University of Groningen the Logistic Design of the LOFAR Radio Telescope Schakel, L.P

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen the Logistic Design of the LOFAR Radio Telescope Schakel, L.P University of Groningen The logistic design of the LOFAR radio telescope Schakel, L.P. IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2009 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Schakel, L. P. (2009). The logistic design of the LOFAR radio telescope: an operations Research Approach to optimize imaging performance and construction costs. PrintPartners Ipskamp B.V., Enschede, The Netherlands. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-09-2021 Chapter 2 Radio Telescopes 2.1 Introduction This chapter explains the basics of radio telescopes, the types of radio telescopes that exist, and what they can observe in the universe. It is included to provide the reader background information on radio telescopes and to introduce concepts which will be used in later chapters. We start our discussion with the notion of radio telescope. A radio telescope is an observation instrument consisting of one or more antenna systems to study the uni- verse through the measurement of electromagnetic radiation in the radio spectrum. We give an interpretation of the above definition by explaining its keywords: obser- vation instrument, antenna system, electromagnetic radiation, and radio spectrum. The outline of this chapter is as follows. Section 2.2 describes the basic system of a radio telescope and its properties. Section 2.3 explains the instrumentation that has been developed in the last century. Section 2.4 discusses radio wave detection. 2.2 Basics of Radio Telescopes The basic system of a radio telescope consists of three components: (1) an antenna system (i.e., simple receptor, dish antenna, or multi-sensor station), (2) a receiving system (i.e., a system being composed of a mechanism for noise reduction and a mechanism for amplifying and measuring the signal), and (3) a device for recording, monitoring, and displaying the output from the system (i.e., a computer system). Conventional radio telescopes consist of a base with a single fully steerable parabolic dish antenna. The dish antenna has a small antenna placed on its aper- ture. This antenna is called the feed and can be described as a horn-shaped antenna. The dish antenna acts as a radio reflector focusing the incoming radiation onto the feed. The reflected radiation is then transferred from the feed to the receiving system. Figure 2.1 shows the components and functioning of a conventional radio telescope. 11 12 Chapter 2. Radio Telescopes Figure 2.1. A conventional radio telescope A radio telescope is usually indicated by its size and name, the latter depending on the type of the instrumentation or its location. A radio telescope can also be described by a list of properties, which are listed below. • Frequency range. The frequency range is the range of frequencies, expressed by a lower and upper frequency, within which radio waves are observed by the instrument. • Angular resolution. The angular resolution is the distance, in angular units, be- tween two close objects that can be separated by instrument. It is also called spatial resolution or resolving power. • Sensitivity. The sensitivity is the ability to observe radio sources emitting low level radio signals. • Collecting area. The collecting area is the area of an instrument capable of col- lecting electromagnetic radiation. The collecting area is positively related with the instrument’s sensitivity. There is a close relationship between the angular resolution of an instrument and the observing frequency, which is inversely proportional to the observing wave- length (see Section 2.4). The angular resolution (ρ) of a radio telescope is approx- imated by dividing the wavelength of the observed radiation (λ) by the diameter of the telescope (D). Equation (2.1) gives this relationship. In this equation, λ and D are measured in the same length units and the angular resolution ρ is measured in arcseconds (see glossary, p. 259). λ 180 ρ ≈ 3600 (2.1) D π 2.3. Types of Radio Telescopes 13 2.3 Types of Radio Telescopes In this section we discuss the types of radio telescopes that have been developed in the twentieth century. The contents of this section is mainly based on Malphrus (1996), Kellermann and Moran (2001), Thompson et al. (2001), and Burke and Graham-Smith (2002). 