXP 0164 0000 0 4161 7540 SMA SZA SAVSYN I 416? 5345 JMF ,« «10 4163 7200 CLA 0010 0000 ΙΝΟΓΧ. 0 4164 5757 JMF I FIX ООП 0000 INMXLf 0 41A5 1376 TAD П13 4166 3157 DCA EXF 0 At 66,6 un. β τ· 4167 ti-i? TAD EXF Οι AA OJOO tüSMAF. 0 /1ÜTAL DIGITS 4170 7700 SMA CLA 0.A7 0000 FÜRH. 0 /liК ІТЬ DtHIND 41/1 5374 JMF .+3 0.70 0000 cXl. 0 /OF Ε ΚΑΝΓι STOkf 4172 4777 JMS I DV1 0171 0000 ALIH. 0 41/3 5367 JMF .-4 01/2 OJOO Adi r 0 4174 1140 TAD HORD 0J7J 0000 UVbhì. 0 4175 57-7 JMF I FIX 01/4 0000 ftVthJ. 0 41/6 7765 M13» -13 01/s 0000 ( XF í. 0 4177 7200 DVl. DIVI /1NTFRFRC-FR

107 *4_00 4 1^4 /041 CIA /TELÊTYFe INPUT SUWUJUTINt.. 415' /700 SNA LLA 4200 0000 KhBX» 0 4354 5/44 IMP Ι ΡΑΤΓΗ 4->01 6032 KCC 4157 2157 IS2 EXP 4202 6031 KSF 4340 7000 NOP 4203 5202 JHF .-1 4361 1140 TAP HORD 4204 6036 KRB 4362 7130 ''TL RAK 4205 5600 JMF I KKBX 4363 3140 PCA HORD 420* 0000 ANSI ι 0 4344 5744 JMf I FATCH 4207 4200 JHS KRUX /READ ANSUER /ERROR SUPROUTjNE. 4210 3140 DCA ANSUR 4365 0000 FUG χ * 0 4211 1140 TAD ANSUR 4344 4404 URiTF 4212 4405 TYFF 436 7 4373 ME 40 4213 4200 ANSi JMS KRBX 4370 1345 TAP BURI /HAL Г IvIlH I OCATION 1 4..Ч4 З" !? DCA RtTKN 4371 /402 HL Τ /IN ACCU 421& 1232 TAP REIRN /RETURN^ 4374 5745 JMF I BUIJI r 4JÍA 1233 TAI" MR TRW 4Î73 37C HCÍfir !?<>' / F 4217 7650 SNA CLA 43/4 -.-^з /KK 44 ·0 5230 J№ . + 10 /YES 4375 1722 17-" /OK 4J21 І^ДЗ TAD RETRN /NO 4 1/4 J/00 3700 4222 1234 ТЛИ MRU« /RUB OUT·» »4400 4223 7440 S7A ΓΙΑ /SUBROUTINF ГО FLOT ι(VSCI I СНЛКАІ TtKS. 4224 5"ЧЗ JHP ANS /NO 4400 0000 FLTASr,. 0 4225 1235 TAD PCKSL /YES 4401 0314 ANP MASK7/ 4226 4405 TYPE 4402 1334 TAP ASCII 4_27 '.-О? JMP ANbl+l /RFAP AGAIN 4403 3311 PCA ASC 4230 4546 INS I FLRLF 4404 1150 TAD ASriX 4231 5606 JMF I ANSI 4405 J->1"> DCA F5 42T' 0000 RETRNF 0 440A 1151 ТАР ASCIT 4233 7563 HRTAN. --•15 /-RETURN 440/ 3211 PCA +4 4234 7401 MKUB, 377 /-RUP-OUT 4410 7001 ΙΑΓ 423Ъ 0334 KCKSL. 334 / 44И 4403 HOT /IHltGtK INPUT AND CONVERSION. 4412 0000 0 4230 0000 SICONVr 0 441 Ϊ 0000 0 4237 7300 CLA CLL 4414 7100 CLA CLL 4240 3305 DCA NOI D 4415 1715 ΓΑΡ Ι А5Г 4241 5263 JMF SINFUT /READ CHARACTER 4414 3315 PCA ASC 4242 3136 DCA STORI 4417 131*> FAD АЧГ 4'МЗ 1136 TAD SIDRI 4420 0310 AMP M5KNUM /NUMBFR UF 4244 1303 TAD H-»AO / 260 (ΙΕ.Ό·> ' 44 1 7106 CU κτι /STORARt UORV, 4245 7Ы0 SFA 442.. /004 RU 4244 52/0 IMF s rem /YtS 44 1 7041 CIA 4247 1304 IAD SIM271 /NO, 271 (IE.·?·) "» 4424 3317 DCA FLCNT 4250 //40 SMA SZA CLA 442''» 7040 Γ MA 4251 5270 JMF- SICTR1 /YES 44.A I 115 ΓΑΡ ASI 4252 1305 TAD HOLD /NO' DFCINAL DIGIT 442/ OTO AND MSKAPR /STORAITE ADDR. t 4233 7106 CLL RTL 4430 п-ч TAP CHAR 4244 1305 TAP HOLD 4431 3011 IÍA INIEXC 4255 7004 RAI 443' 1411 PL ASI 1.- TAI I INDfcXr 4256 3305 DCA HOLD /HOLP-HOLPÄIO 44 J Í 3322 PLA MATRIX 4257 1136 TAP STORI 4434 /344 STA ΓΙ 1 RAL /-•> 4260 030' AND SIMASK 443 3323 PCA MTRXN 4-·61 1305 TAD HOLD /ADD DIGIT 44 JA 132? TAP MATRIX 4262 3305 DCA HOLD 443/ /012 KTR 4->6 5 4031 SINPUT. KSF 4440 /012 RTR -, 4 44 5-Ά1 IMF -1 4441 /012 RTR 426% 6036 KF.D /READ 4442 0314 FLASI 21 ANP MASK/ 4266 6046 TLS /URITE 4441 33^4 ΡΓΑ MAIRX 4.'6 7 5242 JMF SrC0NU+4 4444 1324 TAD MATRX 42/0 7200 SICTRL. CIA 4445 0324 ANP MASb,X /МАГКІХ COLUMN 4271 1136 TAH STORI 444^ 7110 CU RAR 42/2 1233 TAP MRTRN /RETUtf* * 444/ 701 -> KIR 4273 7650 SNA ΓΙΑ 4450 3731 P^A I XCRPl 4-,74 S300 JMP +4 44'! tV*4 IAD ΜΑΓηΧ 4273 1235 TAP BCKSL /NO. RUB-OUT 445^ 03.Л ANP MASNY /МАГК.Х KOU 4276 4405 TYPE 44'_1 1/1- PCA I YCRD1 4277 5237 JMP SICONVH /REINITIALIZE 44I4 4713 JMS I FSIZtl /SIZE 4300 1305 TAP HOLD /YES 4455 173 TAD I XrRDl /OR'tNTft'iON 4301 5636 JHP I SICONV /EXIT 4454 1150 ΓΑΟ ASCIX 4302 0017 SIMASKf 17 4457 3270 DCA til 4303 7520 M 2 АО, -260 4460 1/32 TAD I YvKDl 4304 7/6/ SIM271. -И 444i 1151 ΓΑΡ ASwIY 4305 ОООО HOL!'. 0 444 32/1 I» A +/ /1-A ICH FOR fL.PNT. INTERPRETER. 4441 1124 TAD ΜΑΓΚΧ /ALL INniRECT COHMANBS TO FIELD DEFINED BY FCDF 4444 0327 ANP MSKFEN /FEH UF OR POUN' 4306 0000 FUFO» 0 4465 7440 SIA CIA 4307 7300 CLA CLL /SET FL DF-0 4446 /001 ІЛС 4310 1344 TAD UFO 446/ 4403 F l ОТ 4311 3321 ПСА INPIk+1 4470 0000 0 4312 5706 INF I FDFO 44/1 0000 0 4313 0000 FDFl t 0 44/2 1322 ТАР MATRIX 4314 7300 CIA CLL /SET FL.PF-1 44/J -'З'З 14/ MTKXN 4115 1345 TAD uri 4474 5242 IMF FLASC-· 4116 зз-ч OCA INDIR+1 44/ . 7300 CI A CU 4*17 57П JMF I FDFI 4476 231/ IS7 PLCNT 4320 0000 INDIRr 0 4477 Ь-'З· JMF FI ASCI 4321 0000 0 4500 4..04 rtfu 432? 1321 TAP 1 4501 1330 TAP NEXT /SET ЮК ΝΙΧΓ 4 1 'J 3332 DCA ST0RE1+1 450 3/11 DCA I XtRPl /IHARAÍ rtK 4*24 5720 JMP I INDIR 4J01 3/32 DCA I Y( RP1 432·» 0000 RESET, 0 4 .04 4733 IMS I « SlZtl 4326 7006 RTL /SETS DF=0 AF^ER 4'>0'> 1731 ТАР I XCRPl 4327 4201 CDF 0 /LOADING FAC. 4r06 1150 TAO ASCIX 4330 5725 JHF I RESET 4507 3150 PCA A<4 IX 4331 0000 ST0RE1. 0 4' 10 17 12 TAD I vCkDl 4332 0000 0 /SETS DF FOR FFUT 4511 1151 'AP ASriY 4333 -.731 JMF I STORE! 4·ϋ2 3151 ОГА ASCIY 4334 0000 NEXTlr 0 4513 5400 IMF I PLTA5C 433·» 7300 CLA CLL /SFT4 DF-O BEFORE 4514 007/ HASK//r 0077 4336 6201 CDF 0 /oeniNf. NFX- 4515 0000 A'>C, 0 4337 5734 JMF 1 NtXTl /INSTRUCTION 4516 7000 M^NUHr /000 4140 1344 DIR. TAP DFO /SET4 DF-0 FOR 447 0000 PUNT- 0 4341 3332 РГА STifiFltl /STORAGE 4520 C777 MSKADRf 0777 4Í42 '•-741 IMP I +1 4521 4721 CHAR, CHARAC 4341 6630 LOOFOl 45 J 2 0000 MATRIX, С 4144 4201 DF-O. Cut 0 45'3 0000 MTRXN, 0 4345 6211 PFl. CDF 10 45'>4 ооос MATRXr 0 4146 0000 PATCH» 0 /PATCH FOR DNPRM 4525 000/ MASKT. 0007 4347 1161 IAP LORD ΛΗΐίΚ FOR LARGEST 4' "•4 0030 HASKXr 0010 4350 7440 S7A CLA /NEGATIVE MANTISSA 4527 004С HARFEN, 0040 4351 •І744 JMF I FATCM 4510 СГС5 NEXT, 0005 43'2 1160 ΙΛΡ HOKD 4^31 4717 XCRIiw XCRIJ 4353 /МО SFA 4532 4 7.0 Y( RP1, TRI'

