Basal Forebrain Volume, but Not Hippocampal Volume, Is a Predictor of Global Cognitive Decline in Patients with Alzheimer’S Disease

Total Page:16

File Type:pdf, Size:1020Kb

Basal Forebrain Volume, but Not Hippocampal Volume, Is a Predictor of Global Cognitive Decline in Patients with Alzheimer’S Disease ORIGINAL RESEARCH published: 14 August 2018 doi: 10.3389/fneur.2018.00642 Basal Forebrain Volume, but Not Hippocampal Volume, Is a Predictor of Global Cognitive Decline in Patients With Alzheimer’s Disease Edited by: Treated With Cholinesterase Lars Ersland, Haukeland University Hospital, Inhibitors Norway Reviewed by: Stefan J. Teipel 1,2*, Enrica Cavedo 3,4,5,6,7, Harald Hampel 3,4,5,6 and Michel J. Grothe 1 for Elizabeth J. Coulson, the Alzheimer’s Disease Neuroimaging Initiative† and Alzheimer Precision Medicine The University of Queensland, Initiative (APMI) Australia Karsten Specht, 1 German Center for Neurodegenerative Diseases-Rostock/Greifswald, Rostock, Germany, 2 Department of Psychosomatic University of Bergen, Norway Medicine, University of Rostock, Rostock, Germany, 3 AXA Research Fund and Sorbonne University Chair, Paris, France, *Correspondence: 4 Sorbonne University, GRC n◦ 21, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’Hôpital, Stefan J. Teipel Paris, France, 5 Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’Hôpital, Paris, France, [email protected] 6 Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’Hôpital, Paris, France, 7 IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy †Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Background: Predicting the progression of cognitive decline in Alzheimer’s disease Initiative (ADNI) database (AD) is important for treatment selection and patient counseling. Structural MRI markers (adni.loni.usc.edu/). As such, the investigators within the ADNI such as hippocampus or basal forebrain volumes might represent useful instruments contributed to the design and for the prediction of cognitive decline. The primary objective was to determine the implementation of ADNI and/or provided data but did not participate predictive value of hippocampus and basal forebrain volumes for global and domain in analysis or writing of this report. A specific cognitive decline in AD dementia during cholinergic treatment. complete listing of ADNI investigators can be found at: http://adni.loni.usc. Methods: We used MRI and cognitive data from 124 patients with the clinical diagnosis edu/wp-content/uploads/ of AD dementia, derived from the ADNI-1 cohort, who were on standard of care how_to_apply/ cholinesterase inhibitor treatment during a follow-up period between 0.4 and 3.1 years. ADNI_Acknowledgement_List.pdf We used linear mixed effects models with cognitive function as outcome to assess Specialty section: the main effects as well as two-way interactions between baseline volumes and time This article was submitted to controlling for age, sex, and total intracranial volume. This model accounts for individual Applied Neuroimaging, a section of the journal variation in follow-up times. Frontiers in Neurology Results: Basal forebrain volume, but not hippocampus volume, was a significant Received: 10 November 2017 Accepted: 17 July 2018 predictor of rates of global cognitive decline. Larger volumes were associated with smaller Published: 14 August 2018 rates of cognitive decline. Left hippocampus volume had a modest association with rates Citation: of episodic memory decline. Baseline performance in global cognition and memory was Teipel SJ, Cavedo E, Hampel H and significantly associated with hippocampus and basal forebrain volumes; in addition, basal Grothe MJ (2018) Basal Forebrain Volume, but Not Hippocampal forebrain volume was associated with baseline performance in executive function. Volume, Is a Predictor of Global Conclusions: Our findings indicate that in AD dementia patients, basal forebrain volume Cognitive Decline in Patients With Alzheimer’s Disease Treated With may be a useful marker to predict subsequent cognitive decline during cholinergic Cholinesterase Inhibitors. treatment. Front. Neurol. 