2.3.1 Individual Radio Telescopes The first radio telescope built was the 175-meter long wire antenna of Charles Nord- mann in 1901. The design of the telescope turned out to be effective, however, Nord- mann failed to observe extraterrestrial radio signals due to a sunspot minimum (see glossary, p. 259). Another early radio telescope was constructed by Karl Guthe Jansky in 1930; see Figure 2.2. He built a rotate-able, horizontal and vertical wire skeleton to observe radio signals of 20.5 MHz. Jansky was the first person to discover cosmic radiation. Figure 2.2. The early radio telescope of Karl Jansky c NRAO The first parabolic dish antenna was developed by Grote Reber in 1937; see Figure 2.3. His 9.45-meter paraboloid became the prototype for a whole range of paraboloids radio telescopes. The radio telescope of Reber permitted observations at different frequencies. Reber operated the radio telescope at a wavelength of one centimeter, and later also at wavelengths of 33 centimeters and 1.87 meters. To see deeper and deeper into the universe, and with enhanced angular reso- lution and sensitivity, the size of single-dish paraboloids was enlarged (see formu- lae (2.1)). The postwar years initiated the race to build the world’s largest radio 14 Chapter 2. Radio Telescopes Figure 2.3. Grote Reber and his 9.45-meter paraboloid c NRAO telescope. The first large paraboloid was the 66.5-meter transit telescope, a fixed paraboloid built at Jodrell Bank in the United Kingdom circa 1949. The size limitation of paraboloids with a fully steerable base was already en- countered in mid-1960. It turned out that dish sizes larger than 100 meters were not possible from an engineering point of view. Solutions were found in the base of radio telescopes and the shape of the reflectors. Examples of radio telescopes to which these solutions have been applied are the 305-meter Arecibo telescope (Puerto Rico, USA) and the 2-reflector Kraus telescope (Ohio, USA). The Arecibo telescope consists of a spherical dish built inside a karst depression and hangs on eighteen ca- bles strung from three solid poles. The Kraus telescope consists of a non-steerable parabolic rectangular reflector (109.8 x 21.35 meters) and a semi-steerable flat rectan- gular reflector (103.7 x 91.5 meters). The flat reflector of the Kraus telescope reflects the incoming radio signals towards the parabolic reflector where it is focused on the feed. Currently, the largest individual radio telescope is the RATAN-600 telescope. It consists of 895 rectangular reflectors (2 x 7.4 meters) which are arranged along the boundary of a circle with a diameter of 576 meters. RATAN-600 is located in the North Caucasus, Russia. Table 2.1 gives the properties of large individual radio tele- scopes constructed in the twentieth century. 2.3. Types of Radio Telescopes 15 Table 2.1. Large individual twentieth-century radio telescopes Year Name Location Steerability Wavelengths 1949 66.5-meter Transit Telescope Jodrell Bank, United Kingdom partially steerable 1.87 m 1956 25-meter Dwingeloo Antenna Dwingeloo, The Netherlands fully steerable 3, 6, 18, 21 cm 1957 76.25-meter Lovell Telescope Jodrell Bank, United Kingdom fully steerable 18 cm - 25 cm 1960 Kraus 2-Reflector Telescope Delaware, Ohio USA partially steerable 21 cm 1963 305-meter Arecibo Telescope Arecibo, Puerto Rico non-steerable 3 cm - 6 m 1972 100-meter Effelsberg Telescope Effelsberg, Germany fully steerable 0.35 mm - 15 m 1977 576-meter RATAN-600 Telescope North Caucasus, Russia fixed location 1 cm - 50 cm 2000 100-meter Green Bank Telescope1 Green Bank, West Virginia USA fully steerable 3 mm - 3 m The original Green Bank Telescope (GBT) was built in 1962. However, due to a lack of maintenance, the telescope collapsed on Tuesday the 15th of November 1988. The loss of the 100-meter telescope resulted in the GBT project, a project concerned with the construction of world’s largest fully steerable radio telescope. The new radio telescope has roughly the same size as the original telescope; the dimensions of the dish antenna are 100 by 110 meters. The GBT project has been completed in 2000. Source: Barrett (2002). 16 Chapter 2. Radio Telescopes 2.3.2 Radio Arrays In order to improve the angular resolution beyond the size of the instrument the so- called sea interferometer was developed (Pawsey et al., 1946). A sea interferometer is a radio telescope consisting of one antenna system located along the coast side that observes radio signals directly from the sky as well as radio signals that are reflected by the sea surface.