108 4 Л1 46 Π fîl/Fl. '.I/FI 4714 5704 4 tl4 45ÍJ AbCII» .+1 4715 0000 SIZES. 4Sïi 1000 1000 /0, 4/16 0000 SZECNT. 4·;ΪΑ 4001 4001 /IPA 471/ 0000 XCRD. 45J7 5005 5005 /2»» 4720 0000 YCRD. 4*". 40 4012 4012 /l.C 4/21 4040 CHARAC. 4040 4C.41 JOl* 301A /4»D 4722 0215 0215 4723 2532 2532 45 4 J! W.>1 1021 /b.fc 3042 2024 2024 /A.F 4724 3042 4^43 4725 3272 3272 4Ί44 6026 602* /7,G 0525 1014 /lOfH 4726 0525 4Ь45 Ï034 4727 3423 3423 444 ή Î037 1037 /11.1 4730 0363 0363 4·;4/ Л042 3042 /12.J 3231 t 4731 3231 45 )0 2045 104·; /13.N 4712 2000 2000 4V>1 20S0 20'0 /14.L 4731 7120 /120 4-,52 'O'iJ 20'Ρ /ij.n 1001 < 4714 1001 4Γ.53 •014 ?0 І4 /16. N 4735 04*5 0415 4,і,>4 60')6 бО- * /17,0 4736 '534 2534 4Г>,>«1 4064 3064 /20. Ρ 4737 0525 0525 4Ь,>А 606/ АО*/ /21.Q 4740 3431 3431 4%Ь7 4075 4075 /'»2.Ч 4/41 2000 2000 4"1Ó0 6101 *101 /21.5 4742 7C00 7000 4ίά1 407 .107 /24. Τ 4743 0535 0535 40А2 3111 31U /25.U 4/44 4323 4323 40*3 2114 2114 /26. W 4745 0535 0535 /27. U 4/46 4323 4323 4,64 1116 3116 7120 406Ь 2i-;i 2121 /30.X 4747 7120 4750 1001 1001 4'.А6 .121 Μ->3 /31.Y 0415 ?130 2130 /32.Ζ 4/Ы 0415 4Ь*7 470? 2534 2534 4./0 1000 1000 /33. 6232 /14f 4753 6232 4S/1 1000 1000 4754 3070 3070 1000 1000 4755 0543 0543 4'./3 1000 1000 /!'./36.." 4756 33/5 33/5 40/4 1000 1000 /17( 47Ъ7 10/0 30/0 45/5 1211 1211 /40tSFACt 4/60 5030 5030 4',/6 J '40 2240 /41.' 4/Al 6025 A025 4'>// 2J4J »242 /42.' 4762 5535 5535 4А00 1000 1000 /43. 4/63 4110 4110 4А01 1000 1000 /44.» 47А4 2011 2031 4A0J 62 J 2 A?! J /45. % 4/AS 3575 3575 4А(И JOOO 1000 /46. t 4/66 05/5 05/5 4А04 000 1000 /4/. 476/ 0253 0253 4А0'- '•"0 2220 /50. ( 4/70 30/0 30/0 4АОА 22-2 2222 /Mt) 4//1 4j00 4500 4AÖ/ 1000 1000 /521* 47/2 3070 3070 4А10 .1.4 . . .4 /53.+ 4//3 0513 0513 4AU ι 'гА 1 "А /54 t. 4//4 3530 3530 4А1 ' 1Ί27 12'7 /55.- 47/5 0532 0532 4A1J 12Ϊ0 1230 /56 t, 4/76 7530 /530 /5/./ 47/7 5001 5001 4614 12 51 1231 0415 4А1Ь btSJ 5132 /AO.O 5000 0415 5001 2534 2514 4А1А U37 313/ /6Ы 3120 414-· /62.2 5002 3120 4А1/ 4142 5001 10*4 1064 4Α"Ό A14A А146 /A3t3 3575 /64,4 5004 3575 4ή21 11·,4 1154 500*> 0525 0525 4AJJ >1 >/ MV7 /65,·. 500* 1433 3433 4Α·3 Α164 6164 /66 t 6 5007 2202 2202 4Ч?4 21/2 '1/2 /A/,7 =,010 5001 5001 4ώΛ /1/4 /1/4 //O.ö 5011 0415 0415 л-чн 6203 /71,9 4*-·* 5012 2534 2534 4 A J/ 2* 12 2212 //2.: 5011 3120 3120 4AJO '214 2234 /73., SOI 4 1061 1061 4AU 2 '44 2244 /74. 5015 3070 3070 4-Я J 22 *6 22 16 //5.- 5016 0525 0525 4А11 224Α '2 4 А /76. 5017 3433 3433 4АЭ4 1 ".0 •>2<і0 /77.-» 5020 2202 2202 4АІЬ 0000 bl£ílt 0 /SIZt OF f-HARAC 5021 6230 6230 4*16 1117 IAH XLbl« /HR AND 5022 4110 4110 4ΑΪ7 4104 (HS SI Л » /ORIbNTATIDN. 5023 •Ό31 2031 4*40 И17 DCA Х<КГ' 50*4 3223 3223 4A41 11 Ό Τ Ali YCM' 5025 1304 1304 502* 1525 1525 4А4* 4304 IH<Î «1171-» 3474 4A4Î 11 '0 P 5032 4001 4501 4А4А té ib JW- I SlZti 5033 1020 »020 464/ //00 ЬНЛ LI А 5034 3135 3135 46%0 S.'ÄO IM ,40 5035 4510 4510 46'. 1 1117 TAH XCkli 50 ÏA 3575 35/3 46..? /041 ΓΙΑ 503/ 4500 4500 46 >ï 131/ DCA ХСкР 5040 1320 1320 46-54 13 Ό TAD YCRD 5041 3575 3575 4AV. /041 CIA 5042 3545 1545 4A5* 3320 DCA YCRD S043 3070 3070 4A./ .635 JW J SI7F1 S044 4110 4110 4660 /040 CMA 5045 2031 2031 4661 tl ",4 TAD ORIENT 5046 3545 3545 4A6J /640 bZñ LLA 5047 0312 0312 4661 '•(274 mr .tti 5050 2233 2233 4664 1120 TAD YCRD 5051 4515 4t35 4ЛА% ms WA SIZE3 5052 0030 0030 4AAA 111/ TAD XCRD 5051 5001 5001 4667 7041 ( ΙΑ 5054 0415 0415 4670 1120 IiLA YCRf 5055 2534 2534 46/1 I US rAD SIZF3 5056 3120 3120 46/2 1317 14 A XCRD 5057 10S0 1050 JHP I 41711 50*0 5425 S425 4АЛ5 5635 2050 46/4 1117 1AD XCRD 50*1 2050 5062 30/0 3070 4А/Ь 3315 DCA bIZE.3 4415 46/* 1320 TAD YLKD 5063 4415 0064 2534 2534 467/ 7041 CIA 5065 3300 3300 4/00 331/ DLA XCRD 0066 3070 3070 4/01 1315 TAD 4ÌZLÌ 5067 441S 4415 4702 1320 HCA YCRD 50/0 2534 2534 4'0Л 5635 JHF I SI7F1 50/1 2313 2313 4/04 0000 SIZE2. 0 5072 6332 *332 4/0- 1315 DCA 4I/L3 50 73 3120 3120 4/0* 1153 Г AD 41 Zt. /SIZE 5074 1001 1001 4/07 /041 CIA 4/10 1316 DCA S/FrNT 4711 115 TAD SI7E.1 4712 2116 ISZ SZECNT 4/U MU Mt 2

109 ΊΟ /-ι 6502 6502 /4 5253 '261 l'>/ ELAb2 /NOT FOUND •УО/6 32/0 3275 5 '54 4515 IM1; I PUb ЪО// 3070 3070 52ГЛ 4206 jM5 ITKURV /Rb AD AÜAIN 5100 4110 4110 /5 5256 4406 REM· MOI 2031 2031 5257 4217 JMS fOkURCi "5102 3223 3223 52A0 4406 Ktrtli 5103 0305 0305 '.'Al 3116 OCA STOhl •под 3575 3575 526 J ,"'34 JMF СОМУІ *» 3105 7425 7425 /6 .i26J 0000 HAG?, 0 ΉΟΑ 1504 1504 5.64 0000 01 ui Τ» 0 5107 0110 ОНО 526 л 0000 IBM. 0 5110 2031 2031 > 'AA 5301 IKMTBI•• . + 13 -7111 3223 3223 526/ 7/47 //47 /IBM 9 ill2 1302 1302 5 '70 ///0 7//0 / θ ЫІЗ 4535 4535 5271 /7/1 /'/I 5114 1050 1050 // 5272 7/J2 //52 /-/ ó/ 5115 5302 S302 / 5273 //..3 //53 / 5 5116 0110 ОНО ,274 7//4 ///4 / 4 5117 2031 2031 3275 //55 7/55 /-3 5120 3223 3223 .,276 /77A 77/6 3121 1104 1304 -.27/ Т/П //77 //- 1 > 5122 1525 1525 -,300 /746 //46 / 0 512J Î423 3423 5(01 //64 MINIO- /7AA 5124 4110 4110 /9 /'OBROUTINE 1С TYFf IR ÍLCT ASLII 5125 "OSI 2031 /1HARALTtRb. -.126 3425 3425 5302 0000 1YFFU 0 5127 1504 1504 jJ03 1136 DLi ^lUkl 5130 0312 0312 *• '04 52 f AD lYf-t-L Γ /· FE OR FLO" Μ31 2233 2233 «=10- 7640 57A ^LA G1J2 70/0 7070 /SPACE *Л06 3315 14"= . F/ /FLOT 5133 3555 3555 /X 5Î07 ЛЗА TAD ЬГ.КІ /TYFE Ы34 0504 0504 5110 6041 ТЬК bU-í 1415 1415 5111 5310 JMF .-1 &tlA 6131 6131 531.' 6046 \УЯ 5137 3020 3020 5311 /300 CLA CL L Ы40 2161 2161 JIM 5/02 JMF Ι ΤΥΓΕ1 5141 6011 6011 5115 1134 TAD ЬТОМ 5142 1423 1425 /( 5UA 4/20 JM5 I FLOTSC S143 5021 5021 51 7 5/02 JMF I TYFri 5144 2415 2415 /) •-T10 4400 FU U4i .• r L ГАЧГ 5145 4232 4J32 /+ /bJBKOUTlNF ГП TYDF ПЧ r-^JT TFXT. Ъ146 6024 6C24 •=321 0000 TYFXf 0 &14/ 5021 5021 51 '2 /100 ' ή Γι ι sito 4232 4232 /» 5121 1721 TAD I TYPX /GFT FOINTFR Í.151 6020 6020 /- 51-14 333/ OCA TYFNF /AND SAWË IT _iJ ALL Y зпг 3575 3575 /. 5125 2321 ISZ ΓΥΡΧ 5153 6020 4020 // 5126 173/ TAD Ι ΓΥΙΝΓ ПЛ Γ ι Ff Г HAND Ы54 6424 64-4 /: •)Í2/ /012 fvTR /CHARALItR. 5155 J021 5021 .110 /012 R1R '-.156 64 -Ά 6424 /» 5311 /01 *» R!R 5ІІ/ 4131 4131 ,132 4340 JM5 lYfY /LÜNVLfíT AND TYPF •-,ΙΑΟ 7303 7303 /= 1133 1/17 TAD 1 TYFNT ΚΚ,ΗΙ HAND CHAR. 5161 6521 6521 .,134 '33/ is/ m NT /F »INT. TO NI XT MORI· 5162 6020 4020 /' JU5 4140 JMS 1YF Y /CONVLRI AND lYI I 516T 5423 5425 5ИА 5ПА JMF . 10 /rONflNUF UNFIl HONE ".164 64 Π 6433 /* 5337 OOOO lYFNfr 0 /FillM'tk ГП STk(N(. 516α 7102 7302 * 140 0000 FYFYr 0 5166 Ϊ171 3171 /<. 5141 015/ AND Tk// /MA-.K OFF CHAkAt IFR 5167 4332 4 112 ,34-' 74 ,0 5ΝΛ /TtST LOR TLkMINAKIk 5170 0141 0141 / ,141 .721 JMf Ι ΓΥΡΧ /I XII II TFRMINAFOR 5171 4104 4304 /•» 5144 11A0 TAD TkMl/ 5172 1525 1525 .,145 /440 SLh /TEST FOR CI* LI M 73 3433 3433 J346 535 * JMF .+4 /NUT A 3/ 51/4 2221 2221 ..34/ 13A1 TAI' Ik^lS /IfFE Λ CR 5175 6020 6020 JIJO 4405 TYFF »5200 • 151 1362 TAD ΓΚΜ125 /ΓΟΝΟΙ RTS TO ή LF /RE.АО CHARACrtK FROM FAPERTAPE. ,152 /510 SFA /Π ST KANbt WOO 0000 ht ADI' 0 M ,1 11A3 TAD TKIOO /RANGt IS 301 136 5201 /200 CLA 5(54 1344 TAD TK23/ /RANW IS '40 V/ 5202 AOll К SF 51^5 4405 TYFF /TYFF lHARACrFk S20ï 5202 JHf- . 1 5156 5/40 JMF I TYI Y •>204 6016 RR» RtC jt,/ 00/7 TR//r /MAik 1IJR ΛΓ6 11 І.205 J600 JHh I ktABl 5160 //41 ThMl/t /3// /RFAI-tR »ACRUARti. ,161 0215 IK215» 215 5206 0000 tChUhl'. 0 MA * /653 TM«125i 125 570/ 6011 RSF J3A1 0100 TMOO» 100 D-MO SO/ JHF . 1 5364 047 Tk2ì/f 23/ 52 U 6632 RBA /( ARRlAbt RETURN l INE FFFD. 5212 4404 READ 51A5 0000 CRLFF 0 5213 4406 READ 53** 7100 (LA (11 Ь214 4406 READ SW HAI TAD ΤΚ215 Ь->15 7200 CLA '170 4405 TYPE 5216 5606 JHP I frLRIoRt 51/1 11/4 IAD Ι Γ /REA!ER FORUARD. 51/ ' 440J \1\L· 521 7 0000 FPRUMi» 0 •3/1 5/A5 IMF I ( Rl Г 52J0 6011 RbF 5V4 0212 LF. /LINL ffcir 52.'1 5 J 20 JHP .-1 »5400 5 2 6634 REO /INCREMENTAI FLOTTER SLBROUTÍNl. 5223 4406 READ 5400 0000 FLÜTX. 0

