Improvement in the Forming Process of Support Brackets Vulnerable to Cracking
Total Page:16
File Type:pdf, Size:1020Kb
Improvement in the forming process of support brackets vulnerable to cracking - problem solving in the field of sheet metal forming Examensarbete Materialvetenskap Martin Lind Date: 2012-10-04 DEGREE PROJECT Metals working engineering Programme Extent Materials Design and Engineering, 300 ECTS 30 ECTS Name of student Year-Month-Day Martin Lind 2012-10-04 Supervisor Examiner Lars Troive Stefan Jonsson Company/Department Supervisor at the Company/Department Schneider Electric – Wibe, AB Annarella Jansson Title Improvement in the forming process of support brackets vulnerable to cracking Keywords Sheet metal forming, forming methods, flanging test, cracking, FEA, galling Summary This report has been written to summarize my work, regarding a will to improve the manufacturing process of a support bracket used for cable ladders. The company concerned in the project have experienced several problems with severe cracking in a flange radius throughout the years of production. The main task has therefore been to identify the problem and to come up with some suggestions of how to avoid these issues ahead. In order to evaluate the formability of the material used in production, flanging tests have been performed accompanied by finite element analysis in MSC Marc. The conditions of the cut edge subjected to cracking, as well as the cutting tool, have also been investigated by light optical microscopy (LOM), as well as by scanning electron microscopy (SEM). The results show that the flanging operation in today's production of support brackets extensively exceeds the critical flanging ratio of the steel sheet material. As sheet material tends to adhere to the tool surfaces, issues due to galling can also be stated during manufacturing. In order to improve the production with respect to reliability and a more enhanced product, the company should consider solutions like changing the lubricant or focus on the options of applying a surface treatment on the cutting tool or a brand new tool made from high-quality steel grades, which should be a more sufficient solution in the long- term run. FÖRDJUPNINGSARBETE Bearbetningsteknik Program Omfattning Materialdesign, 300 HP 30 HP Namn Datum Martin Lind 2012-10-04 Handledare Examinator Lars Troive Stefan Jonsson Företag/Institution Kontaktperson vid företaget/institutionen Schneider Electric – Wibe, AB Annarella Jansson Titel Förbättring av tillverkningsprocessen av bärok utsatta för sprickbildning Nyckelord Plåtformning, formningsmetoder, kragning, sprickbildning, FEA, galling Sammanfattning Denna rapport har skrivits för att sammanfatta mitt arbete med syfte att förbättra tillverkningen av bärok som används till kabelstegar. Det i projektet berörda företaget har under årens lopp upplevt ett flertal problem med svår sprickbildning i en kragad radie. Huvuduppgiften har därför varit att identifiera vad som skulle kunna vara problemet, samt att komma fram till några förslag på hur dessa problem skulle kunna undvikas framöver. Kragningstest, åtföljda av finita element analyser med hjälp av MSC Marc har utförts för att utvärdera arbetsmaterialets formbarhet. Skicket på den berörda klippkanten, liksom klippverktyget, har också studerats i såväl ljusoptiskt mikroskop (LOM) som svepelektronmikroskop (SEM). Resultaten visar att kragningsoperationen i dagsläget avsevärt överskrider materialets kritiska kragningsförhållande. Problem med galling kan också fastställas då plåtmaterial tenderar att smeta fast på verktygsytorna under produktionsförloppet. För att förbättra tillverkningen med avseende på tillförlitlighet och en förbättrad produkt, bör företaget överväga lösningar såsom att byta smörjmedel eller att fokusera på en ytbehandling av klippverktyget eller att investera i ett helt nytt verktyg tillverkat av högkvalitativt verktygsstål vilket antagligen skulle vara den mest fördelaktiga lösningen på lång sikt. Acknowledgements I (Martin) would like to thank the following persons for supporting, advising or in other ways helping me during the months of this degree project. Thanks to them the work has been both fun and interesting to carry out. • Lars Troive, SSAB, as my supervisor for advising me through the entire project and helping me with report reviewing. • Annarella Jansson, Schneider Electric, for great cooperation and support from the company. • Michael Lindgren, Dalarna University, for first introducing me to this degree project and helping me with tools machining and FE-analyses. • Ulf Modin, Dalarna University, for assisting me with the sample preparations and helping me handle the SEM and tensile testing. • Göran Engberg, Dalarna University, for helping me to predict the strain hardening behaviour by sufficient material models during FEM-simulation. • Stefan Jonsson, Dalarna University, as my examiner. Table of contents 1 Introduction ......................................................................................................................... 1 2 Background to the investigation ......................................................................................... 2 3 Sheet metal forming ............................................................................................................ 4 3.1 Common forming techniques ...................................................................................... 4 3.2 Formability tests ........................................................................................................ 11 3.3 Major issues during forming...................................................................................... 14 4 Experimental ..................................................................................................................... 16 4.1 Material ...................................................................................................................... 16 4.2 Flanging test .............................................................................................................. 17 4.3 Microscopical investigation of the component and the cutting tool condition .......... 19 4.4 Finite element analyses (FEA) .................................................................................. 20 5 Results ............................................................................................................................... 23 5.1 Flanging test .............................................................................................................. 23 5.2 Microscopical investigation of the component and the cutting tool condition .......... 24 5.3 Finite element analyses (FEA) .................................................................................. 27 6 Discussion ......................................................................................................................... 29 6.1 Analyse of the results ................................................................................................ 29 6.2 Suggestion to improvements ..................................................................................... 31 7 Conclusions ....................................................................................................................... 33 8 References ......................................................................................................................... 34 Appendix 1 – drawing of the punch and tool assembly .................................................. 35 Appendix 2 – stress-strain curves obtained by tensile testing ........................................ 37 1 Introduction Sheet metal forming is one of the most common metal shaping processes used in history. It is used in a widespread way throughout the automotive, aerospace, building and marine industries as it constitutes a vital part of the manufacturing industries of modern industrial countries. Nowadays there are a large number of different forming processes available where bending, stretching, stamping and deep drawing are some of the most common methods. More newly invented, high-tech forming methods might be the techniques of hydroforming, water-jet or laser cutting, and roll forming in three dimensions (flexible 3D roll forming), among others. Sheet metal can be made of many materials such as steel, aluminium, copper, brass and titanium and is usually delivered in flat cut-to-length pieces or as coiled strips formed by a roll slitter. In order to increase the corrosion resistance a zinc layer might be applied on the surface of steel sheets in a hot-dip galvanization line or by electrochemical deposition. A coating of paint can be added as well to improve wear resistance and give a decorative look. The thickness (gauge) of a metal sheet can vary significantly but is commonly in a range of about 0.1-6 mm [1]. Thinner materials are considered foil or leaf and pieces thicker than 6 mm are named plate. Hot rolled as well as cold rolled materials are extensively used in the processes of sheet metal forming, and today's increasing amount of high-strength steels will demand an even higher knowledge in metalworking processes and the skills of how to handle and reduce issues related to cracking failures and spring back effects. Fig. 1.1 A galvanized sheet metal strip delivered in coils. This degree project will consider the production of a support bracket designed for holding cable ladders, see Figure 1.2. The bracket is manufactured in a stamping press, and at some times the company producing the component have had problems due to cut edge cracking in a flanged radius. The issues seem to