9:642. doi: 10.3389/fneur.2018.00642 Keywords: cholinergic treatment, MRI, prediction, memory, executive function, basal forebrain, hippocampus Frontiers in Neurology | www.frontiersin.org 1 August 2018 | Volume 9 | Article 642 Teipel et al. Predicting Cognitive Decline in AD INTRODUCTION Initiative (ADNI-1) database, all receiving cholinergic treatment. Based on the previous evidence on the potential predictive A prediction of the individual course of cognitive change value of these brain regions in AD, we determined the in Alzheimer’s disease (AD) would help adequate resource association of hippocampus and basal forebrain volume with allocation, patient care, and counseling. Evidence suggests rates of global and domain-specific cognitive decline during that the hippocampus supports the consolidation of long- cholinergic treatment. We expected that lower basal forebrain term declarative memory (1, 2), showing neurodegeneration in (hippocampus) volume would predict a faster rate of global autopsy data and atrophy in in vivo MRI scans as early as in and executive (global and episodic memory) function. Secondly, predementia stages of AD (3, 4). Its measurement is standardized, we determined the predictive use of basal forebrain and robust, accessible and feasible for in vivo studies using established hippocampus volumes for the identification of cognitively stable volumetric protocols, with the most recent advance being an vs. cognitively declining patients, where we expected that internationally harmonized protocol for a consistent delineation cognitively stable patients would have larger basal forebrain and of the hippocampus’ anatomical borders on MRI scans (5). The hippocampus volumes at baseline. These data help to assess cholinergic basal forebrain is the main source of neocortical the potential usefulness of volumetric MRI to identify people acetylcholine (6), and is involved in attentional processes, such with a more rapid disease progression; such data would support as immediate recall and executive function (7). Autopsy studies clinical decision making on allocation of treatment resources found degeneration of cholinergic basal forebrain neurons in and care. early clinical stages of AD (8, 9), and the resulting reduction of cholinergic cortical activity represents the rationale for the use of cholinergic treatment in AD dementia. The hippocampus METHODS represents a key input area of cholinergic projections from the basal forebrain (10). In recent years, MRI based protocols for an Study Population automated measurement of cholinergic basal forebrain volumes Data used in the preparation of this article were obtained have been established that make use of stereotactic information from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) derived from combined post mortem MRI and histology (11– database (adni.loni.usc.edu). The ADNI was launched in 2003 13). Based on these protocols, several MRI volumetric studies as a public-private partnership, led by Principal Investigator have shown consistent pattern of hippocampus and cholinergic Michael W. Weiner, MD. The primary goal of ADNI has basal forebrain atrophy in AD dementia (11, 14) and prodromal been to test whether serial magnetic resonance imaging (MRI), at-risk stages of AD dementia, such as amnestic mild cognitive positron emission tomography (PET), other biological markers, impairment (MCI) (15, 16) or individuals with amyloid positive and clinical and neuropsychological assessment can be combined MCI (17). to measure the progression of mild cognitive impairment (MCI) Based on these findings, hippocampus and cholinergic basal and early Alzheimer’s disease (AD). A fuller description of ADNI forebrain volumes may help to predict cognitive change and and up-to-date information is available at www.adni-info.org. response to cholinergic treatment in patients with AD dementia We retrieved data of participants of the ADNI-1 study who had or prodromal AD. A previous study found that the thickness of a clinical diagnosis of AD dementia at baseline, a baseline MRI the substantia innominata, a potential proxy of cholinergic basal scan, neuropsychological testing at baseline and follow-up and forebrain integrity (18), was associated with rates of cognitive documented treatment with any cholinesterase inhibitor during change in 82 AD dementia patients during 9 months of treatment follow-up time. We retrieved 124 cases, 56 women, fulfilling these with a cholinesterase inhibitor, with smaller rates of cognitive conditions. We included only people with a clinical diagnosis of decline in people with a lower thickness of the substantia AD dementia, because cholinesterase inhibitor treatment is only innominata (19). In people with MCI, hippocampus volume was approved for this diagnosis, but not for MCI or other diagnoses. associated with rates of cognitive decline with a moderate effect size (20–24). In 37 AD dementia cases, smaller hippocampus Neuropsychological Tests volume was associated with faster global cognitive decline during We used ADAScog11 as measure of global cognitive decline cholinergic treatment (25). In a recent randomized controlled (27–29). ADAScog 11 has frequently been used in clinical trial of donepezil, we found that hippocampus volume, but efficacy trials of cholinesterase inhibitors in AD as primary not basal forebrain volume, was a predictor of subsequent endpoint (30, 31). In addition, we used composite measures for cognitive decline in 216 MCI cases (26); this effect, however, memory and executive