•j'24 4406 READ = 401 /510 SPA /MOOê THF FFN 5225 4406 READ * 5 40-' b"0 ÍHF FLOTA /NtlîCONTINJt 5226 7200 -LA 5401 1Ï64 TAD ILUHN /ADO F-N "ÌTAT n 5227 5Ä17 JHP I FORURD 5404 7112 CLL Rfft /онеск DIGIT AND CONVERT IBP-IGIE TO BINARY, 5405 //10 SFA CLA /ANY 1 HANGE' 52 ÏO 0000 (QNVt 0 5406 522/ Jit e m /NO:(ON INiJfc 5231 1116 DCA STORI 5407 /A-»0 •ÎNL Π A 5,. 12 7240 Ч*А 5410 J214 JMF .f4 /( nUFR THE PEN 52 ÍS 1263 OCA FLA62 5411 1144 D A »-ОТ S /KAI'.E THF PEN 5234 1101 TAO MINIO 54 2 A 504 "•^bJ 5235 1264 DCA DIGIT 5413 5214 JM^ .1 1 5.36 1264 rONVlr TAD DIGIT 54 14 444 IS2 b^JTPN /1 OUER HF FFN 52 17 1266 TAD IPMTBL 5415 6524 M Ю 5240 1265 DCA IBM 541A 43/3 IMS FI ОГМТ /ulAIT FOR FLAb э-МІ 1116 TAD ЬГОЧІ 541/ -.227 JMF FL0Γ1 / ІЧТІЧиЕ 524"' 1665 TAD I IBM /L03\ FOR DlblT 5420 /••oo FLOTA. CLA 5243 7640 SIA CLA /IN TABLt .,4·>1 6..04 FLFtJ /RAIbt THF *ιΗ 5244 5-51 JMf .f5 542-» 3364 DCA FI OTFN S '4^ 7001 I AC 54 '1 3365 D( A FLOTNX /0 TO X "0 040. C/246 1264 TAD DIGIT Ь4'»4 1166 DCA FIOTNY /0 TO Y (0-OKD. 5247 /041 CIA 54 "'S 43/3 JMS FLOTUT 5250 5630 JHF I CONV 54-'A 5600 JMI I flüTX j>Sl 2264 ISZ DlblT J4^/ 1165 1 LOT It IAD FIOTNX /»ЬГ"Н F^LVinus J252 5236 IMF L0N01 5410 /141 CIA LIL /X ro-ükDINATE.

110 Ь4Ч lAOO FAP 1 FLOTX /FOftM NX-NFX "..610 121A TAP C2/ '.432 74 ГО 4NL /L-O: NX NFX Sill 3157 DCA EXP 543J /041 Γ1Α /AFOÜLÜTt VALUI 5A12 4407 FENTER "»4Ï4 J3A7 OCA FLOTDX /OF IIFFCKLNCL. 3A13 7000 FNOR /NORMALIZE F.P. 54І5 7004 RAL 5414 0000 FEXT /NUHBER 1 4430 із/- DCA PLÜFMV /SAVE bIGN BIT 5615 5600 JMF I FLINT 1437 lAOO TAD I PLOTX /SE* NEU 5616 0027 C27. 0027 5440 ЗЗА*; ПСА FLOfNX /PREVIOUS Χ /DOUBLE PRECISION DECIHAL-BINARY *>441 2200 Ií>7 FLOTX /INCREH.FÜINTER /INFUT ANO CONVERSION. /FETCH FREU.OUS tJ44-' 13AA ТАР FLOTNY 5617 0000 DECONV.. 0 "5443 /141 CIA CIL /Y CO OkDINATE. 56?0 /JOO CLA CLL /INITIALIZE /FORH NY-Npv Ъ444 IAGO ТАГ I FIOTX 5621 J160 PCA HORD /MANTISSA Ь44', 7420 hHY / -Oí NPV NY Ü622 3161 DCA LORD Ь44А /041 CIA /ABSOLUTE VALUE 3623 4406 READ /READ DIGIT '.447 31/0 PCA FLOritY /OF DIFFERENCE. 5624 4547 JHS I CONVRT /IBM-UNARY ^4 > 1172 TAP FLOTHV /SAVL SIbN BIT 5625 3136 DCA STORI І,4Ы /004 F.AI 5626 4232 JHS HUt Τ10 S4'i.· Г*7? PCA FLOTHV 562/ 2156 IS/ COUNT •5451 1A00 TAD I FLOTX /SET NEU 5610 5223 JHF .-5 /NEXT DIGIT %4Ь4 DCA FIOTNY 4tAA /FREVIOUS Y 1631 5617 JHP I BECDNV -•^Ь'» 2200 IS2 PLOTX /INCRLH.POINTER 5612 0000 HULT10ι• 0 /HULTIPLY DOUBLE t , .4 ï6 13A/ TAD FLÜTDX 5613 HAI TAD LORP /PRECISION WORD >4)/ /141 CIA (LL 5634 3252 DCA LTEHP /BY TEN HULT2 "i^AS 1170 TAD FLOTDY ¿642 4271 JMb DUBLAB /CALL DOUBLE ADD 54ÄA 33A7 DCA PLOTPX 5643 425S JHS HULT2 Ь4А7 13/1 TAP FtOTNA 5644 1136 TAD STORI /LAST DIGIT *>4/0 JJ/0 PCA PLOTPY 3645 3252 DCA LTEHP /RECEIVED J4/1 /001 I AL /SET MAJOR HOT 5646 3253 DCA HTEHP Ь47-> 03/2 ANP F-LOTMV /ION INSTRUCTION 5647 4271 JMS DUBLAD J4/3 1345 TAP FLOTTI S650 1254 TAP REMAIN /EXIT UITH RE- J4/4 5Ϊ00 JMF .f4 5651 5632 JHP I HULΤ10 /MAINPER IN AC. •Я/"» 1372 PI 01?, TAP FIOTHV 5652 0000 LTEW . 0 /DOUBLE PRECIS- 'М7А /1 IO CLL F«Afc 5653 0000 HTEHF » 0 /ION UORP. \4/7 1360 TAP FLOTT? 5654 0000 REHAIN. 0 ЬЬОО 3TU PCA FtniNA 3655 0000 HULT2. 0 /HULTIPLY HORD. VOI 17/1 TAD I FLOTNA 5656 7300 CLA CLL /LORD BY TUO. ,0 ' U41 PCA FL0I4 5657 1161 TAD LORD -І^ОЗ 1372 ТЛГ' FLOTHV /SET COMB.MOTION 5660 7004 RAL 5І.04 1353 TAP FLOm 5661 3161 PCA LORD іОЬ 3Ϊ72 ILA FtOTHV 56 A 2 1160 ТАГ HORD L50* 1//2 ТАГ I FLOTHV •663 7004 RAL ЬЬ07 1114 ГГА FLOTPi 5664 3160 DCA HORD *.М0 ПА7 'AP FLOTPX /INITIALIZE PLOTNA 54A5 1254 TAD REHAIN •iSil 7110 CLL RAF, S666 7004 RAL •ми· J171 DCA FLOTNA 5667 3254 DCA REHAIN *iSI 1 13A7 TAD FLOTPX /SET STEP COUNTER 5670 5653 JHP I MULT2 Ζ .14 7040 CHA ¿671 0000 DUBiAD. 0 /DOUBLF FRECIB- 1372 DLA PIOTMV .5ft 7- 7300 LLA Г11 /ION APDIFION. ·>ΜΑ 2172 fLOri. 147 PLOTHV /PLOT ALGORITHH 56/3 Hol TAP LORD 5Ы7 /410 SkP 56/4 1252 TAD LTEHP .-0 SAOO IMH I FLOTX /ALL PONE 3673 3161 DCA LORP -.-.л /100 UL SA 76 7004 RAL •55 J^ 1 Í71 TAP PLOTNA 5677 1160 TAP HORD 1 \>'l 1170 TAP FlOTIiY 5700 1253 TAD HTEHF S*>J4 11/1 PCA PLOTNA 5701 3160 DCA HORΡ ì .Γ'ΐ '410 SIX /PLOTNA 10000» 5702 7004 RAL •>.Ά •iJ14 JHP FLOTDB /YES 5703 1254 ΓΑΡ REHAIN ti^V IVI TAP PLOTNA /NO 5/04 3254 DCA REHAIN •» »10 /140 ГНА CLL 5/05 3671 JHP I DUBLAD SMI 1ÍA7 ΓΑΡ FLOTDX 1»706 0000 HSIGN, 0 /ROUTINE TO FORH jjî,' /AIO b¿L CI A 5707 7300 CLA CLL /2S COMPLEMENT i JÍJ '.343 JHP F LOM /SINGLE MOTION 5/10 2323 ISZ SONI /IF MINUt» •ibJ4 0000 ΓίΟΤΙ·μ. 0 /(OUB.HOTION 5711 5706 JHF I HSION /SIGN-OOOO:EXIT J.iü UÀ/ TAD 1 LOrtiX 3712 1161 TAO LORD ^,Í6 /041 ΓΙΑ 5713 7041 CHA lAÈ .JÌ7 1 171 Γ All Ft ÍTNA 5714 3161 PCA LORD L u . t40 ll'l OCA FlOTNñ 5/15 1160 TAP HORD S »41 43/3 інч котит o71A 7040 СМА V»4J .Î1A JHF FL0T3 5717 7430 SZL VJ43 0000 FlOT4f 0 Ь/20 /001 I AC j .44 '»341 JHF .-3 i»/?l 3160 PCA HORD ^44 ( 554A FLUTTI. . + 1 5722 570* JHF I HSIGN JS4A AMI FIFR /PEN-RIGHT 5723 0000 SGN1, 0 /»0 IF+:-77?7IF- Ы.4/ A5?l FIFI /PFN-LFFT /OUTPUT THE FXPOHENT. •jbjí) 5*,51 FLOTT?. . + 1 5724 0000 FEXL. 0 , ,M АЫ2 FL PU /PRUH-UP 5724 /300 LLA CL1 1.1»%? A514 FL PD /DRUM POUN 5726 US? ТАГ' CXF 'IVJJ 55·34 FLÜTTJ. . + 1 572? 7510 SFA '.•J*J4 AMI f lUR /UP-RIOHT 3730 7061 CHA lAC CHL 'jb' *ЬП (LUL /UF-LEFT 5731 3157 PCA EXP bj'.A A515 F LI*. /DOUN RIGHT 5732 1370 TAP C253 41A0 JHS .+1 /POUN-LEF Τ 5713 7430 S71 V>6'.*,*»0/ OOCO 0 5734 1371 TAD C255 O'JAÍ A514 Fl DD 573S 4776 JHb I DGF Τ •ΛΑ •» Ab^l FLFL 5716 3160 DCA HORP b^AÍ •»/АО JMF I .-3 5717 115? TAD EXP 1ιΊΛ4 0000 FLUTTK, 0 5740 2i60 ISZ HURE 556b 0000 FLOTNX, 0 5741 1372 TAD MI44 b' 6( 0000 FLÜTNYt 0 5742 7500 SHA •J-07 oooc FLOTÍiXr 0 574 1 5340 JHP .-3 55/0 0000 FlüTIiï, 0 5/44 1373 TAD Γ144 ίΛ.?1 0000 FLOTNA» 0 5745 315/ DCA EXP S-i?' 0000 HOIMV. 0 5746 7040 СМА 1,5/3 0000 FLOTUT. 0 3747 1160 TAD HORD "Λ 74 A501 FLSf /UAIT FOR DONE FLAG 5730 7440 SZA ^575 5374 JHP . 1 /NOT YET 3751 4776 JHS I DGPT 5576 A502 FLCF /CLEAR FLAG 5752 3160 DCA HORD Ά f/ '»773 JHF I FIUTUT /EXIT 5753 11S7 TAD CXP «5A00 5/54 2160 ISZ HORD /Fl OA11HG ЮІМТ INPUT FROH PAPERTAFt. 5755 1374 TAD H12 5600 OOOO FlINTF. 0 5756 7500 SHA JAOJ 1565 TAD I 001 57*>7 5354 JHF .-3 5A02 3116 DCA STORI 5760 13/5 TAD Cl2 ЬбОЗ 1S3A TAD I STORI /NUHBER OF ΡIGITS 5761 3161 DCA LORP ЬА04 7041 CIA 576? 7240 CLA CHA ЗАО. 315A DCA -OUNT 5763 1160 TAD HORD .60А 2">A3 i4¿ : ьоі /INCR.RETURN ADPR. 3764 4 776 JHb I PCF Г ЗАО/ 421 / JHS oecoNv 5/65 11Δ1 TAP LORP

