The Input-Output Relationship of the Cholinergic Basal Forebrain

Total Page:16

File Type:pdf, Size:1020Kb

The Input-Output Relationship of the Cholinergic Basal Forebrain Resource The Input-Output Relationship of the Cholinergic Basal Forebrain Graphical Abstract Authors Matthew R. Gielow, Laszlo Zaborszky Correspondence [email protected] In Brief Monosynaptic viral tracing in transgenic rats reveals that patterns of input cells contacting cholinergic neurons are biased according to their cortical or amygdalar output. Mapping inputs across the entire brain, Gielow and Zaborszky provide structural evidence for networks enabling differential acetylcholine release. Highlights d Inputs to cholinergic cells are biased, varying by cortical output target d Proportions of input to a given cortical cholinergic output are reproducible d The most prominent input to many cholinergic cells is the caudate putamen d Medial prefrontal cortex-projecting cholinergic cells receive little caudate input Gielow & Zaborszky, 2017, Cell Reports 18, 1817–1830 February 14, 2017 ª 2017 The Author(s). http://dx.doi.org/10.1016/j.celrep.2017.01.060 Cell Reports Resource The Input-Output Relationship of the Cholinergic Basal Forebrain Matthew R. Gielow1 and Laszlo Zaborszky1,2,* 1Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ 07102, USA 2Lead Contact *Correspondence: [email protected] http://dx.doi.org/10.1016/j.celrep.2017.01.060 SUMMARY Lesions of the BF in experimental animals or humans cause enhancement of slow oscillations and severe attention and mem- Basal forebrain cholinergic neurons influence cortical ory deficits (Botly and De Rosa, 2012; Buzsa´ ki et al., 1988; Lut- state, plasticity, learning, and attention. They collec- kenhoff et al., 2015), while BF stimulation increases the sponta- tively innervate the entire cerebral cortex, differen- neous and visually driven cortical firing rates, improving neuronal tially controlling acetylcholine efflux across different response reliability (Pinto et al., 2013). Similarly, experiments in cortical areas and timescales. Such control might the somatosensory (Maalouf et al., 1998) or in the auditory cortex be achieved by differential inputs driving separable (Leach et al., 2013; Metherate and Weinberger, 1990)suggest that ACh plays a role in improving sensory perception. Release cholinergic outputs, although no input-output rela- of ACh across different cortical areas covaries between sleep tionship on a brain-wide level has ever been and wake states (Jasper and Tessier, 1971; Phillis, 1968; Sarter demonstrated. Here, we identify input neurons to and Bruno, 2000). BF cells projecting to remote regions of cortex cholinergic cells projecting to specific cortical appear to have overlapping dendritic fields (Woolf, 1991), and regions by infecting cholinergic axon terminals cholinergic cells projecting to different cortical targets often inter- with a monosynaptically restricted viral tracer. This mingle across an extended region of the BF. These data together approach revealed several circuit motifs, such as have been taken as evidence that the cholinergic BF is a diffuse central amygdala neurons synapsing onto basolat- projection system. However, discrete cholinergic efflux occurs eral amygdala-projecting cholinergic neurons or per cortical region at different time points (Fournier et al., 2004; strong somatosensory cortical input to motor cor- Parikh et al., 2007; Rasmusson, 1993), and recent tracing and op- tex-projecting cholinergic neurons. The presence of togenetic activation of cholinergic neurons in the mouse BF sug- gest that cholinergic neurons can modulate sensory cortical areas input cells in the parasympathetic midbrain nuclei in a modality-specific manner (Kim et al., 2016). Part of this contro- contacting frontally projecting cholinergic neurons versy is based upon the complex organization of BF projection suggest that the network regulating the inner eye neurons: cholinergic and non-cholinergic projections to the muscles are additionally regulating cortical state via neocortex are not diffuse but are organized into segregated and acetylcholine efflux. This dataset enables future cir- overlapping pools of neurons that may transmit information from cuit-level experiments to identify drivers of known specific locations in the BF to subsets of cortical areas, themselves cortical cholinergic functions. interconnected (Zaborszky et al., 2015a). Additionally, there