Recommended publications
  • Radio Astronomy
    Theme 8: Beyond the Visible I: radio astronomy Until the turn of the 17th century, astronomical observations relied on the naked eye. For 250 years after this, although astronomical instrumentation made great strides, the radiation being detected was still essentially confined to visible light (Herschel discovered infrared radiation in 1800, and the advent of photography opened up the near ultraviolet, but these had little practical significance). This changed dramatically in the mid-20th century with the advent of radio astronomy. 8.1 Early work: Jansky and Reber The atmosphere is transparent to visible light, but opaque to many other wavelengths. The only other clear “window” of transparency lies in the radio region, between 1 mm and 30 m wavelength. One might expect that the astronomical community would deliberately plan to explore this region, but in fact radio astronomy was born almost accidentally, with little if any involvement of professional astronomers. Karl Jansky (1905−50) was a radio engineer at Bell Telephone. In 1932, while studying the cause of interference on the transatlantic radio-telephone link, he discovered that part of the interference had a periodicity of one sidereal day (23h 56m), and must therefore be coming from an extraterrestrial source. By considering the time at which the interference occurred, Jansky identified the source as the Milky Way. This interesting finding was completely ignored by professional astronomers, and was followed up only by the radio engineer and amateur astronomer Grote Reber (1911−2002). Reber built a modern-looking paraboloid antenna and constructed maps of the radio sky, which also failed to attract significant professional attention.
    [Show full text]
  • Astronomische Waarneemtechnieken (Astronomical Observing Techniques) Based on Lectures by Bernhard Brandl Lecture 8: Radio 1
    Astronomische Waarneemtechnieken (Astronomical Observing Techniques) Based on lectures by Bernhard Brandl Lecture 8: Radio 1. Introducon 2. Radio Emission 3. Observing 4. Antenna Technology 5. Receiver Technology 6. Back Ends 7. Calibraons (c) National Radio Astronomy Observatory / Associated Universities, Inc. / National Science Foundation The First Radio Astronomers http://en.wikipedia.org/wiki/Radio_telescope http://en.wikipedia.org/wiki/Radio_astronomy Grote Reber (1911-2002) Karl Guthe Jansky (1905-1950) Karl Jansky built (at Bell Telephone Laboratories) antenna to receive radio waves at 20.5 MHz (λ~14.6m) à “turntable” of 30m×6m à first detection of astronomical radio waves (à 1 Jy = 10−26 W m−2 Hz−1) Grote Reber extended Jansky's work, conducted first radio sky survey. For nearly a decade he was the world's only radio astronomer. Radio Astronomy Discoveries • radio (synchrotron) emission of the Milky Way (1933) • first discrete cosmic radio sources: supernova remnants and radio galaxies (1948) • 21-cm line of atomic hydrogen (1951) • Quasi Stellar Objects (1963) • Cosmic Microwave Background (1965) • Interstellar molecules ó Star formation (1968) • Pulsars (1968) Radio Observations through the Atmosphere • Radio window from ~10 MHz (30m) to 1 THz (0.3mm) • Low-frequency limit given by (reflecting) ionosphere • High frequency limit given by molecular transitions of atmospheric H2O and N2. Radio Wavelengths: PhotonsàElectric Fields • Directly measure electric fields of electro- magnetic waves • Electric fields excite currents in antennae • Currents can be amplified and split electrically. Radio Emission Mechanisms Most important astronomical radio emission mechanisms 1. Synchrotron emission 2. Free-free emission (thermal Bremsstrahlung) 3. Thermal (blackbody) emission (also from dust grains) 4.