111 57A6 4776 JMi> I Г (.F I 6146 13Ы Г Ali C2A0 E 7 '4 lf*F ΐ yfXC AI 4/ 4405 1 П W7Q /773 253 260 61 .0 ,745 JHI 1 UUIK. 5771 Ô002 -.55-253 61M 0-60 C'AOr 0260 /614 7614 О//· біг;? 0000 PIVIUO' 0 /PWlPt BY TWOF Ь7/3 C144 0i44 A153 /110 CLL RAR /ІС.ііОІЛП чі -HT /766 7766 e S774 Hlit ól !4 JJÔ'J OCA S ГОК 001? 0012 Ь/7І. C12. 6155 11A0 T^U HUKU 614', OUTDG S77¿ I'GF Τ » Al-, A /010 RAR »6000 6157 11 АО OLA HORP IhG OUTFUT FKOGKAH. /FLOAT 6160 HAI ΓΑΡ LORP 6000 0000 t-LOUT F AlAl 7010 RAR 6001 1Ъ65 TAH I G01 AIAJ UA1 Iti A LORP А002 3136 ICA STOM 6L63 ì^br> ΓAb ЬГОК ÓOOJ 1Ь36 TAD I STOKl A1A4 JHF I PIVTWil *004 032/ ANI· HASK2 AIA1) 000',/^0' 'ЛИГ. τ 0 600Ь /ОІО RAR 6L6A ///5 UNIHr 7/7·, /.IO 6006 /110 CLL RAR ('l'i/ Ϊ146 Ϊ146 6007 /110 CLL KAR 61/0 Î14/ 3147 3166 60X0 ΙιΓΑ FObHAT 6171 0004 TLNr 0004 /10 Ι 16 АО 11 Ь TAP ι STOM 6 7 · ->400 2400 ОІЗО А01 ' AWP ИАЬМ /PiGITS PFHINP ·.· -.1/1 0000 OOOO 1167 6011 PLA F UM »б-'ОО 21А5 CO! άΟΙΑ ^l l /TNCR.RETURN APPFv. /IN fHL rOHHFNrS pr M· И 60 TAD HORI· 601Ь Nimi'l R OF PíbiTS Tll Bf ШИП 1 7/10 SPA CL A ¿016 1J3/ : ЧіНК -л >Г PI LIMAI FLAlfcj 601 f lliS ΓΑΡ seihts PL ( (MAL EXf (INFN' 6020 4405 TAI SFACE NtlHptR (JF FLAILS RFMAINiMj Π BI 6021 1334 TYPÍ FRtNTEP BEÍKRf IH I MAI FD INI АО?? 1010 TAP bFbbï A 4)0 0000 60?3 Ь23/ PCA INttfX 6'01 1166 60.Î4 1311 JMP FOUTCH 6-*0' /450 А0?5 Sii·/ TAP HLKÍ 6203 ,2 "ι АО-'б 4/í . ПСА tXP /STORf PrCIHAL EXF 6^04 /041 CIA A0J7 t>600 JMS I FXAH /UUTFUr NUHfER A20*. 116/ I AP FORH А030 /¿00 JfM- 1 FLOIITl· /HXtl' F01NT RETURN A 206 /010 bF A 60 Л lïl? LLA /FLOnf.FOlNT RETURN 6207 , 14 IHF .+5 AOÏ'' 440^ TAP CHL 6-10 7^40 (1 Λ LHA 4744 6011 TYf í AJÍ l 1166 TAH ( ЫЧАГ 7200 А014 JMS 1 FtXFPT ή ч-* 116/ m Α ιочч SAOO 603Ь L-A Α. ' ΐ 7040 [МЛ А036 11A0 JM' I FLOIÍTF A2 4 и-»/ ТАР Χ A0Ï7 7700 TAI· HORP A2 '> 7100 ЧМА ¿040 Ь245 SNA LLA 6 ЧА 7-00 /NDrR tJF-f Г( F I LALI S 6041 7040 JHF .+4 6217 ..l'i' ТАР FORMA' 6042 1741 СИА 6->->0 /MO 604Т 4/40 PCA I SNFT А'Н S'ЬО 6044 7240 /YFS. NO ROUNPINU JH'j I PShFT А-"' 1354 6045 lib/ /ND'ROUNH PII II AU S TLA CHA /SUHTR.l FhOH EX 6223 6046 3157 /500 •НА /IO MAX.(Il A FL AUS TAI' tXF /FOHCNr-fOHf f Ν 1 /•OO 604? 3331 <'- ?4 LIA PCA FXF /SATf AT f 004 60^0 1157 А 2 2*. 1151 1ЛР R/ PCA fLXF бОЫ /*»00 А 26 1164 PCA UHÍX /SAVI NUHEK RFl OF АО'. ' Ϊ,266 TAP EXF 622/ 11.A TAU PUf -> I /Fl ALF . 10 RIIIINP 60Í.J 1316 ЬНА А 10 1 tA4 ΓΑΡ rtHFX /BUFF .APPR АГ WH If H *0ÎÎ4 7700 JHF Ю03 /HUIT.PY 1/10 А'31 1166 PC Λ Uil /R. UU .ШИН Ρ ' TART &0Ы> o2/3 TAP FOUR Λ21- 1164 IAH II HI Χ 60w.6 4407 ЬНА CLA 6211 /041 ( ΙΑ 6057 3J/1 JHf t- G04 62 14 11A4 ПСА Ft Ml Χ 6060 0000 f F NTFK /TJMLi» TEN 62 ÍS 710/ LLl IA( 7240 FNFY TEN А0А1 6216 >7AA FU t 1331 АОА? t-tXT 6 4/ 1766 31Ϊ1 6063 CuA CHA А'40 1355 5251 6064 TAD EtbXF б-мі /'10 SFA I I A TARRY HUtlUfli·1 АОб-і 4407 PCA PFXF , 5'51 JHF FRNIl /NU. GO TO OUII UI 6066 3366 6- 4· JHF Ff.ü2 6241 3/66 PC A ( 11 Cf /tl S.MARI PICI Ι Λ О 6067 0000 FtNTth 6'44 2364 ibi Γί MIX /MIFF IR RLACHFll? А070 2Ϊ31 FHFY rtNTH /ONe TtNTM А '4 . 5313 JMI lift k /Nil. HI CRI Ml HI . IUI AI 6071 •J?*!! FI XT 6246 Л6 /YlS. MANTISSA ГО О 1 607 ' 3136 IS/ I I I CI ISí PtXP 624/ АО/Т 4741 T./ IS/ I XF /С UHI ΙΝ^.ΒΥ INÍ -, M IM»· f G02 6074 4/42 A 'JO /-•00 CI A /INflNG I XI ONFNI Hi.A STORI /HULT.BY TWO 607£. 7410 А2,1 ll'>6 ГАИ BUI ST im I Н2РГ /II.SHIFT LEFT 607* 4J52 62*>- 1010 ΡΓΛ INPIX /bfcT AUTO INPLX RFC. JHS I HIOFT /HULT.BY TIN 60/7 2157 A. SI 11AA TAP I FIRMAT ЬКР 6100 5277 А "".4 /450 SNA /I - О * JHS PIVTUO 6101 7450 A "'S". 5142 JHP FLI* /YtSíHOAUN!. UUT F UT I!>Z EXF 6102 5314 6256 7041 CIA /NO. .ET Uf C0UN1 JHF . 2 6103 3410 Ô?5/ 336/ PCA FCOUNT /ТО fRINT F FΙ ΛΓΙ S SNA 6104 1333 б^АО 136/ TAP fCDIINT 3157 JHF F007 610Ь Α'ΆΙ 11 7 TAP FXI 4/42 PCA I INPE.X 6106 ь '62 /'.40 SHA j/A 3410 TAI" HINUS/ AIO/ б-'б! 531/ /YFS» FRINÌ 215/ PCA tXF 6110 6264 11A7 5J07 JHS I Ml OPT 6111 7500 1 1 UI TAD PEXP /ЧІЫКАСТ 1 FROM А2/3 11Ä1 ΓΑΡ M/ 6116 3331 PCA BrXF /PFCIHAI LXf . А '74 13A5 ICA > OONT /HAX.NO OF All? 1160 TAP HOKI 62 75 US/ TAP ( XF Al-H» 7640 S7A I LA А '/А ПА4 ΓΑΓ' IFHPX 61?! JHP .+4 1 •5125 /HANIISSA-O" б ?/ 7AS0 5NA CLA 61 J* 1161 TAP LOW' А100 S130 mf Dfb fUNT PIGIT 6123 /650 SNA CLA 6301 1164 TAP TEMFX 6124 3331 PCA PEXF /YFS:FXF-O бзо-» /001 IAC 6125 7240 CLA CHA А103 7710 SFA CIA 6126 "iJOS JMF FC06 6304 HAO TAP ЫСЕ /YLb.SF ACI . NO./IRÒ 612/ 0070 0070 HASK2· 630S JMS OUΙΧ 61J0 0007 0007 4323 /FRINÌ LHARACIIR 6131 0000 0 610А 2364 IS/ TI Mf X /F CHARACriRS I RINTFP' 6EXf · /PFCIHAI FXP. 6132 0305 6Í07 G'/S JHf PACR /NU СНГ. 305 6133 /772 6110 1 16-* TAP F OINT /Yl S MINUS/. 7772 61І4 AÎ6/ 6Ϊ11 4/5/ JMS 1 Or UT /C-K1NI DEC,MAI OIN E^hSr, BUFF ER-1 6131 6200 611- 5275 JMI ВЛСіч FIX1 6 16 0004 FXAP. 6111 7040 wMA 0004 6137 ООП FOJU. 6314 13AA TAP PLCt 255-240 6140 ^706 SHINUSi 6U5 11AA PCA FLtfc HSIbN r 6141 5723 HSNh ft А11А S 'ЗА IMP Re SON, 5632 ',ΝΓ Г » 6317 7200 CLA HULT10 560") H10FT· A3 20 1161 TAP I HX HUL* 2 5724 M2Fr. А 121 4121 1HS OU TX FtX( FLXFFT, 632. MO JHF . 2 aUTDdr A J M 0000