are subregional differences in input across the BF (Zaborszky et al., 2015b), although how this affects cortical outputs is unknown. INTRODUCTION The relationship of synaptic inputs to target-identified cell pop- ulations cannot be readily assessed on a whole-brain level with The connectome of the basal forebrain (BF) is not well under- classic anatomical techniques that rely on the combination of con- stood due to the anatomical complexity of the region. Patients ventional anterograde and retrograde tracing (Zaborszky et al., with Alzheimer’s disease and related dementias have a signifi- 2006). Here, we employed output-specific monosynaptic viral cant decrease of acetylcholine (ACh) in the cortex and show tracing in cells expressing choline acetyltransferase (ChAT) to pathological changes in cholinergic neurons in the BF (Za- sample the input-output relationship of the cholinergic BF, and borszky et al., 2008). Thus, a complete understanding of its func- thereby identify on a whole-brain scale the neuronal populations tional organization is warranted. ACh is released in the cortex by likely to drive differential ACh efflux in particular output structures. neurons whose cell bodies are located in the BF. Each of these Genetic access to BF ChAT cells was achieved by injecting Cre- cholinergic neurons supplies a small portion of cortex (Price dependent helper viruses (AAV-EF1a-FLEX-TVAmCherry and and Stern, 1983), and ACh release is controlled precisely across AAV-CA-FLEX-RG) (Watabe-Uchida et al., 2012) at five points different cortical regions and timescales, thought to be respon- across the BF in ChAT::Cre rats (Witten et al., 2011)(Figures 1A sible for the variety of its cognitive effects (for review, see Gritton and 1B). When these same helper viruses were used in the BF et al., 2016; Mun˜ oz and Rudy, 2014). However, the mechanism of the same line of rats, expression of helper viral product only oc- behind this control is unknown. cured in cells immunopositive for ChAT (Chavez and Zaborszky, Cell Reports 18, 1817–1830, February 14, 2017 ª 2017 The Author(s). 1817 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Figure 1. Monosynaptic Viral Tracing (A) Cre-dependent helper viruses limit starter cells to the cholinergic cell type. Virus placed at cortical terminals retrogradely labels a subset of cholinergic cells that project to the cortical injection site (figure based on Wall et al., 2010). (B and C) 12 subjects (B) received helper virus across five basal forebrain sites and (C) received retrograde virus in a single BF projection target, whether in motor cortex (red), medial prefrontal cortex (green), orbitofrontal cortex (blue), or amygdala (yellow) (figure based on Paxinos and Watson, 2007). (D) Cells are visualized by the presence of mCherry (helper virus in cholinergic cells), GFP (afferent cells, monosynaptic inputs to starter cells), or both fluorophores (cholinergic starter cells). 2016). Tracing restricted to ChAT terminals was achieved by sub- sively, resulting in many examples of ChAT populations that proj- sequently injecting a pseudotyped, helper-dependent, replica- ect to different targets yet partially overlap in the BFc space (for tion-defective rabies vector (EnvA-DG-rabies-eGFP) (Wall et al., ref see Zaborszky et al., 2015a). The BF topography of starter 2010; Wickersham et al., 2007) into a single target area (prefrontal, cells in the current study confirms this rule of partial overlap (Fig- orbitofrontal, motor cortex, or amygdala) in each subject (n = 12; ure 2; Table S1; Movie S1). When the monosynaptic inputs to the three subjects per group; Figures 1A and 1C). Complementation starter cells are considered across the three cortical target of the deficient rabies with the rabies glycoprotein occurred in groups and the basolateral amygdala (a cortex-like structure), BF ChAT cells (starter cells) projecting to the cortical area of rabies we find specific sets of inputs differ significantly between the injection. This allowed for retrograde monosynaptic spread of four groups depending on the viral-injected cholinergic projec- GFP-tagged rabies from these starter cells back to the cell bodies tion target (Wilks’ Lambda one-way multivariate analysis of vari- of their synaptic inputs (Figures 1A and 1D), whereas in the control ance [MANOVA]; F = 21.21, p = 0.008) (Figure S1). To make condition, ChAT::Cre with rabies injection but no helper viruses, sense of this result, we