    [Show full text]
  • Z´AKLADY ASTRONOMIE a ASTROFYZIKY II Látka Prednášená
    ZAKLADY´ ASTRONOMIE A ASTROFYZIKY II L´atka pˇredn´aˇsen´aM. Wolfem Na z´akladˇesv´ych pozn´amekz pˇredn´aˇskya dalˇs´ıliteratury sepsal M. B´ılek, korektury, doplˇnkyM. Zejda Verze 1: 6. z´aˇr´ı2010 Toto je zat´ımpracovn´ıverze skript. Je ne´upln´aa m˚uˇzeobsahovat menˇs´ıfaktick´echyby. V pˇr´ıpadˇe,ˇzenˇejakouobjev´ıte,nebo se v´ambude zd´atnˇejak´aˇc´asttextu nesrozumiteln´a, upozornˇetepros´ımautora nebo pˇredn´aˇsej´ıc´ıho.Doch´azkana pˇredn´aˇskuse doporuˇcuje. 2 Obsah 1 Atmosf´erick´aa vnˇeatmosf´erick´aastronomie 5 1.1 Uvod.......................................´ 5 1.2 Vliv atmosf´ery na astronomick´apozorov´an´ı. .5 1.2.1 Extinkce v atmosf´eˇre . .5 1.2.2 Seeing . .8 1.3 Bal´onov´aastronomie . .8 1.4 Druˇzicov´aastronomie . .9 2 Optick´aastronomie 13 2.1 Optick´edalekohledy . 13 2.1.1 Konstrukce dalekohled˚u . 13 2.1.2 Charakteristiky dalekohledu . 21 2.1.3 Optick´evady dalekohled˚u . 25 2.1.4 Okul´ary . 29 2.1.5 Filtry . 35 2.1.6 Mont´aˇze . 36 2.2 Optick´edetektory a jejich vyuˇzit´ıve fotometrii . 38 2.2.1 Nˇekter´eobecn´echarakteristiky fotometrick´ych detektor˚u. 39 2.2.2 Oko . 39 2.2.3 Fotografick´aemulze . 44 2.2.4 Foton´asobiˇce . 46 2.2.5 CCD . 48 2.3 Spektrografy . 53 2.3.1 Hranolov´yspektrograf . 55 2.3.2 Mˇr´ıˇzkov´yspektrograf . 55 3 R´adiov´aastronomie 63 4 Infraˇcerven´aastronomie 65 5 Rentgenov´aastronomie 67 6 Astronomie gama z´aˇren´ı 69 3 7 Astronomie gravitaˇcn´ıch vln 73 8 Neutrinov´aastronomie 75 9 Pˇr´ıstroje sluneˇcn´ıfyziky 79 10 Doporuˇcen´aliteratura 83 4 Kapitola 1 Atmosf´erick´aa vnˇeatmosf´erick´a astronomie 1.1 Uvod´ Pozorov´an´ıvesm´ırn´ych tˇelesz povrchu Zemˇe,na dnˇevzduˇsn´ehooce´anu, je pro astron- omy velmi omezuj´ıc´ı.Zemsk´aatmosf´era velmi dobˇrefiltruje z´aˇren´ıpˇrich´azej´ıc´ız vesm´ıru na povrch Zemˇe.V´ysledkem je, ˇzeˇzeZemˇem˚uˇzemevidˇetjen velmi omezen´erozsahy vl- nov´ych d´elekz´aˇren´ı,naz´yvan´a okna\.
    [Show full text]
  • Essential Radio Astronomy
    February 2, 2016 Time: 09:25am chapter1.tex © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. 1 Introduction 1.1 AN INTRODUCTION TO RADIO ASTRONOMY 1.1.1 What Is Radio Astronomy? Radio astronomy is the study of natural radio emission from celestial sources. The range of radio frequencies or wavelengths is loosely defined by atmospheric opacity and by quantum noise in coherent amplifiers. Together they place the boundary be- tween radio and far-infrared astronomy at frequency ν ∼ 1 THz (1 THz ≡ 1012 Hz) or wavelength λ = c/ν ∼ 0.3 mm, where c ≈ 3 × 1010 cm s−1 is the vacuum speed of light. The Earth’s ionosphere sets a low-frequency limit to ground-based radio astronomy by reflecting extraterrestrial radio waves with frequencies below ν ∼ 10 MHz (λ ∼ 30 m), and the ionized interstellar medium of our own Galaxy absorbs extragalactic radio signals below ν ∼ 2 MHz. The radio band is very broad logarithmically: it spans the five decades between 10 MHz and 1 THz at the low-frequency end of the electromagnetic spectrum. Nearly everything emits radio waves at some level, via a wide variety of emission mechanisms. Few astronomical radio sources are obscured because radio waves can penetrate interstellar dust clouds and Compton-thick layers of neutral gas. Because only optical and radio observations can be made from the ground, pioneering radio astronomers had the first opportunity to explore a “parallel universe” containing unexpected new objects such as radio galaxies, quasars, and pulsars, plus very cold sources such as interstellar molecular clouds and the cosmic microwave background radiation from the big bang itself.