112 ЛЧ?4 4 7î,7 jm. ι oiui /FRINT CHARACTER AS 10 0000 FEXT 632Ь ¿ 16? lb/ r(OUNl /F CHARACTERS PRINTED' 6511 130J TAD ГГОЧ AJ-Í6 ^/•»3 JHF I ÜUIX /NU. KtruRN 6S12 3200 DCA FSΙΝ aJ¿/ 5A00 JHF I FIX1 /YES. NOHDER FINISHED 6S13 5201 JHP FSINtl 43)0 /040 Hifi» IHA /CONSTANTS AND POINTERS. 6J3I 111/ • AK E.XF /htDUCE E DY 1 6514 0001 PIOT. 0001 /PI/2 UJJ2 J157 ICA EXK A315 3U0 3110 6JJ3 JJAS lb/ SIOUNT /A SIR .FIGS-FRINTEP·» АЫ6 3/S5 3755 ÄJJ4 Ь340 JHF .»4 /NO A517 0003 TUOPI. 0003 /2*PI At IS /040 CHA /VES» A3J0 3110 3110 AïiA 3JAS DCA SCOUNT /RESET COUNT TO -1 6321 3753 3755 A3J7 S30^ JHf IN /AND LFAUE С<АГ) - 0 6522 0002 PIr 0002 /PI 6340 1410 TAD I INDEX /TAKE NEXT DIIJIT 6^23 3110 3110 AÏ4I DIO--. IMF IN 6524 3753 3755 A14.> 13t4 FICH . TAD MIN6 /FKINT 6 DIblTS A525 0000 X. 0 6143 316/ ИГА rCOUNT /AFTER DECIMAL FOINT 6526 0000 0 6144 4/Ь/ JMS I 0FU1 /FRINT •o· 6527 0000 0 AÎ4Î, 116-> IAD F0IN1 6530 0000 XSQR. 0 6J46 A/r7 JHb 1 OF UT /FK..N- 6531 0000 0 634/ t-OO IS/ (1X1 / N(KEH.RbTL.R•, · K AIDR. 6532 0000 0 6ίίΟ 1410 TAD I INDtX /ГАКГ NEXT DIGIT A&33 77A4 C9. 7764 63'JI Л US ms ou TX /FRINT IT 6534 23AA 2366 AIE..1 USUO JHF .-1 /ANE RFFEAT АЬ35 5735 5735 Aï.t 000/ K7- 7 ASIA 7771 C7. 7771 6Ï .4 η;ι HINAr A 6S17 54AA 5466 AIO · / /66 N10. и 6S40 6317 6317 Λ V.A 6367 вигчг. PUCrcR * 6541 7775 C3. 7775 Αϊ·",/ 614J OF UI. Oil IDG A142 2431 2411 '.f АО /760 ЧГГГ. ••40-260 6543 5053 5033 А 461 7/71 И7. 6544 0000 C3. 0000 АЛА' /77A FOJNI. 2S/6 -·60 6545 332S 5325 AtAl ООЬО CHX. 330 2A0 6-.46 04.Ï0 0420 Л*Л4 0000 ΓΙ MF Χ. 0 6547 0000 PNTR. 0 6ÏAS 0000 '.ÍOJNf . 0 /FLOAT ACCU. AfAA 0000 Fl TL. 0 6550 0000 FLOA. 0 AIA/ 0000 К HUNT . 0 65 >1 3160 OCA HORD / ί/0 0000 Ш)К-Ьк.> 0 6!.Ь2 7300 ΓΙΑ CU /6171 6177: OUTPUT BUFFrfi 6533 3161 OCA LORD *A400 6SS4 116? TAO C13 /ИОЛТІМЬ ЮШТ bINt. AbbS 31S7 OCA EXP 6400 0000 F SIN. 0 65*Ì6 440/ FENTER А401 11 АО TAD HOKIi /X О' 6SS/ /000 FNOR А40-' 7/40 ЧМА S2n (LA A-ÌAO 0000 FEXT 6401 *>?10 INF . tb /YIS 6561 3/30 JHP I FLOA 6404 1160 TAD HORD 6562 0013 C13. 0013 A4ül> /700 SHA CIA /NO X »0 » /NEGATION SUBROUTINE. А40А .600 IMF I F SIN /VFS SINÍOi 0 A5A3 0000 FNEG. 0 640/ 4 1A1 INS fNf(> /SIN< X) SIN ASA 4 4767 JMS I ACHIN /CALL SUBROUTINE 6410 3147 ИСЛ FNTb /X HODULO 2FI 6565 /240 CLA CHA /IN INTERPRETER 641 1 440/ f FNTFF. 6566 5763 JHF I FNEG 641 ' 4117 F [ЧУ IbOFI 656 7 /000 ACHÍN. ACHINS A4 И 6110 г m г XbtíK /f LOAFING SQUARE SUBROUTINE. 64 4 0000 FEXr 65/0 0000 bUUAKE> 0 64 l'i 4^4 ' ІН*> I FIXF. АЗ/1 440/ FENTER 64(6 4VÎ0 JMS FLOA 6'>/? 616? FFUT FPAC1 641/ 4407 FENItí. 65/3 3162 FHPY FPAC1 64?0 A3Jb F HIT Χ А574 0000 F EXT 64 ' 1110 F üb Γ XSOfi 6375 5770 JHF I SQUARE /4 '.' .'1J3 FSIIP Χ «6600 64 M 111/ FMFV lUPFI /FLOATING POINT ARITHMETIC INTERPRETER. A4 M 6 !_") FFUT X 6600 0000 FF NT. 0 A 4 .ÍS -•1. ' F SUB FI /X FI* 6А01 4773 JHS I NEXT2 64^6 0000 FFXT АА02 3173 OCA Oytkl A4 '/ 11A0 TAD HOKD 6603 31/4 DCA OVER? 6410 77І0 SFA Un 6604 1600 TAD I F-PNT /GET NEXT INSTR- 64 U ' '41 MF .HO /YFS АА05 3254 DCA JUH*··· /UCTION. A4 i-1 4407 FFNITR /NO: 6606 1254 TAD JLIMF A4J3 63'b FFU7 X /SINÍX-'FI>=-SINX 6607 0264 AND PAGENO /GET FAGE BIT 6414 OOOC FFXT 6610 /630 SNA CLA /PAGE ZERO» 64 1'. 1347 TAD FNTfi 6611 3214 JMF .13 /YES A4 16 /6Ь0 SNA CIA AAI 2 12A2 TAD MASKS /NO 64 1/ 7040 CHA АА13 0200 AND FPNT /C 51?^ FOI Г Χ -» 6616 0254 AND JUHF 6441 •414 FSUfc F ЮТ AAI 7 1257 TAD ADDR 6444 0000 FFXT AA.>0 3257 OCA ADDR A4 4'-, 1160 ГАD FIORD 6621 1265 TAD INORCT /INDIRECT ВІТ=І» 644A /710 bFA tLA 6622 0234 AND JUHF Λ447 •,23 Τ IHF* .+6 /YF4 AA23 7650 SHA ΓΙΑ A450 4407 FENTER /NO 66-'4 5774 JHI I 01Rl /NO-GO ON 64 >1 532Γ FGtT PI /SINX-SIN(FI-X> 6A2S 1A57 TAP I ADM /YES DEFER 64^J 2J2S F SU» X AA2A 3237 OCA ADDR 64 ,1 bSZb F FUI X 662/ 4/73 JMS I INOIRl 64S4 0000 FFXT AA30 2200 LOOI Ol, ISZ FfNT A4'.r. 4407 FtNTth AA31 IA37 TAP I AODR t A4 (6 53.·% FOFT X AAJ2 31/0 OCA EX1 /EXPONENT t,A·,? 4314 FDIW FIOT AAJ3 125/ TAP ADDR 6460 A325 FFUT X AAJ4 32A0 DCA SAVE 6461 1125 FHFY X AA3S 2240 147 SAVE A46J 6310 F f il Τ Х50Я AAJA 1AA0 TAD I SAUL 6461 •Jill f OU 19 6637 3171 DCA ACIH /HIGH ORDER MANTI A4A4 1110 F HF Y XSQR A640 2260 ISZ SAVE 646^ 1 116 FADD Γ7 AA41 1AA0 TAO I SAVE A4A6 3330 FHF Y XSOR AA42 3172 OCA AC1L /LOU ORDER MANTI! A4A7 1341 FADD C5 AA43 1254 TAO JUHP 64/0 3330 FMF Y XSOR 6644 71OA CLL RTL 64/1 1344 FADD C3 ΑΔ45 477A JHS I RFSETl ό4/_· 3330 FMFY XSOR AA4A 02A1 AND МАЧМ /GET BITS 0-2 A4/J 1314 »•ADD rIOT 6647 t2AA TAD TABLE /OPCODE LOOKUF 6474 33J5 F Mt-Y X 6650 3255 DCA JUHF2 /IN TABLE 64/^ 0000 FEX- AA31 1655 TAO I JUMP 2 6476 J347 ISZ FbTR 6652 323S DCA JUHF2 A477 5600 JMF I FSIh 663J 5655 JHP I JUMP2 /GO THERE АЬОО 4363 JMS FNtG A6tï4 0000 JUMP. 0 6Ί01 /200 CLA AA55 0000 JUMP2. 0 6Ь0· SAOO MF I F SIN AA36 0000 GUI­ 0 /FLOATING POINT COSINE. 663/ 0000 ADOR. 0 A503 0000 f COS. 0 AAAO 0000 SAVE, 0 l A >04 4407 FFNTEft /C0SX=SIN(PI/2-X AAój 0017 HASK3, 0017 ASO*; Al-'S FFUT X 6662 7600 MASK5, 7600 Α.06 o314 FGLT F IOT А^АЗ 0177 МА5л7, 0177 6J07 23Jb FÍ»UIJ X 6AA4 0200 PAobNO, 0200

113 6ÄA5 0400 INIiRCTi . 0400 /04 S I 166 ГАИ ΛΜΟιΙΝΓ 66Λ6 6667 TABI t. .ti /046 1ІД/ IAH risi /ί ΛΝ 1X1 ONI NIS 6667 4/42 LXIT /TABLS. JStD IN /04/ 7/10 bfn ( ΙΑ /Kl MJCtNIIi 6670 6721 FLAD /INTERPRETING /050 5256 IMF .+6 /Tib 6671 4720 f-Lbii /DITS 0 2 ÜF /O-ïl 4<<> IMS ΟΙΙΓί,Ο /NO 6672 6761 FI MY /FSEUIIO INSTRUCT /0_.> /410 '»/1 6673 7310 ' FL KV /ION.IF ÚFCODE 0 /0 Л 1174 TAD ІЛЬ» 667A 4477 fLGT /GO ГО EXIT AND 13/3 ГАГІ ΙΛΟΙ 6675 6/06 FLPT /INTFRFRET /о™ /055 5342 JMF Ν0(.0 6676 6ZJZ NORF /BITS 0-11 /ОЬб 4331 IMS OU ΓΟΟ 6677 1170 FLGF. ТАП EX1 /Г6ЕТ-5 /057 7420 '>Nl /SF Γ UF ADliRFsS 6700 3157 DCA EXP /ОАО I 174 ΓΑΡ ΓΛ02 6701 1171 ТАГ" AC1H 7061 I 1/1 ΓΑΡ ΓΛΟΙ 6702 3160 DCA HORD /04' 1170 IK A 6703 1172 TAD AC IL itsri /063 1 1A6 ІЛП AMOUNI 4704 3161 ÜCA lORD '064 1//0 I AP I II· I 1 670S 5201 JMF FfNTU /061. 3//0 IK A I IIS13 6/06 1157 FLF1. TAH txi /ггит-б /066 23/0 IS/ TFSI * 6707 47/7 JMS I STCRL2 /06/ 1 1/0 ТЛИ !(ЬГ! 6710 3657 ГСА I Mit'K /070 1171 DCA ГЕЫ4 6711 ¿257 ISL ADDR 7071 '371 f S/ USI« 6/13 1160 TAD HORK 1371 ГАИ ІІЫ4 ¿713 34Ь7 Г"ГА I ADI* /0/,· /071 31/2 Γ« ή It S Ib 6714 2257 1Ы ADDR /0/4 •l/"» IS/ ΓΙ S Γ' 671Ь 1161 ТАГ­ lORD 70/5 /»40 LIA CMA 'SUBIR.1 KHI .IH Γ 6716 J657 ОСА I APliR 70/6 1166 IAD AMOUNT /CUUNI KIF ASI 6717 5201 JMF FFWT+l '0/7 3304 МЛ »H [f 13 /INSU IILllON 6720 4741 TL SU. JMS I OFMINS /FSUB-Z 100 l//t TAD l TISI« /LOU ORIKR 6721 4//1 FLAP, JHS I ALCJN /FIAD 1 FIRST 'ΙΟΙ 7421 MOI 6722 5201 JMF FFNI+1 /ALIGN tXtONENTS /102 1//0 I AI I HSU /ΗΙΙ,Η ИМИ f 6723 4772 JHS I UNORM /lot 7415 ASR 6724 1173 TAD OVtRl /TRIFLfc (KtCtb- /104 ΟΟν,Ο SHIFU. - 0 6723 11/4 TAD 0VER2 /ION ADDITION /IO' Π04 PI A SHtFM /MCI IRPIR 6726 3174 ОГА UWtRJ /bINLF BITS ARE /1С6 /VU MOA /І4\\ HR Al (ι ΝΜΙΝΊ ) 6727 7004 RAL /SHIFTED RIGHT. /107 1313 DLA Ul|t 1,0 /Ι ΓΙ; ORI Ι Κ 6730 1172 TAD AC IL /110 IJAA IAD AMOUNT /(ΑΙ II Κ Al IÜNMI N1 6731 1161 TAD LORD /UI 1312 ТАГ' MINI' 6732 1161 DPA LORD /MO Л A 6731 7004 KAI /il-· 7113 ^З-і/ JMF ItSStïi /It Sb IHAN t I SHU I' 6734 U/l ÎAD АГ1Н /114 33-4 MA .tl /AHOUNl t ' »HII IS. 67« 1160 TAD HtJRD /11Ί 1//1 IAD ( IFS14 /1 OU ORDÌ К 6736 3160 DCA HORD /116 /4't MOI 6737 4770 NOKF. JMS I NORM /NORMALIZE /И/ 1/70 ΓΑΡ I ІГМЗ /Hit H ORPI h. 6740 5201 JHP FPNT+1 /1 Ό /41/ Lbk 6741 7412 0PH1NS.. MIWJS2 /14 0000 >HIFI2. 0 6/42 1254 fXIT- TAD JUHP /OF CODE-0 /122 7701 MOA UÀ 6/4J 0261 AMD MASK3 /ARE BITS 8-11-0 /і-^з "1//2 DI A TF Τ, /(CI КПОЫ 6744 7450 БЧА 7124 I 104 ΓΑΡ HIFI) 6745 5600 JMP I FPNT /VES=FEXT 71 Гі 3//0 DIA ι rtSlï 6746 1360 TAD AC0N6 /COOKUP ON TABLl /124 111! TAD UU lili 6747 32^5 DCA JUMF2 /12/ J//1 DIA 'E , 4 6/50 1655 TAD I JJ1P2 71JC *->o DONb r 7 ALibN 6751 3245 ОГА JUtF 2 /IJl 5." Ό IMI [ Al RN 6Г=І? 1200 TAD tPNT •ΊΙ-» 7/ΑΪ Μ N ''i. •i *7Sî Ч "іб DCA G 12 /I J J 0000 0 / 1 URMIKt Uh I LH 4754 4655 JMS I JUMF? /CALL AS 4ÜB4JUfINt nu-(.о. /1 14 1170 'Ail t Χ. / Iti PU I 6755 t?56 TAH (.02 /KLSrORfc F.F. 7115 /041 (MA A( 6756 3200 DCA FFNT /FOINTLR /136 U*>7 TAU tXF 6757 5201 IMF FPNTtl /1!7 7004 RAL 6760 7544 ЛССЫб. TADLE6-1 7140 7200 Ι ΙΑ /L NK UN il FXl F <Г 6761 /201 FLMY- LLA IAC /F MPY-3 7141 ГІ731 IMP Г ПИТЫ' б/А-1 1170 TAD EXl /142 И/О ЖІі.О» Dt A К' Tl П ANT HC At CWf t 1157 TAD EXF /ADD EXPONENTS 6743 /л4 \ 1//0 •ìli /1 Aht.t >r CUE . IN tl 3157 ι n-sri 6764 БСА txr '144 115/ IK A 1 XF /1 Al 6765 4767 JMS I MULT /MUL ГIFLY 714«; 21/0 IS/ Π SM 6744 Ь201 JMF FFNT+1 7146 1 "0 ΓΑΡ 1 ΓΙ ' M 6/67 7221 MJLT. DMULT 714/ 440 PC Λ HOMI 6770 7600 NOKH> DNOKM b /l 0 * >e\ 1*/ fFSM 67/1 7020 ALGNr Al IG« /It,! 1//0 IAH 1 rt s I 1 6772 7564 UNORHr IHJNORM 7l'i2 1141 DI A 1 UM< 6/73 4334 NLXT2» NEXT1 Πί »б-'О IMI 1 At ION 67/4 4340 DIM* DIR /1-54 U/O NÜHtht . I4P t XI /МАНИ И A 0 6775 4320 INDIR1. INDIR /1V> It */ DIA \ XI 6776 4325 RFSETl» fit4FT /1^6 j 130 JMF PONI 6777 4331 ST0ftF2. ЬТОКЕІ '1-./ /240 1 E SS li, г I 1 A 1 MA /SUBIR. 1 І-чІЧ .HU Γ «7000 7160 1366 TAH AMI IINT /LOHNT 1 ПК 1 .χ 7000 0 0000 ACMINSr /ROUTINE TO PER- 7161 33-4 l<( A ЬНК Г > /IN IRIH IHM. 7001 7300 CLL CLA /FORM TRIFIE /162 IAH 1 ТІЫІі /(IVI Kl LOU 0VER2 /PRFCISION ι//-* 7002 1174 TAD '163 7421 MOI 7003 7041 CMA IAC /NEGATION OF /164 1//1 IAH 1 І1ЬТ4 /1 OU ORPI К 3174 7004 ICA CVLR2 /FLOATING AC /ΙΑ'"» .520 IMI SHIF1 * l 7005 1161 TAH LORD 7\66 000 ^ AlüUN Г > 0 7004 7040 CMA /1A/ //JO ΓΙ ЬЛ ». 7007 7430 ьгі /1/0 0000 It ·>Ι 1. О !<) 7010 7101 CLL :AC /1/1 OOOO ΓΙ'»14, 0 7011 DfA LORD 3161 0000 Tl' Г,τ 0 7012 1160 TAD HORD /!/-/1/>1 Oil/ ÎACU IXF 7013 7040 CMA /1/4 ООН І^Ь'. Í XI txi 7014 /430 SZL /1/5 COOO EX.M. 0 / lifMY SUPMUIUNF 7015 7101 CLL, JAC 71/6 *>//*i IMF FXII4 7016 3160 DCA HORD * /200 7017 (MF I Al MINS 5600 /200 0000 PIVI» 0 /SH(F I 1 Al RICHI /SUEiR.ïO Al lüN 7020 0000 ALIhN* 0 /•01 /100 (ΙΑ MI 7021 1160 TAD HORD /BINARY FOIN Г', / •0'' 1160 TAP MURI 7022 7640 SZA CLA /FOR ADD 'jlJUR. /»03 /MO SFA .t4 7024 522/ JMP / »04 /1 '0 HI IMI /024 r 1161 TAD 1 OKD /MANribSA-O* / »0 . 7010 RAR 7025 7650 SNA CLA /»Об 1160 DCA HOR Ρ 7024 53Ь4 JMf NOHERE /YES / »0/ UA1 ΓΑΡ l ОКР IAH 7027 1171 АГ1Н /OPERANDO» /•no /010 RAK CLA /030 7640 SZA / 11 1161 DIA l ORI' 7031 52 Ï5 JMF .+4 /212 1 1/4 'AP OVt R > 7012 1172 TAD AC1L /41 7010 KAR 70 ІТ /650 bNA CLA 7 4 11/4 Po A (IVI-R2 /034 5620 JMf I Al IG4 /ROTH ZERO-EXIT /2 5 7.00 (1 1 7035 U/O TAD EXl / ' A 1SZ FXF 7034 /041 ГМА 1AC 7 >i/ /00!·>0/ ΝΠ /0J7 1157 TAD FXP /2 0 -.600 •Ml l DIV /040 74oO SNA /EX NTS tlüALT /22 0000 DMULT» 0 lOIIPLÉ tl.li . MUI Ι 7041 5330 JMF DONE /YFS 7 ' '2 /100 ΓΙ л ι 1 /'AUF FMHi IRIILF 7042 /•510 bfA 72 '1 4 110 JMS Κ,Ν /FRI 1 ISIUN. /043 /041 < HA IAC 7044 IJ64 UCA AMOUNT

