But It Was Fun

Total Page:16

File Type:pdf, Size:1020Kb

But It Was Fun But it was Fun The First Forty years of Radio Astronomy at Green Bank Second Printing, with corrections. Edited by Felix J. Lockman, Frank D. Ghigo, and Dana S. Balser Second printing published by the Green Bank Observatory, 2016. i Front cover: The 140 Foot Telescope and admirers at its dedication, October 1965. Title Page: The Tatel telescope under construction, 1958. Back cover, clockwise from lower left: Grote Reber in the Bean Patch in Green Bank, 1959; Employee group photo, 1960; site view of 300 Foot and Interferometer, 1971; the 140 Foot in September 1965; the 140 Foot at night; the Tatel Telescope under construction, 1958; the Tatel telescope, ca. 1980, view towards the west; the 300 Foot Telescope, 1964; aerial view of the 100 Meter Green Bank Telescope and the 140 Foot Telescope when the GBT was nearing completion, summer 2000. Cover design by Bill Saxton Copyright °c 2007, by National Radio Astronomy Observatory Second printing copyright °c 2016, by the Green Bank Observatory ISBN 0-9700411-2-8 Printed by The West Virginia Book Company, Charleston WV. The Green Bank Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. ii Table of Contents Preface ............................................................ v Acknowledgements ................................................. vii Historical Introduction ............................................. viii Part I. Building an Observatory ................................ 1 1. Need for a National Observatory ............................... 3 2. Finding Green Bank ........................................... 7 3. First Steps: 1956-7; Groundbreaking ........................... 19 4. Equipment Plans .............................................. 23 5. Getting Started: 1958 .......................................... 25 6. The First Telescope ............................................ 31 7. A Working Observatory ........................................ 47 Little Big Horn ................................................ 66 The 1960 Staff Photo .......................................... 68 8. Towards a Very Large Antenna ................................ 71 The 40 Foot Telescope ......................................... 90 Part II. The 300 Foot Telescope ................................ 95 1. Chronology of the 300 Foot ..................................... 97 2. The 25th Birthday Symposium .................................119 McClain: A View from the Outside ........................... 121 Tape: How the 300 Foot Affected AUI ........................ 127 Heeschen: The 300 Foot and the National Center Concept ..... 133 Findlay: A Telescope in 700 Days ............................. 145 Kerr: Extragalactic Hydrogen on Transit Telescopes ........... 159 Condon: Continuum Surveys ..................................165 Gregory: Galactic Plane Radio Patrol ......................... 181 Backer : A Pulsar in CTB 80 ................................. 195 Verschuur: How the 300 Foot Changed My Life ............... 203 3. Science Highlights ............................................. 209 First Users .................................................... 214 4. Green Bank Staff in 1987 ...................................... 218 5. Recollections and Stories .......................................223 6. The Collapse .................................................. 237 Part III. The 140 Foot Telescope ............................... 263 1. Heeschen: The First Ten Years 1955-1965 ...................... 265 2. Chronology of the 140 Foot .................................... 284 iii 3. The 30th Birthday Symposium . ................................305 Van Horn: Origins of NRAO ... Viewed from NSF .............. 307 VonHoerner: The 140 Foot: A Good Old Friend ................ 315 Baars: Thirty Years of Development ............................ 321 Mezger: Discovery of Radio Recombination Lines ............... 333 Wilson: Recombination Line Survey ............................ 343 Palmer: Early Days at the 140 Foot ............................ 353 Snyder: Beginning of Astronomical Spectroscopy ................361 Turner: Early Discoveries in Molecular Spectroscopy ............ 375 Bania: The Saga of 3-Helium ................................... 385 Verschuur: The 21cm Zeeman Experiment ...................... 397 Shaffer: The Early Days of VLBI ............................... 403 Moran: Early Spectral Line VLBI .............................. 407 Taylor: Lunar Occultation Measurements ....................... 427 Nice: Pulsar Observations with the GBT ....................... 435 Condon: Continuum Observations with the GBT ............... 441 4. Death and Resurrection ........................................449 Rood: An Old Dog’s Last Hunt .................................451 Langston: Bi-Static Radar ......................................455 5. Symposium Appendices ........................................ 457 Summary of Scientific Highlights ............................... 457 Selected PhD Dissertations ..................................... 462 The First Observers ............................................ 463 Group Photos .................................................. 465 Part IV. A Valley Full of Telescopes ........................... 471 1. The First Green Bank Workshop ............................... 473 2. Project OZMA ................................................ 481 3. Grote Reber in Green Bank .................................... 489 4. First Millimeter Telescopes .....................................507 5. The Green Bank Interferometer ................................ 