    [Show full text]
  • Wide-Band, Low-Frequency Pulse Profiles of 100 Radio Pulsars With
    A&A 586, A92 (2016) Astronomy DOI: 10.1051/0004-6361/201425196 & c ESO 2016 Astrophysics Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR M. Pilia1,2, J. W. T. Hessels1,3,B.W.Stappers4, V. I. Kondratiev1,5,M.Kramer6,4, J. van Leeuwen1,3, P. Weltevrede4, A. G. Lyne4,K.Zagkouris7, T. E. Hassall8,A.V.Bilous9,R.P.Breton8,H.Falcke9,1, J.-M. Grießmeier10,11, E. Keane12,13, A. Karastergiou7 , M. Kuniyoshi14, A. Noutsos6, S. Osłowski15,6, M. Serylak16, C. Sobey1, S. ter Veen9, A. Alexov17, J. Anderson18, A. Asgekar1,19,I.M.Avruch20,21,M.E.Bell22,M.J.Bentum1,23,G.Bernardi24, L. Bîrzan25, A. Bonafede26, F. Breitling27,J.W.Broderick7,8, M. Brüggen26,B.Ciardi28,S.Corbel29,11,E.deGeus1,30, A. de Jong1,A.Deller1,S.Duscha1,J.Eislöffel31,R.A.Fallows1, R. Fender7, C. Ferrari32, W. Frieswijk1, M. A. Garrett1,25,A.W.Gunst1, J. P. Hamaker1, G. Heald1, A. Horneffer6, P. Jonker20, E. Juette33, G. Kuper1, P. Maat1, G. Mann27,S.Markoff3, R. McFadden1, D. McKay-Bukowski34,35, J. C. A. Miller-Jones36, A. Nelles9, H. Paas37, M. Pandey-Pommier38, M. Pietka7,R.Pizzo1,A.G.Polatidis1,W.Reich6, H. Röttgering25, A. Rowlinson22, D. Schwarz15,O.Smirnov39,40, M. Steinmetz27,A.Stewart7, J. D. Swinbank41,M.Tagger10,Y.Tang1, C. Tasse42, S. Thoudam9,M.C.Toribio1,A.J.vanderHorst3,R.Vermeulen1,C.Vocks27, R. J. van Weeren24, R. A. M. J. Wijers3, R. Wijnands3, S. J. Wijnholds1,O.Wucknitz6,andP.Zarka42 (Affiliations can be found after the references) Received 20 October 2014 / Accepted 18 September 2015 ABSTRACT Context.
    [Show full text]
  • Great Discoveries Made by Radio Astronomers During the Last Six Decades and Key Questions Today
    17_SWARUP (G-L)chiuso_074-092.QXD_Layout 1 01/08/11 10:06 Pagina 74 The Scientific Legacy of the 20th Century Pontifical Academy of Sciences, Acta 21, Vatican City 2011 www.pas.va/content/dam/accademia/pdf/acta21/acta21-swarup.pdf Great Discoveries Made by Radio Astronomers During the Last Six Decades and Key Questions Today Govind Swarup 1. Introduction An important window to the Universe was opened in 1933 when Karl Jansky discovered serendipitously at the Bell Telephone Laboratories that radio waves were being emitted towards the direction of our Galaxy [1]. Jansky could not pursue investigations concerning this discovery, as the Lab- oratory was devoted to work primarily in the field of communications. This discovery was also not followed by any astronomical institute, although a few astronomers did make proposals. However, a young electronics engi- neer, Grote Reber, after reading Jansky’s papers, decided to build an inno- vative parabolic dish of 30 ft. diameter in his backyard in 1935 and made the first radio map of the Galaxy in 1940 [2]. The rapid developments of radars during World War II led to the dis- covery of radio waves from the Sun by Hey in 1942 at metre wavelengths in UK and independently by Southworth in 1942 at cm wavelengths in USA. Due to the secrecy of the radar equipment during the War, those re- sults were published by Southworth only in 1945 [3] and by Hey in 1946 [4]. Reber reported detection of radio waves from the Sun in 1944 [5]. These results were noted by several groups soon after the War and led to intensive developments in the new field of radio astronomy.