took a detailed look at differential distri- no GFP was detected. Therefore, we could map the inputs to spe- butions of afferents in each input region. cific output populations, regardless of how output somata are distributed across the BF itself. Dorsal Striatal and Accumbens Input Disparity Dorsal striatum is on average the largest input source for RESULTS cholinergic BF cells. The proportion of these inputs is far less in the case of medial prefrontal cortex (mPFC) injection The topography of basal forebrain cholinergic (BFc) cell bodies (Figure 3), with an average of 5% of inputs for mPFC cases projecting to particular cortical targets has been studied exten- versus 47% for the motor cortex
Recommended publications
  • Synaptic Organization of Claustral and Geniculate Afferents to the Visual Cortex of the Cat
    The Journal of Neuroscience December 1986, 6(12): 3564-3575 Synaptic Organization of Claustral and Geniculate Afferents to the Visual Cortex of the Cat Simon LeVay Robert Bosch Vision Research Center, Salk Institute for Biological Studies, San Diego, California 92138 Claustral and geniculate afferents to area 17 were labeled by sponses of some cortical neurons, previously called “hypercom- anterograde axonal transport of peroxidase-conjugated wheat- plex cells” by Hubel and Wiesel (1965), are suppressed as the germ agglutinin, and examined in the electron microscope. A length of the stimulating slit of light is extended beyond some peroxidase reaction protocol that led to labeling in the form of optimal value. Interestingly, neurons in the visual claustrum minute holes in the EM sections was used. Both types of affer- behave in a complementary fashion: Their responses to an ori- ents formed type 1 (presumed excitatory) synapses exclusively. ented stimulus increase monotonically with stimulus length, In agreement with previous reports the great majority of genic- sometimes showing length summation up to 40” or more-a ulate afferents to layers 4 and 6 contacted dendritic spines. The sizable portion of the animal’s entire field of view (Sherk and claustral afferents to layers 1 and 6 also predominantly con- LeVay, 198 1). tacted spines. In layer 4, however, claustral afferents contacted These observations suggest that claustral neurons contribute spines and dendritic shafts about equally. The results suggest a to end-stopping by exerting a length-dependent inhibition on substantial Claus&al input to smooth-dendrite cells in layer 4, some neurons in the visual cortex.
    [Show full text]
  • The Effect of Nucleus Basalis Magnocellularis Deep Brain
    Lee et al. BMC Neurology (2016) 16:6 DOI 10.1186/s12883-016-0529-z RESEARCH ARTICLE Open Access The effect of nucleus basalis magnocellularis deep brain stimulation on memory function in a rat model of dementia Ji Eun Lee1†, Da Un Jeong1†, Jihyeon Lee1, Won Seok Chang2 and Jin Woo Chang1,2* Abstract Background: Deep brain stimulation has recently been considered a potential therapy in improving memory function. It has been shown that a change of neurotransmitters has an effect on memory function. However, much about the exact underlying neural mechanism is not yet completely understood. We therefore examined changes in neurotransmitter systems and spatial memory caused by stimulation of nucleus basalis magnocellularis in a rat model of dementia. Methods: We divided rats into four groups: Normal, Lesion, Implantation, and Stimulation. We used 192 IgG-saporin for degeneration of basal forebrain cholinergic neuron related with learning and memory and it was injected into all rats except for the normal group. An electrode was ipsilaterally inserted in the nucleus basalis magnocellularis of all rats of the implantation and stimulation group, and the stimulation group received the electrical stimulation. Features were verified by the Morris water maze, immunochemistry and western blotting. Results: AllgroupsshowedsimilarperformancesduringMorriswater maze training. During the probe trial, performance of the lesion and implantation group decreased. However, the stimulation group showed an equivalent performance to the normal group. In the lesion and implantation group, expression of glutamate acid decarboxylase65&67 decreased in the medial prefrontal cortex and expression of glutamate transporters increased in the medial prefrontal cortex and hippocampus. However, expression of the stimulation group showed similar levels as the normal group.