Recommended publications
  • Synaptic Organization of Claustral and Geniculate Afferents to the Visual Cortex of the Cat
    The Journal of Neuroscience December 1986, 6(12): 3564-3575 Synaptic Organization of Claustral and Geniculate Afferents to the Visual Cortex of the Cat Simon LeVay Robert Bosch Vision Research Center, Salk Institute for Biological Studies, San Diego, California 92138 Claustral and geniculate afferents to area 17 were labeled by sponses of some cortical neurons, previously called “hypercom- anterograde axonal transport of peroxidase-conjugated wheat- plex cells” by Hubel and Wiesel (1965), are suppressed as the germ agglutinin, and examined in the electron microscope. A length of the stimulating slit of light is extended beyond some peroxidase reaction protocol that led to labeling in the form of optimal value. Interestingly, neurons in the visual claustrum minute holes in the EM sections was used. Both types of affer- behave in a complementary fashion: Their responses to an ori- ents formed type 1 (presumed excitatory) synapses exclusively. ented stimulus increase monotonically with stimulus length, In agreement with previous reports the great majority of genic- sometimes showing length summation up to 40” or more-a ulate afferents to layers 4 and 6 contacted dendritic spines. The sizable portion of the animal’s entire field of view (Sherk and claustral afferents to layers 1 and 6 also predominantly con- LeVay, 198 1). tacted spines. In layer 4, however, claustral afferents contacted These observations suggest that claustral neurons contribute spines and dendritic shafts about equally. The results suggest a to end-stopping by exerting a length-dependent inhibition on substantial Claus&al input to smooth-dendrite cells in layer 4, some neurons in the visual cortex.
    [Show full text]
  • Distribution of Dopamine D3 Receptor Expressing Neurons in the Human Forebrain: Comparison with D2 Receptor Expressing Neurons Eugenia V
    Distribution of Dopamine D3 Receptor Expressing Neurons in the Human Forebrain: Comparison with D2 Receptor Expressing Neurons Eugenia V. Gurevich, Ph.D., and Jeffrey N. Joyce, Ph.D. The dopamine D2 and D3 receptors are members of the D2 important difference from the rat is that D3 receptors were subfamily that includes the D2, D3 and D4 receptor. In the virtually absent in the ventral tegmental area. D3 receptor rat, the D3 receptor exhibits a distribution restricted to and D3 mRNA positive neurons were observed in sensory, mesolimbic regions with little overlap with the D2 receptor. hormonal, and association regions such as the nucleus Receptor binding and nonisotopic in situ hybridization basalis, anteroventral, mediodorsal, and geniculate nuclei of were used to study the distribution of the D3 receptors and the thalamus, mammillary nuclei, the basolateral, neurons positive for D3 mRNA in comparison to the D2 basomedial, and cortical nuclei of the amygdala. As revealed receptor/mRNA in subcortical regions of the human brain. by simultaneous labeling for D3 and D2 mRNA, D3 mRNA D2 binding sites were detected in all brain areas studied, was often expressed in D2 mRNA positive neurons. with the highest concentration found in the striatum Neurons that solely expressed D2 mRNA were numerous followed by the nucleus accumbens, external segment of the and regionally widespread, whereas only occasional D3- globus pallidus, substantia nigra and ventral tegmental positive-D2-negative cells were observed. The regions of area, medial preoptic area and tuberomammillary nucleus relatively higher expression of the D3 receptor and its of the hypothalamus. In most areas the presence of D2 mRNA appeared linked through functional circuits, but receptor sites coincided with the presence of neurons co-expression of D2 and D3 mRNA suggests a functional positive for its mRNA.