114 /411 Τ?/7 bul F · 3/// /4 IJ COCÍ f (NI '-- F 0 /NIGAft Ji-LiA4Ii <>>0) 741.3 7300 ( LA LLl /IKIPLF «-KLiIblJN ;.«/ 'i>t Jl/4 ІСЛ riVfR. 7414 .*/Τ 'AD OVERI F4II 7J1J 1140 ι «IM» 7415 7041 CHA 1AL 7-ЧІ fié KIn . M /41¿ 11/3 PCA OOEfil /-M4 II/ * ГАП ЛС lu /417 χ172 TAD AC1L /••it. /4 4* MUI MUY /420 7040 СПА /JÍA OOOO 0 74 Л 7430 SZL ΪΓ30 ГИЛ ΛΜ/ и '422 7101 CLL IAC / '40 /',01 пол 423 3172 DCA AflL I л» 1 /•Ml U/4 ουικ" /424 1J71 TAD АПН /·4-> f 1/4 Ι« ή и<л к > 7425 7040 CHA /?4Í /004 ΚΑΙ 74Jé 7410 4ZL ГАИ /-'44 1 MO и 74?/ 7101 CI 1 IAC t 40 (<ΓΛ /'4Ü и /4 iO ÏI/t Г'СА AC IH /MA ТЛИ AC IH ll/l /4.31 SAI.' JMF- 1 ЧІМНБг /M/ ï •!. ' 14 л . + ( /unum У ККІСІППЧ DlVltit MU 1 lìhb /4І·» 0000 IiUMiIOi . 0 /IF-ERANDS N(IRMALT7£D 1 li Щ1Y 7433 ¿133 ПСА I'Vl· I U /C ^ V A(>. 0 /4Í4 11/J Ι ΑΠ ΑΓΙί /SHIf Г DIVIDIR IhFI гсл KU ι /4J' /104 LIL ΚΑΙ /1 DIT 10 4·;Α /141 LLl ΓΜΑ IAC HAÏ игл 1 ОКИ 7457 TAP DV2 ΛΜ)4 f ЛІ і-ъо /4Α0 /450 SNA 1 IAO ΗΓΙΜι 1 ли /461 M03 JMI WS /H.hKIlD.-RFHATfcrEK 1 AI· κι I I 746'' 74 "Ό SNl In л HUI u 7463 5113 JHf ПУА /H.FKOH. ΚΓΗΑΙΝ^εΚ IM 1 N ivi 7464 1 '55 DLA П 1 />11Л1М0ЬК H FKOD. IH л е <кч к /40 /C4C LMA ι >/ *,г.ы 74ÓA ТЧЗ ILA ПУПС ( ''HUI ι •m /4Α7 7-01 Г1-А /Simk.-.JhP.PKliniH τ /«ιΑ 1' 1 ΐ"> 1 hin· 7470 7141 Π 1 CHA ГЛС /FKÜM IiVJfWJ** 24 /10/ «F 1 lililí ( , ./ ι 7471 74_ L MOI /HO Il 1 1 ли Al 111 7472 /4J0 bNL /«Il /A 40 /471 7040 (HA /SUbIKACr l FKOM П 1 /tt ' * HA 7*7 A 12 4S ІАП PV3 /H! II/' IAH ΛΙ 11 74/Τ 7407 DUI /KIM OUOHACll *J** 1? /Π4 //•,0 SNA ( I A 747Λ 0000 0V4r 0 /H'/ •i/" mi ι t и i)h /IMVJMHN ИГ O 7477 7701 MOA CLA / ΛΓ1Η Ил Il J0 I All (XI / /ϊΟΟ 71 '0 m CML /FUK KtM. H.fKOn. /H/ 1 HA lili /401 Jill ÏS7 nVFlG /WAS КЕМ. И.FROH. /1 M) II',' I Al ΙλΙ 710.' 7141 ΓΗΑ IAI TIL /HO /5 l •HS7 F' A tXF /•ΪΙΙΗΜ,Αι Ι ΧΙ 7,0 4 31A1 ПСА LOKΠ /Ylb /1 4U0 Ih' ION /· I 1 IK 41 (>N ην*-.» 7504 74"'0 SNl 4/',0 I l'Cv-HH /i'ivim 750'. 7040 LMA /SIJBTK^CT 1 IKOH < !4 Τ·/ АР ( 1 /006 1160 ГАП HORO /H.O.UIII'TltNl Τ · ι I'f-l I 1 7507 /..10 IFA M <* IMI f 1 И / •ио ?Μ0 5134 JMF ПУ7 /iUOriFN- R (,Η- 1 PIT /î ? SAO f-umi 7511 ilAO iCA HORD MO 0000 /Г1Ы SlbV vl- e 7 lJ = 61' JMF I IiUMtJV /EXIT /(H lì'. > /Kt 411 I 4 I li /5 Π 7041 106* CHA tAC / «Í. lì'·, ι /bY MUI HF Y 7Ы4 T^SO PL A IÍV» /H.FRÍÍD. KEHAINWR /ÏU ·. ι/Ο /AND IiÏVIIi 7515 І- б ТАИ П 4 /UAH H OU' FOK 4M //00 jMA ι 1 /ЫА 7141 СИ СМЛ ΙΑΓ /DIVIDE (IVFKFLCU 7 li', 140 /SI/ 1Γ50 ТАП PV? /Ъ.'О 74 JO SNl /S·*! 53 JA JHF .45 /S.1.' 12S0 DÍA IiV? /FFh.HFLKhASi HIOH 7S.'Ï ГМА 44.' •,/ΐ< Ν 7040 /H.OKD.OUOr.fcY 1 ANP 7524 1160 TAD HOKΠ /INLK.kl MAINPbR ПГ Μ4ί 4'.1 jn. l Mí «S 7S2=. ПСА HOK I« M44 f ,1 IS/ S1.N 11 АО /HIGH OMUk IHVlbOR 7..'A FLA 44 VOO №11 7J00 7 ι'/ 1J50 TAD Irt/2 '14/ s 1 W- ) * Ί.Ν 7J10 7440 «Î/A (4/ •Y0\ hOhbt · . NOhh /Hl 52/S JHP НУ4-1 /1,0 /4 1 r ^ 1 Hi If г ιυιη /332 5 10' JMF ОУЧ 1 MM 0000 SliNf 0 /SJ1 0000 ПУМ G, 0 / l'l ' >6 MM, ///A 7^34 /110 DV7. f M КАч /SHIFT ' UORD (1U0T. П,і /41.' MtN' J f MM SJ / Al Ι Ь4 li /.íj 1160 Ih A HORD /KtGHT I PI I ANIi '3 4 /000 П.. Ν' t Al HIN 1161 /4" /401 {ККПК' CSM M 7j ΙΑ Ι ΑΠ ORI» /AIwlSl FXFONFNI / ,17 7010 RAK /ί',Α 0000 lUV г 0 /SNll 1 ü' КАЧИ /•.40 31A1 ПСА LORI" /ï / 7Ï00 UÀ (It /filtílll. ΓΚΙ' ι I 541 215/ lb/ TXF /ΙήΟ 11/ [Ali Al Ih /IH» IMÜN 7 .4'' /JAI / iO SI A 56 1-· JMF 1 DUSDIV /J43 SAI? JHf 1 ни&пю /IA. /1 '0 (1 l IMI /544 7156 ΚΛΚ3> HIV1 /1AÎ /OIO KAf. /%4Ь A'./O TAW F Α. SQIIAKI /TARIF FOK TNTFR / 1A4 H ι m A Al IH /S4A 7665 bUhOOl /FM FAT HIN üf /IA . li 72 IAD Al li /547 A400 I4IN /KITS И 11 /1ÓA /OIO КАК /550 A503 FCOb /IA/ lu A Al II π/-· ' . .1 /7/3 ADS M'O ll/ΐ l'Ait OUI fi 1 7',Ь.' 4306 F ΠΙΟ l/l /ΟΙΟ KAh ' 1 '.' 117) HI A О ЬЫ /551 431 J F HF 1 /554 7000 ACMINS M/1 7100 (Il /SSb 5600 ΓΙ INTF 7174 •,7ЬА Ihf I luv.' /•„SA 6000 FlCUTf • 7400 7175 IXITA 7400 AAOl RbTNJt Ч ΝΓ-t 7·5/ ΛΑΟ 7175 /40 Fhhnivl, ГАО (i(l(Jf /ІіІМІЧІІШ Ы Л KO ехгтА .'1· /".Α. 7ì7'i FXT* 740.' Jij/ D A bXF /bf 1 111 l Al Gl SI 7SA.* 7175 FXITA 7401 1?11 ΓΑΡ fOilF /I-WLIIF 7SAÏ 7171 ІХ.ЛЛ /404 31Α0 [i^A HOKD 7564 0000 [•UMOKMr 0 740'ï /040 4Λ 75Α5 4744 IMS I KAKI /SHIFT ΟΓΕΚΑΝΠ RIGHT 7401' 11/1 ti-A LOK Π 7ЧАА 4772 IMS I KAKI /40/ .? 7/ Ι J/ 1 LAI. /Sf I FIAI. 7SA7 4 70 IS¿ LXl /410 ,ΑΟΟ IMI ' Kt 'Ν. 7470 7000 NOF