    [Show full text]
  • Fundamentals of Radio Astronomy
    • 4.85 GHz radio image The Radio Sky at 4.85 GHz • 45 degrees wide • brightest irregular sources are clouds of ionized hydrogen The Radio Universe Dr. Chuck Higgins Middle Tennessee State University • Supernovae remnants appear as faint radio rings • Radio "stars" scattered over the sky - most are luminous radio galaxies 9 (c) National Radio Astronomy Observatory / Associated or quasars (average distance > 5 x 10 ly) Universities, Inc. / National Science Foundation • 4.85 GHz radio image The Radio Sky at 4.85 GHz • 45 degrees wide • brightest irregular sources are clouds of ionized hydrogen Outline 1.The Radio Sky and the EM Spectrum 2.Radio Telescopes 3.What We Learn and Major Discoveries 4.Sources of Radio Emission 5.Examples – Sun, Planets, Stars, Pulsars, Galaxies, etc. 6.Radio JOVE • Supernovae remnants appear as faint radio rings • Radio "stars" scattered over the sky - most are luminous radio galaxies 9 (c) National Radio Astronomy Observatory / Associated or quasars (average distance > 5 x 10 ly) Universities, Inc. / National Science Foundation Radio Astronomy the study of radio waves originating outside Earth’s atmosphere Radio Window 1 THz – 10 MHz 0.3 mm – 30 m Credit: Adapted from STScI/JHU/NASA Radio Telescopes Concept Drawing of the Square Kilometer Array, Australia Green Bank Telescope (NRAO, NSF) Fast Radio Telescope (China) 500 m dish VLA, New Mexico (NRAO, NSF) Itty Bitty Radio Telescope Radio Telescopes Radio Waves Image Credit: Windows to the Universe Radio waves = electromagnetic waves generally caused by moving charged
    [Show full text]
  • Radio Frequency Interference (Rfi) Mapping for Radio Astronomy in Peninsular Malaysia
    RADIO FREQUENCY INTERFERENCE (RFI) MAPPING FOR RADIO ASTRONOMY IN PENINSULAR MALAYSIA ROSLAN UMAR FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2014 RADIO FREQUENCY INTERFERENCE (RFI) MAPPING FOR RADIO ASTRONOMY IN PENINSULAR MALAYSIA ROSLAN UMAR THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSICS FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2014 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: Roslan b. Umar (I.C./Passport No.:800305115235) Registration/Matrix No.: SHC100045 Name of Degree: Doctor of Philosophy Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): Radio Frequency Interference (RFI) Mapping for Radio Astronomy In Peninsular Malaysia Field of Study: Radio Astronomy, I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work; (2) This work is original; (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work; (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; (6) I am fully aware that if in the course of making this Work I have infringed any copy- right whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.
    [Show full text]
  • ASTRONET ERTRC Report
    Radio Astronomy in Europe: Up to, and beyond, 2025 A report by ASTRONET’s European Radio Telescope Review Committee ! 1!! ! ! ! ERTRC report: Final version – June 2015 ! ! ! ! ! ! 2!! ! ! ! Table of Contents List%of%figures%...................................................................................................................................................%7! List%of%tables%....................................................................................................................................................%8! Chapter%1:%Executive%Summary%...............................................................................................................%10! Chapter%2:%Introduction%.............................................................................................................................%13! 2.1%–%Background%and%method%............................................................................................................%13! 2.2%–%New%horizons%in%radio%astronomy%...........................................................................................%13! 2.3%–%Approach%and%mode%of%operation%...........................................................................................%14! 2.4%–%Organization%of%this%report%........................................................................................................%15! Chapter%3:%Review%of%major%European%radio%telescopes%................................................................%16! 3.1%–%Introduction%...................................................................................................................................%16!