    [Show full text]
  • Intersection of Structural and Functional Connectivity of the Nucleus Basalis of Meynert in Parkinson's Disease Dementia and L
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.221853; this version posted July 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Intersection of structural and functional connectivity of the nucleus basalis of Meynert in Parkinson’s disease dementia and Lewy body dementia. Authors: Ashwini Oswala,b,c*†, James Gratwicked†, Harith Akramd, Marjan Jahanshahid, Laszlo Zaborszkye, Peter Browna,b , Marwan Harizd,f, Ludvic Zrinzod, Tom Foltynied, Vladimir Litvakc †Denotes equal contribution to Authorship Affiliations: a Medical Research Brain Network Dynamics Unit, University of Oxford, Oxford, UK b Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK c Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London, UK d Department of Clinical & Movement Neurosciences, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK e Center for Molecular and Behavioral Neuroscience, Rutgers University, USA f Department of Clinical Neuroscience, Umeå University, Umeå, Sweden To whom correspondence should be addressed: [email protected] or [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.221853; this version posted July 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Chronic Amphetamine Exposure Causes Long Term Effects on Dopamine Uptake in Cultured Cells Nafisa Ferdous
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 Chronic Amphetamine Exposure Causes Long Term Effects On Dopamine Uptake In Cultured Cells Nafisa Ferdous Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Ferdous, Nafisa, "Chronic Amphetamine Exposure Causes Long Term Effects On Dopamine Uptake In Cultured Cells" (2016). Theses and Dissertations. 2016. https://commons.und.edu/theses/2016 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. CHRONIC AMPHETAMINE EXPOSURE CAUSES LONG TERM EFFECTS ON DOPAMINE UPTAKE IN CULTURED CELLS By Nafisa Ferdous Bachelor of Science, North South University, Bangladesh 2012 A Thesis submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota December 2016 ii PERMISSION Title Chronic amphetamine exposure causes long term effects on dopamine uptake in cultured cells Department Biomedical Sciences Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the Dean of the School of Graduate Studies.
    [Show full text]
  • Pallial Origin of Basal Forebrain Cholinergic Neurons in the Nucleus
    ERRATUM 4565 Development 138, 4565 (2011) doi:10.1242/dev.074088 © 2011. Published by The Company of Biologists Ltd Pallial origin of basal forebrain cholinergic neurons in the nucleus basalis of Meynert and horizontal limb of the diagonal band nucleus Ana Pombero, Carlos Bueno, Laura Saglietti, Monica Rodenas, Jordi Guimera, Alexandro Bulfone and Salvador Martinez There was an error in the ePress version of Development 138, 4315-4326 published on 24 August 2011. In Fig. 7P, the P-values are not given in the legend. For region 2, P=0.02; for region 3, P=0.003. The final online issue and print copy are correct. We apologise to authors and readers for this error. DEVELOPMENT RESEARCH ARTICLE 4315 Development 138, 4315-4326 (2011) doi:10.1242/dev.069534 © 2011. Published by The Company of Biologists Ltd Pallial origin of basal forebrain cholinergic neurons in the nucleus basalis of Meynert and horizontal limb of the diagonal band nucleus Ana Pombero1, Carlos Bueno1, Laura Saglietti2, Monica Rodenas1, Jordi Guimera3, Alexandro Bulfone4 and Salvador Martinez1,* SUMMARY The majority of the cortical cholinergic innervation implicated in attention and memory originates in the nucleus basalis of Meynert and in the horizontal limb of the diagonal band nucleus of the basal prosencephalon. Functional alterations in this system give rise to neuropsychiatric disorders as well as to the cognitive alterations described in Parkinson and Alzheimer’s diseases. Despite the functional importance of these basal forebrain cholinergic neurons very little is known about their origin and development. Previous studies suggest that they originate in the medial ganglionic eminence of the telencephalic subpallium; however, our results identified Tbr1-expressing, reelin-positive neurons migrating from the ventral pallium to the subpallium that differentiate into cholinergic neurons in the basal forebrain nuclei projecting to the cortex.