513 6. The Search for the “Mad Ann” Meteorites ..................... 527 7. Exodus to Charlottesville ...................................... 529 8. Tourists ....................................................... 531 9. Kellermann: First VLBI with the Soviets .......................541 10. Clark: Travels with Charlie .................................... 563 Epilogue ............................................................571 Index ............................................................... 575 iv Preface This is a scrapbook of material from the first 40 years of the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. The book has had a curious history. In 1987, George Seielstad, Director of the Green Bank Observa- tory, organized a symposium in honor of the 300 Foot Telescope, on the occasion of its 25th birthday. The attendees were an extraordinary bunch, in many cases the very scientists who established radio astronomy as a scientific discipline in the United States and got the NRAO going as a national laboratory. The talks were quite interesting and had been recorded, so in the following months, they were gradually transcribed with the idea of putting them into a book. Fourteen months later, however, the 300 Foot experienced the major structural reconfiguration that is described in some detail in Part II. Almost overnight, the 100-meter Green Bank Telescope (GBT) project sprang into being and took every- one’s attention and energy. The partial transcripts from the 300 Foot symposium were put aside in a closet. Eight years later, in 1995, there was a new Green Bank Site Director and the 140 Foot Telescope celebrated its 30th birthday with an accompanying party and symposium to honor that instrument and anticipate the day when it would be succeeded by the GBT, which was then rising on the horizon. Again the at- tendees were an extraordinary bunch and included many who were instrumental in the breakthroughs in interstellar studies and very long baseline interferometry that moved radio astronomy into the mainstream of modern astrophysics. This time contributions were solicited and participants responded with everything from memoirs to research papers. Over the next year, as the 140 Foot Birthday Workshop Proceedings were being sorted and edited, several events occurred that conspired both to delay the “140 Foot Book” and to replace it with the volume you now hold in your hands. For one, we received a call from Mark Popovich, a resident of Massillon, Ohio, who had purchased a box of miscellany at an auction and in it discovered hitherto unknown photographs of the 140 Foot Telescope under fabrication in the E. W. Bliss Company plant in Canton, Ohio. The difficulties that the 140 Foot Telescope experienced in its construction almost sank the fledgling NRAO and drove the Green Bank staff to design and construct the 300 Foot Telescope. The Popovich photographs document a key moment in the history of Green Bank and the NRAO; he generously drove to Green Bank and gave them to us. We had to include some of them in this book. Then, a bit later and out of the blue, a cardboard box with material from the 300 Foot Symposium appeared, and we realized that this material was now of more than passing interest and also deserved publication. Finally, in the course of changes in the Green Bank physical plant, a number of old documents surfaced whose interest and importance likewise seemed deserving of a wide audience. The Monthly Reports from 1959 to 1962 paint a picture of v an institution struggling on all fronts at once—discovering the need for computers, reporting the modest income gained from leasing the Observatory fields to local farmers, bemoaning the meager housing available for visiting astronomers, and try- ing to establish the concepts and practices of a national visitor facility. We also found material from some of the many interesting
Recommended publications
  • The Global Jet Structure of the Archetypical Quasar 3C 273
    galaxies Article The Global Jet Structure of the Archetypical Quasar 3C 273 Kazunori Akiyama 1,2,3,*, Keiichi Asada 4, Vincent L. Fish 2 ID , Masanori Nakamura 4, Kazuhiro Hada 3 ID , Hiroshi Nagai 3 and Colin J. Lonsdale 2 1 National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA 2 Massachusetts Institute of Technology, Haystack Observatory, 99 Millstone Rd, Westford, MA 01886, USA; vfi[email protected] (V.L.F.); [email protected] (C.J.L.) 3 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; [email protected] (K.H.); [email protected] (H.N.) 4 Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan; [email protected] (K.A.); [email protected] (M.N.) * Correspondence: [email protected] Received: 16 September 2017; Accepted: 8 January 2018; Published: 24 January 2018 Abstract: A key question in the formation of the relativistic jets in active galactic nuclei (AGNs) is the collimation process of their energetic plasma flow launched from the central supermassive black hole (SMBH). Recent observations of nearby low-luminosity radio galaxies exhibit a clear picture of parabolic collimation inside the Bondi accretion radius. On the other hand, little is known of the observational properties of jet collimation in more luminous quasars, where the accretion flow may be significantly different due to much higher accretion rates. In this paper, we present preliminary results of multi-frequency observations of the archetypal quasar 3C 273 with the Very Long Baseline Array (VLBA) at 1.4, 15, and 43 GHz, and Multi-Element Radio Linked Interferometer Network (MERLIN) at 1.6 GHz.