    [Show full text]
  • Thesis Is Submited in Partial Fulfilment of the Requirements for the Award of the Degree of Doctor of Philosophy of the University of Portsmouth
    Techniques for Cosmological Analysis of Next Generation Low to Mid-Frequency Radio Data Michael Tarr Department of Technology THE THESIS IS SUBMITED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF PORTSMOUTH May 2018 Declaration Whilst registered as a candidate for the above degree, I have not been registered for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award. This dissertation contains 51,523 words not including appendices, bibliography, footnotes, tables and equations, and has 68 figures. Michael Tarr May 2018 Acknowledgements First, I would like to give my most sincere thanks to David. It goes without saying that I can not imagine having completed this work without you. Your enthusiasm and belief in me has been a constant source of motivation from day one to the eleventh hour. You are an inspiration and model of a perfect superior. I cannot overstate how much I appchiate your effort, and I am eternally grateful. My love and thanks also to my parents, who have provided nothing but loving support, despite all my whims and phases. I can only hope it was all worth it to find something I have finally stuck with. Thanks should also go to Xan and Matthew, for taking precious time away from their own research to indulge my pet machine learning project. I owe you both and hope to always be friends. Rebecca1, save the final thanks for you.
    [Show full text]
  • The Search For
    THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE Proceedings of an NRAO Workshop held at the National Radio Astronomy Observatory Green Bank, West Virginia May 20, 21, 22, 1985 1960 1985 Honoring the 25th Anniversary of Project OZMA Edited by K. I. Kellermann and G. A. Seielstad THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE Proceedings of an NRAO Workshop held at the National Radio Astronomy Observatory Green Bank, West Virginia May 20, 21, 22, 1985 Edited by K. I. Kellermann and GL A. Seielstad Workshop Na 11 Distributed by: National Radio Astronomy Observatory P.O. Box 2 Green Bank, WV 24944-0002 USA The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with the National Science Foundation. Copyright © 1986 NRAO/AUI. All Rights Reserved. CONTENTS Page I. KEYNOTE ADDRESS Life in Space and Humanity on Earth . Sebastian von Hoeimer 3 II. HISTORICAL PERSPECTIVE Project OZMA Frank D. Drake 17 Project OZMA - How It Really Was J. Fred Crews 27 Evolution of Our Thoughts on the Best Strategy for SETI Michael D. Papagiannis 31 III. SEARCH STRATEGIES The Search for Biomolecules in Space Lewis E. Snyder 39 Mutual Help in SETI's David H. Frisch 51 A Symbiotic SETI Search Thomas M. Bania 61 Should the Search be Made Optically? John J. Broderiok 67 A Search for SETI Targets Jane L. Russell 69 A Milky Way Search Strategy for Extra¬ terrestrial Intelligence .... Woodruff T. Sullivan, III 75 IV. CURRENT PROGRAMS SETI Observations Worldwide Jill C. Tarter 79 Ultra-Narrowband SETI at Harvard/Smithsonian . Paul Horowitz 99 The NASA SETI Program: An Overview Bernard M.
    [Show full text]
  • Instrumentation for Wide Bandwidth Radio Astronomy
    Instrumentation for Wide Bandwidth Radio Astronomy Thesis by Glenn Evans Jones In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2010 (Defended September 25, 2009) ii c 2010 Glenn Evans Jones All Rights Reserved iii To my family. iv Acknowledgements Since I was very young I have been fascinated by radio telescopes, but despite a keen interest in other areas of electronics, I never learned how they were used until I began working with my research advisor, Sandy Weinreb. As a fellow electronics and technology enthusiast, I cannot imagine a better person to introduce me to the field of radio astronomy which has steadily become my career. From the very beginning, he has been a tireless advocate for me while sharing his broad experience across the gamut of radio astronomy instrumentation and observations. One of the most important ways in which Sandy has influenced me professionally is by pursuing every available opportunity to introduce me to members of the radio astronomy community. I also very much appreciate the support provided by my academic advisor, Dave Rutledge. Dave provided a wide range of useful suggestions and encouragement during group meetings, and looked out for me from the very beginning. Each of the other members of my thesis committee also deserves special thanks apart from my gratitude to them for serving on the committee. P.P. Vaidyanathan introduced me to digital signal processing and his clear, insightful lectures helped to inspire my interest in the field. Tony Read- head's courses on radio astronomy instrumentation and radiative processes significantly improved my understanding of the details of radio astronomy.
    [Show full text]