115 /j/l .764 С JHI- I MINORH '75' //10 .РА LI A ?Ъ72 ruwi /200 ΚΛΚ1, /1A M _ MV RdllM.tl 4/600 '757 1171 TAD Fl AM 7600 0000 DNOhHf 0 /SUB*. TO NORMALIZF /760 3177 DCA FLАО 7601 7320 ΓΙΑ (Il (HL /FLOATING AC /761 5AA5 JHF I SURÜCT 760? 1160 TAI» HORD /762 0000 ITERI. 0 7603 7710 SPA CIA /IS HANTISSA NFO. 7763 0000 0 7604 4772 JH', I NEG /YLS /764 0000 0 7605 /0 1 INK IF NIb 7430 bZL 7/AS 0000 ЬОКТ, 0 7606 7040 CHA //AA 0000 0 7607 ТА DCA SirNl /767 0000 0 7610 1160 ТАГ HORD 77/0 3015 Ч0( ONI > .1015 /611 /640 Ь7А Π А /Ib HANTISSA 0 /771 0000 FL AOl. 0 7612 /NO. *І22Ь JMF I OF 7/72 7000 NtC ACM TN:. 761 î 1161 TAD LUKD /AB'.Ol иГЬ MAI Ut Ih Fll HAIIMd F( ) 7614 7510 SFA 7771 0000 ABS, 0 7615 Ь226 JHP t ΟΓ+1 /NO. //74 tlAO TAD HURD 7616 /'iHIFT ICFT l? PUS, Ï1A0 ОГА HOR0 77?·Ί 7/10 SfA (LA 7617 1174 ГАК 0VFR2 /7/A 4//' JHo I Ntb /620 31А1 DCA CURD '7/3 »HF [ AD , 76 Л 3174 DCA OVER > //// 762? 1-Ά3 TAD FOltfUN 762-ï 11-7 TAD FKF

7624 31&7 К A EXF 7625 1161 LOF, TAC l ОЫ· /626 74"Ч HOI /627 И АО TAD ИІЛЛ /630 /411 NHI 7611 ?Ле,0 SNA 76J2 1157 DCA t-XF /MAN'"'tÌf.A-0 76JJ 3160 DCA 40k[ι /6Ï4 7441 SCA /6FT STEF 1 OLMFR. 76 IS 7450 SNA 76 Ï6 5-,<і'> fflP EX 'I /NO. '.MIFTINC. •»A3 7 7041 1 HA InL 7640 1157 TAD EXF 7641 1157 DCA EXF /A4 2 7441 SCA /А4Ч 1- .4 TAD ONF 7644 3251 ССЛ bHIfT /645 11/4 TAD OVFR-1 7646 /421 H01 7A4/ 1161 TAD 1 OKI' /650 741 ΐ ЪНІ /Λ51 0000 SHIFT, 0 /NUMI*1 ь Ή SHIFTS 1 76;>> 3161 ]>ΓΑ 1 Ohi' 7A .3 /501 HOA /6Ь4 3174 ПСА 0VFK2 7655 2262 f-XITl, IS¿ S IGNI 7656 4/72 ІНЬ I NLG 7AS7 4661 JHS I t M M /АЛО 5А00 JHF 1 DN0R1 7AÄ1 434А ""АТСНЬ• FATCH 76А2 0000 SICNlr 0 76А1 77А4 tΟϋΚΓΝ· 14 7664 7777 ONC, t 7665 0000 SORDOГ. 0 /FL LAT.SQUARE KÛOl 7666 3371 DCA FIA( l /TAktb ROOI OF ADS> /66/ UAO TAD HOM« /VAI UI 76/0 7700 SHA LIA /6/1 52/4 JHF .*( /А?'' «,ϊη JH4 I Nfü /NllMPtR I'. NEGATIVL /6/J ?17l IS/ FlAül 76/4 440/ FLNTLK /6/5 6365 \\\ì\ snRf /А/А 0000 FEXT /Ni urtlNS HETHOD. 767/ 1157 IAD FXF /NIJHbth 7700 7100 CIL /- - *AN 7701 /510 SFA / AN 7702 7020 CML· /- -Ah-fl 7703 7010 «AR 7704 7430 ^ZL //HAK E FIRST AFfPOX. 7705 7001 TAC /706 3362 DCA IILfvl 7707 1370 TAD SnCONl /1015 7710 1361 DCA Utbl + l //11 3364 DCA ІГ(М*2 7712 13ΑΑ TAD SORTtl 7713 7Α40 bZA CIA 7714 5325 JHF ( κ U 7715 1367 TAD SOM+2 7716 7640 SZA CLA 7717 Ы 5 JHF CI CU 7/20 315/ ItCA EXP /NtlMftkR 0 //?! S66S JHF I SOROÍH 7/22 440/ FvOOTGO, FFHTEk 772 Ï 6362 'FUT ITERI 7?-'4 JOO0 FEXT 7725 4407 Г uU. •"LNTER 772А 5Ϊ65 -ЗРГ SRRI 7727 4J62 FM υ irtk 7730 ΠΑ? ••ADD ITtRl 7731 0000 FEXT 7732 7240 TLA ΓΜΑ 7733 11S7 TAO EXF /734 ili? DCA tXF 7735 11 •/ TAD tXt* 773А 7041 1 HA IAC 7737 1J62 TAD ITERI 7740 7640 »ZA CIA /EXFONTS EOUAL' 7741 5322 JHF ROOTGO /NO 774? 1160 TAD HOM» /AkL HIGH ORDER 7743 /041 CHA IAC /HANTISSAS KIUAL 7744 1363 TAD ITFM + 1 7745 7640 SZA CLA 7746 5 Г»-» JHF kOfllGO /NO 7747 1161 TAD LORИ 7750 7041 ( HA IA( 7751 13Δ4 FAD ITERIF2 /DO LOW 04DER 7752 7500 SHA /iA4!]SSAS АІіЯЕЕ /753 7041 СНА ΙΛΓ /JITrilN 1 DiT' 7754 /001 IAC

116 4i^7 S.НПО! ІЛИІ f rix NOR MI­ 714/ SJORÍ Ι 4 UI FIXR Û14J NIO ( 1.5 STOM-2 6/// HX1 A '00 ONE /MA STURI 01 in ЛЬ П7\ HAD A72I Of-MINS A/41 S7ECNT 4/1A nCMIN ό·>67 FLAG 0177 mur 63./ TABI f 6666 ACMINS 7000 Fl AGTF 0114 ОКІЬМГ 0154 TABLFA 7345 ACONi А/60 FI AGI /7/1 ou roc Ó14T TAÜl 71/3 nCJH 0171 flrtbr 5'A J OUTGO /m TAG2 71/4 ACIL 0172 FIDV 7310 ou π-υ ί­ 001^ TEMFX 63A4 ADUA ЬЬЬ? FIGI ΑΔ7/ ου TX 6321 TEN A171 A-ON 6771 FLINT» 5A00 OVEKl 01/1 TENTh AlAA Al IGN 70*Ό ПИТ A/Al OVFR? 0174 TtST · 716/ ΑΠΟΙΙΝΓ 71ΑΑ FIDA 65S0 F AG'NO AAA4 ГГЬГЗ /I/O ANS 4.ПЗ Fi ОАГ 0141 1 -ULH 434A TFS14 /t/l ANSUER 01J7 FL OF A342 РАГСЧІ /661 TEST3 7172 ANSUR 0140 FIO! TP AOOC FTRLF 014A TKM1-». 5362 ANSI 4^0A FLFT Л70Л FI ή*.·"1 TkM37 53A0 ASC 4M3 FL5U A 7 JO FIQT АТ14 TM 00 5361 ASCII 4Ь34 FMP* 3000 PI ASCI 44 12 TR21S 53A1 ASCIX OlbO •NEG 65A1 H ASC2 4442 Tk237 53A4 ASLIY 0151 FNOR 7000 F IFF 6166 TK77 5357 ASR 74ÍS РЭкМ 0167 F l FF 650.· TFBLK 4061 BACK Ó2/S FORMAT 01AA ILCNT 4M/ TFCNT 4154 BCKSL A? Vi FORUKD 5217 I LU H 6'Î14 TFFIAG 4047 HCKUKD ^"»O* FOUR 6ПА PI DR 6515 TUUFI 6517 BtXF ¿Ul F 01 IR TN 7('A3 PI DU бЫ"* TYFf 4405 SFhSr A134 1- ОНИ Ν А0Ч7 ri ОТ 4403 TYFFl 5302 fiKURD 0144 FPA( t 01A2 PIOTA S4*,0 TYFNT 513/ BLKTP Olli I INT AAOO Fl Ol DU 5334 TYFFLF 01 '-2 M ΟΓίν 41?", FHJT 6000 PI OTDX 556/ τγ^x 5321 Β10ΓΚΝ 41*;* FRURD 014S F l OTDY 53/0 TYPY 5340 BUFI ER ó í/О FS1N A400 FlOTMV 55/? UNORH 6/72 BUFST éJSA FbUB 2000 PLÜTNft bWl URITE 4404 BUG Otis FXAD 61 IJ PIOTNX 3565 VRITTF 4015 BUGI 4 IA'. /411 GOOF PLOTNY 55Л6 MRTAFF 0111 (HAR 4S?t 601 OÍAS FLOTFN 5564 yRTTF 4041 ГНАКАС 47'>1 G0-> AA56 FlOTSL 5320 «RTTf1 40/4 СНГ Ali' HOLD 4J0-. FLOTTI 5S43 X 6525 HORD 01 АО CHX AJ« 1 FlOTT? *·-,50 XCRD 4717 с β Γ CLCU 77?5 HTFMP .6л1 PLOTTJ 5 3 XCRD1 4531 CQNV S230 ІВЧ "¡ÍA'J PLOTWT 5Ί7 1 XSQR 6530 CONVRT 0147 IBMTBL 52A6 PLGTX '•400 XXX 6317 CChW -i'JA IN 630 j PLO 11 54^7 YCRD 4770 (OS 0004 INDEX OOIO FL0T2 34/5 YCRD1 4532 COUNÌ 015A INDFXC ООН FLCT3 3516 1 , CKIF SÌA ) INDIR 43' 0 FL0r4 5543 TU 477"! INDIR1 А775 PLPD 6524 C13 A56.' INI.RCT 666-1 PL PL Α521 tl44 S77Ï INF U Γ 001 ι PLPR A-îtl C«! 3770 ITFf 1 77 .', Fi_PU Α504 C2S5 5771 JUMF АА54 PL4F 6501 C2A0 Al'l JUMF-2 ΔΑΪ>5 FuTAbC 4400 Г27 SAIA RFFF' 72 ΙΑ PLUH 6422 C3 A544 RRBX 4200 FLUL 6SJ1 C5 A541 K7 А153 Ρ UR 6S13 Г7 АЫА LFb41b 7107 PNTR 6547 C9 A'14 LF 5J74 POINT 6162 D 7.'IO l OOF 01 AAJO PRNT1 6251 DFCONV SAI/ LOF 76 -«ï. P4I2F1 4533 DCLR A311 LOhli 0161 OUOL 01/6 DFO 4144 Lbü 741/ RARI 75/2 OFl 434S ITFHF 565' RrtR3 7S44 DGFT ^77A MASKX 4526 MiA 661' DIG ¿330 МАЧКТ 45.", RBS 6631 DIGIT 5.>64 MASM 6130 RDTAPE 0132 DIR 4140 ЛАЬК2 61-·7 RDTF 4117 DIRI 6774 HASRi 6661 RFAD 440Α DIVIDE 7330 HASKb 666 > RE AD TP 411S DIVTWO ¿152 HASK/ Α6Δ3 READI 5200 DIVI 7200 HASK77 4514 REMAIN 5654 DI VP 734A MATRIX 45 J? REbET 4325 , DNULT 72. l MATRX 4S24 RFSETt 6776 DNORH 7A00 mno 4044 REST 7352 DONE 7110 MESh 4373 RET 62 ΙΑ DÜBDIV 7412 MINS 7154 RETN ¿025 DUBLAD 36/1 MING2 7Î53 RETN2 7400 DUMOKH 7-544 Η INIIe;.' 7412 RETRN 423? DVFLG 73 li MINUS? 6133 RFO 6634 DVI 7407 1IN10 530 L RODΓΟΟ 7722 0V1 4177 MIN15 /112 RA 6225 DV2 7430 MIN6 6344 SAsiE ΑΑΑΟ DVI 7455 MQA 7501 SCA 7441 DV4 747A MOL 7421 S-OUNT Α3Α5 DVS 7501 4QLMUY 7425 SOM 7151 DVA 7513 MRTRN 42Ï1 33M1 5723 DV7 7^*4 HkUB 4214 SHIFT /Α.1 fKKQR 73€:.5 МЫ >N •"f 70 A iHIh Г2 71 ·1 FhlOKl »401 Иt^^AD^ 4 .>! SHI-Il 7104 EXII A742 M&Khl M r ι S HL /413 exm /A % MSkFFN 4,2/ SI CNV 0141 EX! 16 717". MbNFT ¿Ι Ы SKONV 423 4 , FXf ОІЧ/ MIRXN 45. 3 bICTKL 4'/Ú exn oi/^ MUI Τ ¿767 blbN 7330 tXl 0170 MULTÍO 5Ä3- bIGNl 7ΑΑ» FAUS 0005 MULT? 5655 bIMASK 430' FADD 1000 MUY /404 ЫМ271 4304 FCUFO OOOA MIOPI 6142 SIN 0003 fCUFl 0007 1112 S//4 SINPUT 4263 FCO' AIO-. M13 41/A SIZE 0151 i-CUtiNt AIA/ MI44 3//¿ SIÍE1 4635 FDFO 410A M2F Γ ¿143 S£2t2 4/04 FDF1 431 Ï M?60 4301 SI7f « 4713 FDIV 4000 М7 A3A1 SMINUb 611/ FENftR 4407 NEG 7//-, INPT 6141 FFXf 'J/?4 NEGATE 00 IO bFAce 01VÎ FEXFPT A144 NEXT 4530 bf(L 6160 FEXT 0000 «fcXTl 4134 S ÍCÜNI /-'70 FGET 5000 NEXT 2 67 Л bBht 0001 F GO.' 60·ΐ1 NM I 7411 bOROOT 76-4 j FblJ3 ΑΟΑΑ hGGO 7142 '.ORRT 0002 FG04 АО 7» NOHERF •444 SORT 77Α5 FCOó AIO. NORF A/17 S, í lARF 4 /0 FG07 A114 NOkrt Л//') srjk 'Μ ι