    [Show full text]
  • Astro2020 APC White Paper Panel on Radio
    Astro2020 APC White Paper Panel on Radio, Millimeter, and Submillimeter Observations from the Ground The Case for a Fully Funded Green Bank Telescope Brief Description [350 character limit]: The NSF has reduced its funding for peer-reviewed use on the GBT to ~3900 hours/year, 60% of available science time. This greatly increases the telescope pressure & fragments the schedule, making it very difficult to allocate time for even the highest rated projects planned for the next decade. Here we seek funding for 1500 more hours annually. Principal Author: K. O’Neil (Green Bank Observatory; [email protected]) Co-authors: Felix J Lockman (Green Bank Observatory), Filippo D'Ammando (INAF-IRA Bologna), Will Armentrout (Green Bank Observatory), Shami Chatterjee (Cornell University), Jim Cordes (Cornell University), Martin Cordiner (NASA GSFC), David Frayer (Green Bank Observatory), Luke Zoltan Kelley (Northwestern University), Natalia Lewandowska (West Virginia University), Duncan Lorimer (WVU), Brian Mason (NRAO), Maura McLaughlin (West Virginia University), Tony Mroczkowski (European Southern Observatory), Hooshang Nayyeri (UC Irvine), Eric Perlman (Florida Institute of Technology), Bindu Rani (NASA Goddard Space Flight Center), Dominik Riechers (Cornell University), Martin Sahlan (Uppsala University), Ian Stephens (CfA/SAO), Patrick Taylor (Lunar and Planetary Institute), Francisco Villaescusa- Navarro (Center for Computational Astrophysics, Flatiron Institute) Endosers: Esteban D. Araya (Western Illinois University), Hector Arce (Yale
    [Show full text]
  • Radio Astronomy & Radio Telescopes
    Radio Astronomy & Radio Telescopes Tasso Tzioumis ([email protected]) Australia Telescope National Facility (ATNF) sms2020, Stellenbosch 2-6 March 2020 CSIRO ASTRONOMY AND SPACE SCIENCE Radio Astronomy – ITU definition 1.13 radio astronomy: Astronomy based on the reception of radio waves of cosmic origin. 1.5 radio waves or hertzian waves: Electromagnetic waves of frequencies arbitrarily lower than 3 000 GHz, propagated in space without artificial guide. • Astronomy covers the whole electromagnetic spectrum • Radio astronomy is the “low energy” part of the spectrum é 3 000 GHz Radioastronomy & Radio telescopes | Tasso Tzioumis Radio Astronomy “special” characteristics Technical challenges • Very faint signals – measured in 10-26 W/m2/Hz (-260 dBW) • “Power collected by all radiotelescopes since the start of radio astronomy would light a 1W bulb for less than 1 second” • à Need “sensitivity” i.e. large antennas and/or arrays of many antennas • à Very susceptible to intereference • Celestial structures at all scales: from very large to very small • à Need “spatial resolution” i.e. ability to see the details at all scales • à Need large antennas and/or arrays of many antennas • Astronomical events at all timescales(from < 1ms to > millions years) & and at all spectral resolutions (from < 1 Hz to GHz) • à Need very high time and frequency resolution • à Sensitive telescopes and arrays & extreme technical challenges Radioastronomy & Radio telescopes | Tasso Tzioumis Radio Astronomy “special” characteristics Scientific challenges • Radio
    [Show full text]
  • EDGES Memo #054