    [Show full text]
  • Characterization of Basal Forebrain Glutamate Neurons Suggests a Role in Control of Arousal and Avoidance Behavior
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.157479; this version posted June 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Title: Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior Authors: James T. McKenna1, Chun Yang1, Thomas Bellio2, Marissa B. Anderson-Chernishof1, Mackenzie C. Gamble2, Abigail Hulverson2, John G. McCoy2, Stuart Winston1, James M. McNally1, Radhika Basheer1 and Ritchie E. Brown1 ORCIDs: James McKenna: 0000-0002-9710-3553 Chun Yang: 0000-0002-1979-0335 Radhika Basheer: 0000-0002-4052-6897 Ritchie Brown: 0000-0002-7164-4132 Institutional Affiliations: 1 Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Department of Psychiatry, 1400 VFW Parkway, West Roxbury, MA, 02132, USA. 2 Stonehill College, Easton, MA, 02357, USA. Running head: Basal Forebrain Glutamatergic Neurons Key words: calretinin, calbindin, parvalbumin, GAD67-GFP knock-in mice, nucleus basalis, ventral pallidum Corresponding author: Ritchie E. Brown, Dr. Rer. Nat., Address: Dept. of Psychiatry, VA Boston Healthcare System & Harvard Medical School, VA Medical Center, West Roxbury, 1400 VFW Parkway, MA, 02132, USA. Email: [email protected] Declarations: Funding: This work was supported by United States Veterans Administration Biomedical Laboratory Research and Development Service Merit Awards I01 BX004673, BX001356, I01 BX001404, I01 BX002774, I01 BX004500 and United States National Institute of Health support from NINDS R21 NS093000, NIMH R01 MH039683, NHLBI HL095491, R03- MH107650 and by SURE fellowships from Stonehill College.
    [Show full text]
  • Basal Forebrain Glutamatergic Modulation of Cortical Acetylcholine Release
    SYNAPSE 39:201–212 (2001) Basal Forebrain Glutamatergic Modulation of Cortical Acetylcholine Release JIM FADEL, MARTIN SARTER, AND JOHN P. BRUNO* Departments of Psychology and Neuroscience, The Ohio State University, Columbus, Ohio KEY WORDS acetylcholine; basal forebrain; cortex; microdialysis; glutamate recep- tors; kainate; NMDA ABSTRACT The mediation of cortical ACh release by basal forebrain glutamate receptors was studied in awake rats fitted with microdialysis probes in medial prefrontal cortex and ipsilateral basal forebrain. Repeated presentation of a stimulus consisting of exposure to darkness with the opportunity to consume a sweetened cereal resulted in a transient increase in cortical ACh efflux. This stimulated release was dependent on basal forebrain glutamate receptor activity as intrabasalis perfusion with the ionotropic glutamate receptor antagonist kynurenate (1.0 mM) markedly attenuated darkness/ cereal-induced ACh release. Activation of AMPA/kainate receptors by intrabasalis per- fusion of kainate (100 ␮M) was sufficient to increase cortical ACh efflux even under basal (nonstimulated) conditions. This effect of kainate was blocked by coperfusion with the antagonist DNQX (0.1–5.0 mM). Stimulation of NMDA receptors with intrabasalis perfusion of NMDA (50 or 200 ␮M) did not increase basal cortical ACh efflux. However, perfusion of NMDA in rats following exposure to the darkness/cereal stimulus resulted in a potentiation of both the magnitude and duration of stimulated cortical ACh efflux. Moreover, intrabasalis perfusion of the higher dose of NMDA resulted in a rapid increase in cortical ACh efflux even before presentation of the darkness/cereal stimulus, suggesting an anticipatory change in the excitability of basal forebrain cholinergic neurons. These data demonstrate that basal forebrain glutamate receptors contribute to the stimulation of cortical ACh efflux in response to behavioral stimuli.