    [Show full text]
  • Opiate Influences on Nucleus Accumbens Neuronal Electrophysiology: Dopamine and Non-Dopamine Mechanisms
    The Journal of Neuroscience, October 1969, 9(10): 35363546 Opiate Influences on Nucleus Accumbens Neuronal Electrophysiology: Dopamine and Non-Dopamine Mechanisms Ft. L. Hakan and S. J. Henriksen Department of Neuropharmacology, Research Institute of the Scripps Clinic, La Jolla, California 92037 Single-unit recordings of nucleus accumbens septi (NAS) abuse potential for humans such as the opiate alkaloids (Goeders neurons in halothane-anesthetized rats revealed that mi- et al., 1984; Vaccarino et al., 1985; Corrigal and Vaccarino, croinfusions of morphine into the ventral tegmental area (VTA) 1988; Koob and Goeders, 1989). Although there is controversy primarily inhibited spontaneously active NAS units. These regarding the precise neuropharmacological mechanism(s) un- inhibitory effects were reversed by alpha-flupenthixol (s.c.), derlying opiate actions on the NAS and on NAS-related brain suggesting a role for dopamine (DA) in the observed opiate- circuitry (e.g., see Wise, 1987), behavioral research has indicated induced effect. VTA opiate microinfusions also inhibited the that these drugs may exert pharmacological influence over NAS evoked (driven) responses of silent cells (spontaneously function via dopamine (DA)-dependent and DA-independent inactive) in the NAS elicited by stimulation of hippocampal projections from the DA containing cell bodies of the midbrain afferents to the NAS. In addition, this inhibition of driven ventral tegmental area (VTA) (Bozarth and Wise, 198 l), the response was reversed by naloxone (s.c.) but not by alpha- cellular origin of the DA-ergic input to the NAS (see Kelly et flupenthixol, implying a VTA-mediated non-DA mechanism. al., 1980; Stinus et al., 1980; Kalivas et al., 1983; Pettit et al., Morphine applied iontophoretically to cells within the NAS 1984; Amahic and Koob, 1985; Vaccarino et al., 1986; Wise, inhibited spontaneous activity but not fimbria-driven cellular 1987; Di Chiara and Imperato, 1988; Koob and Goeders, 1989).
    [Show full text]
  • Distribution of Dopamine D3 Receptor Expressing Neurons in the Human Forebrain: Comparison with D2 Receptor Expressing Neurons Eugenia V
    Distribution of Dopamine D3 Receptor Expressing Neurons in the Human Forebrain: Comparison with D2 Receptor Expressing Neurons Eugenia V. Gurevich, Ph.D., and Jeffrey N. Joyce, Ph.D. The dopamine D2 and D3 receptors are members of the D2 important difference from the rat is that D3 receptors were subfamily that includes the D2, D3 and D4 receptor. In the virtually absent in the ventral tegmental area. D3 receptor rat, the D3 receptor exhibits a distribution restricted to and D3 mRNA positive neurons were observed in sensory, mesolimbic regions with little overlap with the D2 receptor. hormonal, and association regions such as the nucleus Receptor binding and nonisotopic in situ hybridization basalis, anteroventral, mediodorsal, and geniculate nuclei of were used to study the distribution of the D3 receptors and the thalamus, mammillary nuclei, the basolateral, neurons positive for D3 mRNA in comparison to the D2 basomedial, and cortical nuclei of the amygdala. As revealed receptor/mRNA in subcortical regions of the human brain. by simultaneous labeling for D3 and D2 mRNA, D3 mRNA D2 binding sites were detected in all brain areas studied, was often expressed in D2 mRNA positive neurons. with the highest concentration found in the striatum Neurons that solely expressed D2 mRNA were numerous followed by the nucleus accumbens, external segment of the and regionally widespread, whereas only occasional D3- globus pallidus, substantia nigra and ventral tegmental positive-D2-negative cells were observed. The regions of area, medial preoptic area and tuberomammillary nucleus relatively higher expression of the D3 receptor and its of the hypothalamus. In most areas the presence of D2 mRNA appeared linked through functional circuits, but receptor sites coincided with the presence of neurons co-expression of D2 and D3 mRNA suggests a functional positive for its mRNA.