    EDGES MEMO #054 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 December 1, 2009 Telephone: 781-981-5407 Fax: 781-981-0590 To: EDGES Group From: Alan E.E. Rogers Subject: Meteor scatter rates Since all the World’s designated radio quiet zones are les than 2000 km from strong radio transmitters they are subject to RFI from meteor scatter. The key parameters of meteor scatter are poorly determined. For example, theory suggests that the radar cross-section (RCS) should decrease by 20 dB per decade from head echoes but measurements typically have an even faster decline with frequency. The frequency range for significant scatter and the range of concern to radio astronomy is about 50 to 300 MHz. Some papers claim that 1012 meteors enter the Earth’s atmosphere each day while others suggest a number more like 109. In practice we observed a rate of about 1 per minute when located in a canyon (see memo #52) with sky coverage limited to elevations greater than about 25 degrees. Based on the geometry of Figure 1 this corresponds to a worldwide rate of about 107/day. Figure 2 shows the estimated burst rate as a function of elevation cut-off angle. This very sharp curve shows the advantage of limiting the low elevation response of the antenna or using the terrain to limit the elevation angle. Potential locations for EDGES are on route 205 in the canyon just before 205 enters the Catlow Valley, Oregon or about 1km West of route 205 on Skull creek road. 1 h R To solve: theta=acos( ( (R+ h)*(R+ h)+ R*R-r*r) / (2*(R+ h)*R)) a 1 b -2*R*cos(elev+90) c = -(R+h)*(R+h)+R*R r = ((- b+sqrt(b*b-4*a*c) / (2*a) ; R earth radius = 6357 km r = region where meteors form ions ,-..J 100 km Figure 1.
    [Show full text]
  • Cosmic Search Issue 01
    North American AstroPhysical Observatory (NAAPO) Cosmic Search: Issue 1 (Volume 1 Number 1; January 1979) [All Articles & Miscellaneous Items] Webpage Table of Contents (Bookmarks) (Internal links to items in this webpage) [Note. Use Back button (or <Alt>+<Left Arrow>) to get back to this Table of Contents after you have clicked on a link and viewed the article.] Codes Used Below: P: Starting page of article in magazine; A: Author(s); T: Title of article P: 2; A: Robert S. Dixon and John Kraus, Editors; T: Editorial: About COSMIC SEARCH and SETI P: 3; A: Richard Berendzen; T: Editorial: Science and The Multitudes P: 4; A: Giuseppe Cocconi & Philip Morrison; T: Searching For Interstellar Communications P: 7; A: Philip Morrison; T: Twenty Years After . P: 10; A: Frank D. Drake; T: A Reminiscence of Project Ozma P: 16; A: S. Jocelyn Bell Burnell; T: Little Green Men, White Dwarfs or Pulsars? P: 22; A: Arthur C. Clarke; T: Trouble in Aquila P: 25; A: Editors; T: The SEnTInel (SETI News) P: 30; A: Norman Cousins; T: Rendezvous with Infinity P: 32; A: John Kraus; T: ABCs of SETI P: 36; A: Richard Berendzen; T: Time and a Cosmic Perspective P: 37; A: Walter Sullivan; T: What If We Succeed? P: 40; A: Sebastian von Hoerner & Mirjana Gearhart; T: FORUM: von Hoerner on SETI P: 46; A: Mirjana Gearhart; T: Off the Shelf P: various; A: Editors; T: Miscellaneous: Information from the Editors, Quotes & Graphics ● Information About the Publication (Editorial Board, Editors, Table of Contents) ● Coming in COSMIC SEARCH ● Glossary ● SEARCH AWARDS ● SEARCH PUZZLE ● Miscellaneous Quotes ● Miscellaneous Photos ● Miscellaneous Graphics Editorial: About COSMIC SEARCH and SETI By: Robert S.