    [Show full text]
  • Amygdaloid and Basal Forebrain Direct Connections with the Nucleus of the Solitary Tract and the Dorsal Motor Nucleus
    0270~6474/82/0210-1424$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 2, No. 10, pp. 1424-1438 Printed in U.S.A. October 1982 AMYGDALOID AND BASAL FOREBRAIN DIRECT CONNECTIONS WITH THE NUCLEUS OF THE SOLITARY TRACT AND THE DORSAL MOTOR NUCLEUS JAMES S. SCHWABER,2 BRUCE S. KAPP,* GERALD A. HIGGINS, AND PETER R. RAPP Departments of Anatomy and Neurobiology and of *Psychology, College of Medicine, University of Vermont, Burlington, Vermont 05405 Received August 3, 1981; Revised May 3, 1982; Accepted May 13, 1982 Abstract Although the amygdala complex has long been known to exert a profound influence on cardiovas- cular activity, the neuronal and connectional substrate mediating these influences remains unclear. This paper describes a direct amygdaloid projection to medullary sensory and motor structures involved in cardiovascular regulation, the nucleus of the solitary tract (NTS) and the dorsal motor nucleus (DVN), by the use of autoradiographic anterograde transport and retrograde horseradish peroxidase (HRP) techniques in rabbits. Since all of these structures are highly heterogeneous structurally and functionally, details of the specific areas of the neuronal origin and efferent distribution of the projection were examined in relation to these features and with reference to a cytoarchitectonic description of the relevant forebrain regions in the rabbit. Amygdaloid projections to the NTS and DVN, as determined from HRP experiments, arise from an extensive population of neurons concentrated exclusively within the ipsilateral central nucleus and confined to and distrib- uted throughout a large medial subdivision of this nucleus. Projection neurons, however, also distribute without apparent interruption beyond the amygdala dorsomedially into the sublenticular substantia innominata and the lateral part of the bed nucleus of the stria terminalis and thus delineate a single entity of possible anatomical unity across all three structures, extending rostro- caudally within the basal forebrain as a diagonal band.
    [Show full text]
  • The Input-Output Relationship of the Cholinergic Basal Forebrain
    Resource The Input-Output Relationship of the Cholinergic Basal Forebrain Graphical Abstract Authors Matthew R. Gielow, Laszlo Zaborszky Correspondence [email protected] In Brief Monosynaptic viral tracing in transgenic rats reveals that patterns of input cells contacting cholinergic neurons are biased according to their cortical or amygdalar output. Mapping inputs across the entire brain, Gielow and Zaborszky provide structural evidence for networks enabling differential acetylcholine release. Highlights d Inputs to cholinergic cells are biased, varying by cortical output target d Proportions of input to a given cortical cholinergic output are reproducible d The most prominent input to many cholinergic cells is the caudate putamen d Medial prefrontal cortex-projecting cholinergic cells receive little caudate input Gielow & Zaborszky, 2017, Cell Reports 18, 1817–1830 February 14, 2017 ª 2017 The Author(s). http://dx.doi.org/10.1016/j.celrep.2017.01.060 Cell Reports Resource The Input-Output Relationship of the Cholinergic Basal Forebrain Matthew R. Gielow1 and Laszlo Zaborszky1,2,* 1Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ 07102, USA 2Lead Contact *Correspondence: [email protected] http://dx.doi.org/10.1016/j.celrep.2017.01.060 SUMMARY Lesions of the BF in experimental animals or humans cause enhancement of slow oscillations and severe attention and mem- Basal forebrain cholinergic neurons influence cortical ory deficits (Botly and De Rosa, 2012; Buzsa´ ki et al., 1988; Lut- state, plasticity, learning, and attention. They collec- kenhoff et al., 2015), while BF stimulation increases the sponta- tively innervate the entire cerebral cortex, differen- neous and visually driven cortical firing rates, improving neuronal tially controlling acetylcholine efflux across different response reliability (Pinto et al., 2013).