117

SUMMARY

This thesis deals with the investigation of the temperature- and mag­ netic field-dependence of the photoconductivity spectra of shallow donors and acceptors present in high purity germanium. These spectra lie in the difficult region of the far infrared. To enter this region a Michelson inter­ ferometer has been constructed capable to cover the wave number range of 5-350 cm . This instrument, the relevant detector system (bolometer cooled with liquid helium) and the experimental arrangement for photoconductivity measurements are described in Chapter II. This latter system allows measure­ ments at controlled temperatures between 1 and 15 K.

In the progress of these investigations it was discovered that a sub­ stantial deviation from the real spectrum may be caused by radiation which is reflected back into the interferometer due to reflection on the sample. In Chapter III, which starts with the elementary theory of Fourier spectros­ copy on which our experimental method is based, the theoretical and experi­ mental investigation of this reflection-effect is discussed. In Chapter IV the application of the interferometer to the study of the photoconductivity in ultra-pure germanium is treated. Using the technique of photo-thermal ionization spectroscopy the impurities, which are present in extremely low concentrations of 10 -10 atoms/cm , are analyzed. The binding energies of the electron/hole of the donor/acceptor impurities were determined very accurately from the temperature dependence of the peak-in­ tensity in the hydrogen-like excitation spectra. The complete temperature dependence of the photo-thermal conductivity signal was thoroughly investi­ gated, both theoretically and experimentally.

From measurements in a magnetic field, the linear and quadratic Zeeman- terms were determined for all lines of the boron acceptor excitation spectrum. The relevant values for these levels are compared with the available values from the literature. Some of the lines showing up in a magnetic field could be identified as states associated with light-hole Landau levels.

The computer programs developed for the processing of the measured in- terferogram data and executing the Fourier transform to get the frequency spectrum are collected in an Appendix. These programs are suitable for a PDP-12 (or, with slight modifications, for a PDP-8) laboratory computer.

119

SAMENVATTING

Dit proefschrift behandelt het onderzoek naar de temteratuur- en mag- neetveld-afhankelijkheid van de fotogeleidings spektra van ondiep liggende donors en acceptors die aanwezig zijn in ultra-zuiver germanium. Deze spektra liggen in het moeilijke gebied van het verre infrarood. Om door te dringen in dit gebied werd een Michelson interferometer gekonstrueerd die een be­ reik heeft van golfgetallen tussen 5 en 350 cm . Dit instrument, het bij­ behorende detektor systeem (bolometer, gekoeld met vloeibaar helium) en de experimentele opstelling voor foto-geleidings metingen worden beschreven in Hoofdstuk II. Dit laatstgenoemde systeem maakt metingen mogelijk bij een gekontroleerde temperatuur tussen 1 en 15 K. In de loop van het onderzoek werd ontdekt dat een aanzienlijke afwijking van het werkelijke spektrum kan worden veroorzaakt door straling die ten gevolge van reflektie op het sample wordt teruggekaatst in de interferometer. In Hoofdstuk III, dat begint met de elementaire theorie over Fourier Spek­ troskopie waarop onze experimentele methode is gebaseerd, wordt het theo­ retische en experimentele onderzoek van dit reflektie-effekt besproken. In Hoofdstuk IV wordt de toepassing van de interferometer bij het bestuderen van de foto-geleiding in ultra-zuiver germanium behandeld. De onzuiverheden, die aanwezig zijn in extreem lage concentraties van 10 -10 3 atomen/cm , worden geanalyseerd door gebruikmaking van de techniek van foto- thermische ionisatie Spektroskopie. De bindings-energieën van het elektron/ gat van de donor/acceptor onzuiverheden werden zeer nauwkeurig bepaald uit de temperatuur-afhankelijkheid van de intensiteit van de pieken in de water- stof-achtige excitatie spektra. De volledige temperatuur-afhankelijkheid van het foto-thermische geleidings-signaal werd grondig onderzocht, theore­ tisch zowel als experimenteel. Uit metingen in een magneetveld werden de lineaire en kwadratische Zeeman-termen bepaald voor alle lijnen van het excitatie spektrum van de borium acceptor. De desbetreffende waarden voor deze niveau's worden ver­ geleken met de beschikbare waarden uit de literatuur. Enige van de lijnen die ontstaan in een magneetveld konden worden geïdentificeerd als toestanden die verbonden zijn met Landau niveau's van lichte gaten.

De computer programma's die werden ontwikkeld voor het verwerken van de gemeten interferogram data en het uitvoeren van de Fourier transformatie om

121 het frekwentie spektrum te verkrijgen zijn verzameld in een Appendix. Deze programma's zijn geschikt voor een PDP-12 (of, met geringe wijzigingen, voor een PDP-8) laboratorium computer.

122 CURRICULUM VITAE

H.W.H.M. Jongbloets

Geboren : 22 december 1943, Nijmegen

1950 - 1956 : Lagere school, Nijmegen

1956 - 1961 : Dominicus College, Nijmegen; HBS-b

1961 - 1963 : Technische Hogeschool, Eindhoven Elektrotechniek

1964 - 1965 : Militaire dienst

1965 - 1972 : Katholieke Universiteit, Nijmegen Natuurkunde studie, in april 1972 afgesloten met het doctoraal examen Experimentele Natuurkunde, hoofdvak Vaste Stoffysica

1972 - 1978 : Promotie-onderzoek Experimentele Vaste Stoffysica, als F.O.M, medewerker bij de afdeling Experimentele Natuurkunde 4, Faculteit der Wiskunde en Natuurweten­ schappen, Katholieke Universiteit Nijmegen, groepsleider: Prof.Dr. P. Wyder april-okt. : In dienst van de vakgroep Vaste Stoffysica van de afdeling 1979 der Technische Natuurkunde van de Т.Н.-Eindhoven voor een tijdelijk onderzoek gestationeerd in Nijmegen, groepsleider: Prof.Dr. M.J. Steenland

123

STELLINGEN

I

De extrinsieke geleiding van halfgeleiders wordt in het algemeen bepaald door de absolute waarde van het verschil van de donor- en acceptor- koncentraties Onder bepaalde omstandigheden echter dragen donors en acceptors afzonderlijk bij tot de geleiding

II

Bij de bestudering van de bandenstructuur van materialen als Cd-As- Ρ via optische effecten kan de nauwkeurigheid van de analyse sterk worden vergroot door naast reflectie en transmissie-metingen de absorptie te bepalen via de kalorische methode

M.J. Gelten, A. van Liesnout, C. van Es and F.A.P. Blom, J. Phys. С П, 227 (1978)

III

Anders dan bij metalen kunnen bij halfmetalen veranderingen in de effectieve massa van de electronen als gevolg van de electron-fonon interaktie niet worden verwaarloosd bij fonon-spektroskopie met behulp van de puntkontakt methode

A.G.M. Jansen, F.M. Mueller and P. Wyder, Science 199, 1027 (1978)

IV

Door een ongunstige verhouding tussen golflengte en bundel-diameter treden bij verre infrarood apparatuur vaak diffractie-problemen op, die vermeden kunnen worden door bundels met een gaussische intensiteits-verdeling te gebruiken Een dergelijke intensiteits-verdeling zou kunnen worden verkregen door toepassing van metaal-maas filters met een kontinu verlopende stnp-breedte

D.H. Магігп and J. Lesurf, Infrared Physics 18, 405 (1978) ν

De optische eigenschappen van bepaalde materialen kunnen worden bestudeerd door de spiegels van een Fabry-Perot interferometer met de¿e materialen te bedekken De werking van de interferometer kan worden geoptimaliseerd via de bedekkingsgraad

L-.G o.M. de kort3 Iroefs^hpbft, rfzjmegen ±979

VI

Smith en Loewenstein geven een uitdrukking voor de efficiency van een beamsplitter, waarbij ook de absorptie in rekening wordt gebracht Deze formule geeft echter alleen betrouwbare resultaten indien rekening wordt gehouden met de mvalshoek-afhankelijkheid van de absorptie term

D.R. Smtth and ö.t7. Loewenstebn, Apv . Ovt. 14, ?^?Ъ {19?$)

VII

Het is mogelijk verre infrarood straling te detecteren via de gelijkncht- ende werking van een puntkontakt tussen normale metalen bij lage temperatuur

VIII

Indien camera's in een lichte kleur zouden worden uitgevoerd ι ρ ν het gebruikelijke zwart, zou de opwarming ten gevolge van geabsorbeerde zonne­ straling en daardoor de kans op afwijkingen in de film veel geringe^ zijn

IX

Daar er geen direct veroand Destaai tussen heL orandbLuf-vtrutuik en -Je lawaai-produktie van de verschillende auto-modellen, zal de inning van de heffing geluidshinder wegverkeer via een prijsverhoging voor de brand­ stoffen wel een stimulans zijn om te kiezen voor zuinige, maar niet voor geluidsarme auto's

H.W H M Jongbloets Nijmegen, 13 maart 1980