    [Show full text]
  • Fifi'; 11( from the Editor
    S P R I N G 1 9 9 4 ammo CAN HE TRADITI OF HONESTY * SURVIVE DAY'S WORLD? fifi'; 11( From The Editor Rhode S (ISSN 40891-6446) is (From left) published tour times a year in spring, summer, Executive fall and winter by Rhodes College, 2000 N. Editor Helen Norman, Parkway, Memphis, TN 38112-1690. It is pub- Contributing lished as a service to all alumni, students, par- Editor Susan ents, faculty, staff and friends of the college. McLain Sullivan, Art Spring 1994 —Volume 1, Number I. Second Director Trey class postage paid at Memphis, Tennessee and Clark '89, additional mailing offices. and Editor Martha Hunter EXECUTIVE EDITOR: Helen Watkins Norman Shepard '66. EDITOR: Martha Hunter Shepard '66 Welcome to Rhodes, the magazine created especially for and about Rhodes Art Director: Trey Clark '89 alumni, parents, friends, faculty, staff and students. CONTRIBUTING EDITOR: Susan McLain Like the Rhodes Today, which it replaces, the magazine will continue to keep Sullivan you informed about what's happening day to day on campus and in the lives of POSTMASTER: Send address changes to: our alumni. But it will also offer you the chance to sample a broader mix of Rhodes, 2000 North Parkway, Memphis, TN 38112-1690. Rhodes-related articles and in greater depth than possible in the former publica- tion. The aim is for Rhodes to be more visually appealing as well, with an up-to- CHANGE OF ADDRESS: Please mail the complet- ed form below and label from this issue of Rhodes date design (for which we thank Memphis designer Eddie Tucker) and an ample to: Alumni Office, Rhodes College, 2000 North serving of color photography.
    [Show full text]
  • Astronomische Waarneemtechnieken (Astronomical Observing Techniques) Based on Lectures by Bernhard Brandl Lecture 8: Radio 1
    Astronomische Waarneemtechnieken (Astronomical Observing Techniques) Based on lectures by Bernhard Brandl Lecture 8: Radio 1. Introducon 2. Radio Emission 3. Observing 4. Antenna Technology 5. Receiver Technology 6. Back Ends 7. Calibraons (c) National Radio Astronomy Observatory / Associated Universities, Inc. / National Science Foundation The First Radio Astronomers http://en.wikipedia.org/wiki/Radio_telescope http://en.wikipedia.org/wiki/Radio_astronomy Grote Reber (1911-2002) Karl Guthe Jansky (1905-1950) Karl Jansky built (at Bell Telephone Laboratories) antenna to receive radio waves at 20.5 MHz (λ~14.6m) à “turntable” of 30m×6m à first detection of astronomical radio waves (à 1 Jy = 10−26 W m−2 Hz−1) Grote Reber extended Jansky's work, conducted first radio sky survey. For nearly a decade he was the world's only radio astronomer. Radio Astronomy Discoveries • radio (synchrotron) emission of the Milky Way (1933) • first discrete cosmic radio sources: supernova remnants and radio galaxies (1948) • 21-cm line of atomic hydrogen (1951) • Quasi Stellar Objects (1963) • Cosmic Microwave Background (1965) • Interstellar molecules ó Star formation (1968) • Pulsars (1968) Radio Observations through the Atmosphere • Radio window from ~10 MHz (30m) to 1 THz (0.3mm) • Low-frequency limit given by (reflecting) ionosphere • High frequency limit given by molecular transitions of atmospheric H2O and N2. Radio Wavelengths: PhotonsàElectric Fields • Directly measure electric fields of electro- magnetic waves • Electric fields excite currents in antennae • Currents can be amplified and split electrically. Radio Emission Mechanisms Most important astronomical radio emission mechanisms 1. Synchrotron emission 2. Free-free emission (thermal Bremsstrahlung) 3. Thermal (blackbody) emission (also from dust grains) 4.
    [Show full text]
  • Pos(ISKAF2010)046 T Status of T Status 2010
    The Status of the FAST Project Bo Peng PoS(ISKAF2010)046 National Astronomical Observatories, Chinese Academy of Sciences Datun Rd. A20, Chaoyang District, Beijing 100012, China E-mail: [email protected] With a huge collecting area of more than 30 football fields, the FAST (Five-hundred-meter Aperture Spherical Telescope) will become the largest single dish ever built in the world. The construction of the project FAST will be started officially in October 2010. The current status of the project is updated in this paper, focussed on FAST site preparation, progress on key system designs of the main active reflector, feed driving and pointing, measurements and controls, feeds and receivers, etc. Finally we introduce the newly established JLRAT (Joint Laboratory for Radio Astronomy Technology), to enhance Chinese involvements in the international SKA (Square Kilometre Array) project. ISKAF2010 Science Meeting - ISKAF2010 Assen, the Netherlands June 10–14 201 @ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it FAST Status %R Peng 1. Introduction The SKA (Square Kilometre Array) has been grown up as a global collaboration project since it was born in early 1990s. There are now about 20 countries involved in the SKA project in different ways. The FAST (Five-hundred-meter Aperture Spherical Telescope), which can be seen as a forerunner of the SKA, is a funded Chinese National Large Scale Facility project. It will be constructed in about 5.5 years from now. We will introduce the long path to the FAST which was rooted from the SKA, bring up recent updates on FAST project, and make a plan for future Chinese participation to the SKA, PoS(ISKAF2010)046 which is coordinated by the JLRAT (Joint Laboratory for Radio Astronomy Technology).