    [Show full text]
  • Anatomical Relationship Between the Basal Ganglia and the Basal
    Proc. Nati. Acad. Sci. USA Vol. 84, pp. 1408-1412, March 1987 Medical Sciences Anatomical relationship between the basal ganglia and the basal nucleus of Meynert in human and monkey forebrain (enkephalin/acetylcholinesterase/primate/human) SUZANNE HABER Department of Neurobiology and Anatomy, University of Rochester, Rochester, NY 14642 Communicated by Walle J. H. Nauta, October 20, 1986 ABSTRACT Previous immunohistochemical studies have suggestion that the basal ganglia could serve cognitive as well provided evidence that the external segment of the globus as motor functions (7). Because this notion places the basal pallidus extends ventrally beneath the transverse limb of the ganglia in a functional category comparable, in part at least, anterior commissure into the area of the substantia in- to that of the basal nucleus of Meynert, a more detailed nominata. Enkephalin-positive staining in the form of "woolly description ofthe relationship ofthese two structures to each fibers" has been used as a marker for the globus pallidus and other seemed of interest. its ventral extension. Acetylcholinesterase staining of both The globus pallidus (in particular its most ventral part, the fibers and cell bodies, frequently used as a marker for the basal ventral pallidum) and the basal nucleus of Meynert are nucleus of Meynert, is also found in the area of the substantia adjacent structures (Fig. 2 A-C and 3 A and B). The large innominata. This study describes the differential distribution of acetylcholinesterase (AcChoEase)-positive neurons in the enkephalin-positive woolly fibers and acetylcholinesterase substantia innominata (i.e., the infrapallidal region of the staining on adjacent sections in both the monkey and human basal forebrain) are regarded as a characteristic marker for basal forebrain area in an attempt to define the relationship the basal nucleus of Meynert and are therefore considered to between the basal ganglia and the basal nucleus of Meynert.
    [Show full text]
  • Where Dopaminergic and Cholinergic Systems Interact: a Gateway for Tuning Neurodegenerative Disorders
    fnbeh-15-661973 July 21, 2021 Time: 11:29 # 1 MINI REVIEW published: 22 July 2021 doi: 10.3389/fnbeh.2021.661973 Where Dopaminergic and Cholinergic Systems Interact: A Gateway for Tuning Neurodegenerative Disorders Marianne Amalric1, Tommy Pattij2, Ioannis Sotiropoulos3,4, Joana M. Silva3,4, Nuno Sousa4, Samira Ztaou1,5, Cristiano Chiamulera6, Lars U. Wahlberg7, Dwaine F. Emerich8 and Giovanna Paolone6* 1 Centre National de la Recherche Scientifique (CNRS), UMR 7291, Laboratoire de Neurosciences Cognitives, Aix-Marseille University (AMU), Marseille, France, 2 Amsterdam Neuroscience, Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands, 3 Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal, 4 ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal, 5 Department of Molecular Therapeutics, New York State Psychiatric Institute, Department of Psychiatry, Columbia University, New York, NY, United States, 6 Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy, 7 Gloriana Therapeutics, Inc., Warren, RI, United States, 8 Independent Researcher, Glocester, RI, United States Edited by: Sara Morley-Fletcher, Historically, many investigations into neurodegenerative diseases have focused on Lille University of Science and Technology, France alterations in specific neuronal populations such as, for example, the loss of midbrain Reviewed by: dopaminergic neurons in Parkinson’s disease (PD) and loss of cholinergic transmission Ling Shan, in Alzheimer’s disease (AD). However, it has become increasingly clear that mammalian Netherlands Institute for Neuroscience (KNAW), Netherlands brain activities, from executive and motor functioning to memory and emotional Nicolaas Bohnen, responses, are strictly regulated by the integrity of multiple interdependent neuronal University of Michigan, United States circuits.