    [Show full text]
  • Characterization of Basal Forebrain Glutamate Neurons Suggests a Role in Control of Arousal and Avoidance Behavior
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.157479; this version posted June 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Title: Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior Authors: James T. McKenna1, Chun Yang1, Thomas Bellio2, Marissa B. Anderson-Chernishof1, Mackenzie C. Gamble2, Abigail Hulverson2, John G. McCoy2, Stuart Winston1, James M. McNally1, Radhika Basheer1 and Ritchie E. Brown1 ORCIDs: James McKenna: 0000-0002-9710-3553 Chun Yang: 0000-0002-1979-0335 Radhika Basheer: 0000-0002-4052-6897 Ritchie Brown: 0000-0002-7164-4132 Institutional Affiliations: 1 Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Department of Psychiatry, 1400 VFW Parkway, West Roxbury, MA, 02132, USA. 2 Stonehill College, Easton, MA, 02357, USA. Running head: Basal Forebrain Glutamatergic Neurons Key words: calretinin, calbindin, parvalbumin, GAD67-GFP knock-in mice, nucleus basalis, ventral pallidum Corresponding author: Ritchie E. Brown, Dr. Rer. Nat., Address: Dept. of Psychiatry, VA Boston Healthcare System & Harvard Medical School, VA Medical Center, West Roxbury, 1400 VFW Parkway, MA, 02132, USA. Email: [email protected] Declarations: Funding: This work was supported by United States Veterans Administration Biomedical Laboratory Research and Development Service Merit Awards I01 BX004673, BX001356, I01 BX001404, I01 BX002774, I01 BX004500 and United States National Institute of Health support from NINDS R21 NS093000, NIMH R01 MH039683, NHLBI HL095491, R03- MH107650 and by SURE fellowships from Stonehill College.
    [Show full text]
  • Basal Forebrain Volume, but Not Hippocampal Volume, Is a Predictor of Global Cognitive Decline in Patients with Alzheimer’S Disease
    ORIGINAL RESEARCH published: 14 August 2018 doi: 10.3389/fneur.2018.00642 Basal Forebrain Volume, but Not Hippocampal Volume, Is a Predictor of Global Cognitive Decline in Patients With Alzheimer’s Disease Edited by: Treated With Cholinesterase Lars Ersland, Haukeland University Hospital, Inhibitors Norway Reviewed by: Stefan J. Teipel 1,2*, Enrica Cavedo 3,4,5,6,7, Harald Hampel 3,4,5,6 and Michel J. Grothe 1 for Elizabeth J. Coulson, the Alzheimer’s Disease Neuroimaging Initiative† and Alzheimer Precision Medicine The University of Queensland, Initiative (APMI) Australia Karsten Specht, 1 German Center for Neurodegenerative Diseases-Rostock/Greifswald, Rostock, Germany, 2 Department of Psychosomatic University of Bergen, Norway Medicine, University of Rostock, Rostock, Germany, 3 AXA Research Fund and Sorbonne University Chair, Paris, France, *Correspondence: 4 Sorbonne University, GRC n◦ 21, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’Hôpital, Stefan J. Teipel Paris, France, 5 Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’Hôpital, Paris, France, [email protected] 6 Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’Hôpital, Paris, France, 7 IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy †Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Background: Predicting the progression of cognitive decline in Alzheimer’s disease Initiative (ADNI) database (AD) is important for treatment selection and patient counseling. Structural MRI markers (adni.loni.usc.edu/). As such, the investigators within the ADNI such as hippocampus or basal forebrain volumes might represent useful instruments contributed to the design and for the prediction of cognitive decline.