    [Show full text]
  • Negotiating Uncertainty: Asteroids, Risk and the Media Felicity Mellor
    Accepted pre-publication version Published at: Public Understanding of Science 19(1): (2010) 16-33. Negotiating Uncertainty: Asteroids, Risk and the Media Felicity Mellor ABSTRACT Natural scientists often appear in the news media as key actors in the management of risk. This paper examines the way in which a small group of astronomers and planetary scientists have constructed asteroids as risky objects and have attempted to control the media representation of the issue. It shows how scientists negotiate the uncertainties inherent in claims about distant objects and future events by drawing on quantitative risk assessments even when these are inapplicable or misleading. Although the asteroid scientists worry that media coverage undermines their authority, journalists typically accept the scientists’ framing of the issue. The asteroid impact threat reveals the implicit assumptions which can shape natural scientists’ public discourse and the tensions which arise when scientists’ quantitative uncertainty claims are re-presented in the news media. Keywords: asteroids, impact threat, astronomy, risk, uncertainty, science journalism, media, science news Introduction Over the past two decades, British newspapers have periodically announced the end of the world. Playful headlines such as “The End is Nigh” and “Armageddon Outta Here!” are followed a few days later by reports that there’s no danger after all: “PHEW. The end of the world has been cancelled” (Britten, 1998; Wickham, 2002; Evening Standard , 1998). These stories, and others like them appearing in news media around the world, deal with the possibility that an asteroid or comet may one day collide with the Earth causing global destruction. The threat posed by near-Earth objects (NEOs) has been actively promoted by a group of astronomers and planetary scientists since the late 1980s.
    [Show full text]
  • Longterm MWL Behavior of 1ES1959+650
    Fakultät Physik – Experimentelle Physik 5 Long-term observations of the TeV blazar 1ES 1959+650 Temporal and spectral behavior in the multi-wavelength context Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Dipl.-Phys. Michael Backes Dezember 2011 Contents 1 Introduction 1 2 Brief Introduction to Astroparticle Physics 3 2.1 ChargedCosmicRays .............................. 4 2.1.1 CompositionofCosmicRays . 4 2.1.2 EnergySpectrumofCosmicRays. 5 2.1.3 Sources of Cosmic Rays up to 1018 eV................ 6 ∼ 2.1.4 Sources of Cosmic Rays above 1018 eV................ 8 ∼ 2.2 AstrophysicalNeutrinos . ... 12 2.3 PhotonsfromOuterSpace. 13 2.3.1 Leptonic Processes: Connecting Low and High Energy Photons . 13 2.3.2 Hadronic Processes: Connecting Photons, Protons, and Neutrinos . 16 2.4 ActiveGalacticNuclei . 16 2.4.1 Blazars .................................. 17 2.4.2 EmissionModels ............................. 19 2.4.3 BinaryBlackHolesinAGN . 20 3 Instruments for Multi-Wavelength Astronomy 25 3.1 RadioandMicrowave .............................. 25 3.1.1 Single-DishInstruments . 25 3.1.2 Interferometers .............................. 26 3.1.3 Satellites ................................. 27 3.2 Infrared ...................................... 27 3.3 Optical ...................................... 28 3.3.1 Satellite-Born............................... 28 3.3.2 Ground-Based .............................. 28 3.4 Ultraviolet..................................... 29 3.5 X-Rays .....................................