    [Show full text]
  • Redalyc.Vascular Dementia and the Cholinergic Pathways
    Dementia & Neuropsychologia ISSN: 1980-5764 [email protected] Associação Neurologia Cognitiva e do Comportamento Brasil Engelhardt, Eliasz; Madeira Moreira, Denise; Laks, Jerson Vascular dementia and the cholinergic pathways Dementia & Neuropsychologia, vol. 1, núm. 1, enero-marzo, 2007, pp. 2-9 Associação Neurologia Cognitiva e do Comportamento São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=339528997005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Materia 01 07.03.07 16:01 Page 2 Dementia & Neuropsychologia 2007;1:2-9 Vascular dementia and the cholinergic pathways Eliasz Engelhardt1, Denise Madeira Moreira2, Jerson Laks3 Abstract – Vascular cognitive impairment/vascular dementia have been the subject of a large number of stud- ies, due to their high prevalence and broad preventive and compensatory therapeutic potential. The knowledge of the cerebral anatomy correlated to the vascular territories of irrigation enables understanding of clinical manifestations, as well as classification into the several types of syndromic presentations. The central choliner- gic system exercises important neuromodulatory functions on cerebral circuits related to cognitive and behav- ioral integration, as well as on vasomotor control related to cerebral blood flow adjustments. The acquisition of data on the anatomy of the cholinergic pathways, including the localization of the nuclei of the basal prosen- cephalon and the routes of their projections, established an important milestone. The knowledge of the vascu- lar distribution and of the trajectories of the cholinergic pathways allows identification of the strategic points where a vascular lesion can cause interruption.
    [Show full text]
  • Neurogenesis in the Olfactory Tubercle and Islands of Calleja in the Rat
    Int. J. Devl. Neuroscience, Vol. 3, No. 2, pp. 135-147, 1985. 0736-5748/85 $03.00+0.00 Printed in Great Britain. Pergamon Press Ltd. © 1985 ISDN NEUROGENESIS IN THE OLFACTORY TUBERCLE AND ISLANDS OF CALLEJA IN THE RAT SHIRLEY A. BAYER Department of Biology, Indiana-Purdue University, 1125 East 38th Street, Indianapolis, IN 46223, U.S.A. (Accepted 26 July 1984) Abstraet--Neurogenesis in the rat olfactory tubercle and islands of Calleja was examined with [3H]thymidine autoradiography. Animals in the prenatal groups were the offspring of pregnant females given an injection of [3H]thymidine on two consecutive gestational days. Ten groups of embryos (E) were exposed to [3H]thymidine on EI2-EI3, E13-EI4 .... E21-E22, respectively. Three groups of postnatal animals (P) were given four consecutive injections of [3H]thymidine on P0-P3, P2-P5, and P4- P7, respectively. On P60, the percentage of labeled cells and the proportion of cells originating during either 24 or 48 h periods were quantified at several anatomical levels. Three populations of neurons were studied: (1) large cells in layer Ill, (2) small to medium-sized cells in layers 11 and Ill, and in the striatal bridges, (3) granule cells in the islands of Calleja. Neurogenesis is sequential between these three popu- lations with No. 1 oldest and No. 3 youngest. The large neurons in layer Ill originate mainly between El3 and El6 in a strong lateral-to-medial gradient. Neurons in population No. 2 are generated between El5 and E20, also in a lateral-to-medial gradient; neurogenesis is simultaneous along the superficial- deep plane.
