Genetics: Early Online, published on February 1, 2018 as 10.1534/genetics.118.300776 1 2 Mutational pleiotropy and the strength of stabilizing selection within and between 3 functional modules of gene expression 4 5 6 7 Julie M. Collet*1, Katrina McGuigan, Scott L. Allen, Stephen F. Chenoweth, Mark W. Blows 8 School of Biological Sciences, The University of Queensland, 4072, Australia 9 1current affiliation: CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, 10 Montpellier, France 11 12 Data Archival Location: NCBI Gene Expression Omnibus (N lines: GSE49815; S lines: 13 GSE54777). 14 15 1 Copyright 2018. 16 Variational and functional modularity 17 Keywords: modularity, pleiotropy, genotype-phenotype map, Drosophila serrata, gene 18 expression 19 * corresponding author:
[email protected] 20 ABSTRACT 21 Variational modules, sets of pleiotropically covarying traits, affect phenotypic evolution, and 22 therefore are predicted to reflect functional modules, such that traits within a variational 23 module also share a common function. Such an alignment of function and pleiotropy is 24 expected to facilitate adaptation by reducing the deleterious effects of mutations, and 25 allowing coordinated evolution of functionally related sets of traits. Here, we adopt a high- 26 dimensional quantitative genetic approach using a large number of gene expression traits in 27 Drosophila serrata to test whether functional grouping, defined by GO terms, predicts 28 variational modules. Mutational or standing genetic covariance was significantly greater 29 than among randomly grouped sets of genes for 38% of our functional groups, indicating 30 that GO terms can predict variational modularity to some extent. We estimated stabilizing 31 selection acting on mutational covariance to test the prediction that functional pleiotropy 32 would result in reduced deleterious effects of mutations within functional modules.