    [Show full text]
  • Z´AKLADY ASTRONOMIE a ASTROFYZIKY II Látka Prednášená
    ZAKLADY´ ASTRONOMIE A ASTROFYZIKY II L´atka pˇredn´aˇsen´aM. Wolfem Na z´akladˇesv´ych pozn´amekz pˇredn´aˇskya dalˇs´ıliteratury sepsal M. B´ılek, korektury, doplˇnkyM. Zejda Verze 1: 6. z´aˇr´ı2010 Toto je zat´ımpracovn´ıverze skript. Je ne´upln´aa m˚uˇzeobsahovat menˇs´ıfaktick´echyby. V pˇr´ıpadˇe,ˇzenˇejakouobjev´ıte,nebo se v´ambude zd´atnˇejak´aˇc´asttextu nesrozumiteln´a, upozornˇetepros´ımautora nebo pˇredn´aˇsej´ıc´ıho.Doch´azkana pˇredn´aˇskuse doporuˇcuje. 2 Obsah 1 Atmosf´erick´aa vnˇeatmosf´erick´aastronomie 5 1.1 Uvod.......................................´ 5 1.2 Vliv atmosf´ery na astronomick´apozorov´an´ı. .5 1.2.1 Extinkce v atmosf´eˇre . .5 1.2.2 Seeing . .8 1.3 Bal´onov´aastronomie . .8 1.4 Druˇzicov´aastronomie . .9 2 Optick´aastronomie 13 2.1 Optick´edalekohledy . 13 2.1.1 Konstrukce dalekohled˚u . 13 2.1.2 Charakteristiky dalekohledu . 21 2.1.3 Optick´evady dalekohled˚u . 25 2.1.4 Okul´ary . 29 2.1.5 Filtry . 35 2.1.6 Mont´aˇze . 36 2.2 Optick´edetektory a jejich vyuˇzit´ıve fotometrii . 38 2.2.1 Nˇekter´eobecn´echarakteristiky fotometrick´ych detektor˚u. 39 2.2.2 Oko . 39 2.2.3 Fotografick´aemulze . 44 2.2.4 Foton´asobiˇce . 46 2.2.5 CCD . 48 2.3 Spektrografy . 53 2.3.1 Hranolov´yspektrograf . 55 2.3.2 Mˇr´ıˇzkov´yspektrograf . 55 3 R´adiov´aastronomie 63 4 Infraˇcerven´aastronomie 65 5 Rentgenov´aastronomie 67 6 Astronomie gama z´aˇren´ı 69 3 7 Astronomie gravitaˇcn´ıch vln 73 8 Neutrinov´aastronomie 75 9 Pˇr´ıstroje sluneˇcn´ıfyziky 79 10 Doporuˇcen´aliteratura 83 4 Kapitola 1 Atmosf´erick´aa vnˇeatmosf´erick´a astronomie 1.1 Uvod´ Pozorov´an´ıvesm´ırn´ych tˇelesz povrchu Zemˇe,na dnˇevzduˇsn´ehooce´anu, je pro astron- omy velmi omezuj´ıc´ı.Zemsk´aatmosf´era velmi dobˇrefiltruje z´aˇren´ıpˇrich´azej´ıc´ız vesm´ıru na povrch Zemˇe.V´ysledkem je, ˇzeˇzeZemˇem˚uˇzemevidˇetjen velmi omezen´erozsahy vl- nov´ych d´elekz´aˇren´ı,naz´yvan´a okna\.
    [Show full text]
  • History of Radio Astronomy
    History of Radio Astronomy Reading for High School Students Getsemary Báez Introduction form of radiation involved (soon known as electro- Radio Astronomy, a field that has strongly magnetic waves). Nevertheless, it was Oliver Heavi- evolved since the end of World War II, has become side who in conjunction with Willard Gibbs in 1884 one of the most important tools of astronomical ob- modified the equations and put them into modern servations. Radio astronomy has been responsible for vector notation. a great part of our understanding of the universe, its A few years later, Heinrich Hertz (1857- formation, composition, interactions, and even pre- 1894) demonstrated the existence of electromagnetic dictions about its future path. This article intends to waves by constructing a device that had the ability to inform the public about the history of radio astron- transmit and receive electromagnetic waves of about omy, its evolution, connection with solar studies, and 5m wavelength. This was actually the first radio the contribution the STEREO/WAVES instrument on wave transmitter, which is what we call today an LC the STEREO spacecraft will have on the study of oscillator. Just like Maxwell’s theory predicted, the this field. waves were polarized. The radiation emissions were detected using a 1mm thin circle of copper wire. Pre-history of Radio Waves Now that there is evidence of electromag- It is almost impossible to depict the most im- netic waves, the physicist Max Planck (1858-1947) portant facts in the history of radio astronomy with- was responsible for a breakthrough in physics that out presenting a sneak peak where everything later developed into the quantum theory, which sug- started, the development and understanding of the gests that energy had to be emitted or absorbed in electromagnetic spectrum.
    [Show full text]