    [Show full text]
  • Pt 311 Neuroscience
    Internal Capsule and Deep Gray Matter Medical Neuroscience | Tutorial Notes Internal Capsule and Deep Gray Matter 1 MAP TO NEUROSCIENCE CORE CONCEPTS NCC1. The brain is the body's most complex organ. NCC3. Genetically determined circuits are the foundation of the nervous system. LEARNING OBJECTIVES After study of the assigned learning materials, the student will: 1. Identify major white matter and gray matter structures that are apparent in sectional views of the forebrain, including the structures listed in the chart and figures in this tutorial. 2. Describe and sketch the relations of the deep gray matter structures to the internal capsule in coronal and axial sections of the forebrain. 3. Describe the distribution of the ventricular spaces in the forebrain and brainstem. NARRATIVE by Leonard E. WHITE and Nell B. CANT Duke Institute for Brain Sciences Department of Neurobiology Duke University School of Medicine Overview Now that you have acquired a framework for understanding the regional anatomy of the human brain, as viewed from the surface, and some understanding of the blood supply to both superficial and deep brain structures, you are ready to explore the internal organization of the brain. This tutorial will focus on the sectional anatomy of the forebrain (recall that the forebrain includes the derivatives of the embryonic prosencephalon). As you will discover, much of our framework for exploring the sectional anatomy of the forebrain is provided by the internal capsule and the deep gray matter, including the basal ganglia and the thalamus. But before beginning to study this internal anatomy, it will be helpful to familiarize yourself with some common conventions that are used to describe the deep structures of the central nervous system.
    [Show full text]
  • Basal Forebrain-Cortical Circuits in Rodents. Implications of Anatomical Pathways and Cell Toxicity in Alzheimer´S Disease
    UNIVERSIDAD AUTÓNOMA DE MADRID School of Medicine Anatomy, Histology and Neuroscience Department Basal Forebrain-Cortical circuits in rodents. Implications of anatomical pathways and cell toxicity in Alzheimer´s Disease. Doctoral Thesis Irene Chaves-Coira 2017 1 UNIVERSIDAD AUTÓNOMA DE MADRID Facultad de Medicina Departamento de Anatomía, Histología y Neurociencia Basal Forebrain-Cortical circuits in rodents. Implications of anatomical pathways and cell toxicity in Alzheimer´s Disease. Memory presented by Irene Chaves Coira to qualify for the Doctor's Degree by the Autonomous University of Madrid (UAM) in the Program of Doctorate in Neuroscience, in agreement to the work realized under the direction of the Teachers Margarita Rodrigo Angulo and Ángel Núñez Molina in the Department of Anatomy, Histology and Neuroscience of Medical School of the UAM. Memoria presentada por Irene Chaves Coira para optar al título de Doctor por la Universidad Autónoma de Madrid (UAM) en el Programa de Doctorado en Neurociencia, de acuerdo al trabajo realizado bajo la dirección de los Profesores Margarita Rodrigo Angulo y Ángel Núñez Molina en el Departamento de Anatomía, Histología y Neurociencia de la Facultad de Medicina de la UAM. 2 List of contents 4 LIST OF CONTENTS ABREVIATIONS SUMMARY………………………………………………………………………………………….3 RESUMEN…………………………………………………………………………………………...6 1. INTRODUCTION 1.1. Basal forebrain……………………………………………………………………9 1.2. Acetilcholine………………………………………………………………………..14 1.3. Alzheimer Desease……………………………………………………………....18 1.4. IGF1…………………………………………………………………………………….19 1.5. Cell culture………………………………………………………………………….22 2. HYPOTHESIS AND OBJECTIVES 2.1. Main Hypothesis…………………………………………………………………26 2.2. General and Specific Aims……………………………………………………26 3. MATERIALS AND METHODS 3.1. In vivo procedures……………………………………………………………….30 3.1.1. Biological material used for the experiments………………30 3.1.2.
    [Show full text]