    [Show full text]
  • 6950.Full.Pdf
    6950 • The Journal of Neuroscience, July 2, 2008 • 28(27):6950–6959 Behavioral/Systems/Cognitive Functional Interaction between the Hippocampus and Nucleus Accumbens Shell Is Necessary for the Acquisition of Appetitive Spatial Context Conditioning Rutsuko Ito,1,3 Trevor W. Robbins,1 Cyriel M. Pennartz,2 and Barry J. Everitt1 1Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom, 2Graduate School Neurosciences Amsterdam, University of Amsterdam, Faculty of Science, Swammerdam Institute for Life Sciences, 1098 SM Amsterdam, The Netherlands, and 3Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom The nucleus accumbens (NAc) has been implicated in a variety of associative processes that are dependent on the integrity of the amygdala and hippocampus (HPC). However, the extent to which the two subregions of the NAc, the core and shell, form differentiated circuits within the amygdala- and hippocampal-ventral striatal circuitry remains unclear. The present study investigated the effects of selective excitotoxic lesions of the nucleus accumbens shell or core subregion on appetitive elemental cue and context conditioning, shown previously to be dependent on the basolateral amygdala and hippocampus, respectively. Rats were trained sequentially to acquire discrete conditioned stimulus–sucrose conditioning, followed by spatial context–sucrose conditioning in a place preference apparatus characterized by three topographically identical chambers, the chambers being discriminable only on the basis of path integration. NAc shell lesions selectively impaired the acquisition of conditioned place preference and the use of spatial information to retrieve informa- tion about a discrete cue, whereas, as expected, NAc core lesions attenuated the acquisition of cue conditioning compared with sham rats.
    [Show full text]
  • Region-Dependent Dynamics of Camp Response Element-Binding Protein Phosphorylation in the Basal Ganglia
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 4708–4713, April 1998 Neurobiology Region-dependent dynamics of cAMP response element-binding protein phosphorylation in the basal ganglia FU-CHIN LIU* AND ANN M. GRAYBIEL†‡ *Department of Life Sciences and Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan 11221 Republic of China; and †Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, E25-618, 45 Carleton Street, Cambridge, MA 02139 Contributed by Ann M. Graybiel, February 5, 1998 ABSTRACT The cAMP response element-binding protein pus, and the limbic prefrontal cortex, and projects back to (CREB) is an activity-dependent transcription factor that is limbic structures via the ventral pallidum. These limbic- involved in neural plasticity. The kinetics of CREB phosphor- associated circuits are thought to underlie motivational and ylation have been suggested to be important for gene activa- viscero-affective aspects of neurologic function served by the tion, with sustained phosphorylation being associated with ventral striatum. The midbrain dopamine pathways innervat- downstream gene expression. If so, the duration of CREB ing the dorsal and ventral striatum are critically involved in phosphorylation might serve as an indicator for time-sensitive controlling these functions, including, for the ventral striatum, plastic changes in neurons. To screen for regions potentially the reinforcing properties of psychostimulant and other drugs involved in dopamine-mediated plasticity in the basal ganglia, (3). we used organotypic slice cultures to study the patterns of A distinct feature of much reinforcement-based learning is dopamine- and calcium-mediated CREB phosphorylation in that the modified behaviors develop with time and are highly sensitive to the temporal organization of events (4, 5).
    [Show full text]
  • The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex
    Rowan University Rowan Digital Works School of Osteopathic Medicine Faculty Scholarship School of Osteopathic Medicine 6-1-2015 The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex Robert C. Spencer University of Wisconsin-Madison David M. DeVilbiss Rowan University School of Osteopathic Medicine Craig Berridge University of Wisconsin-Madison Follow this and additional works at: https://rdw.rowan.edu/som_facpub Part of the Neuroscience and Neurobiology Commons, Pharmacology Commons, and the Psychiatry Commons Recommended Citation Spencer RC, Devilbiss DM, Berridge CW. The cognition-enhancing effects of psychostimulants involve direct action in the prefrontal cortex. Biol Psychiatry. 2015 Jun 1;77(11):940-50. Epub 2014 Sep 28. doi: 10.1016/j.biopsych.2014.09.013. PMID: 25499957. PMCID: PMC4377121. This Article is brought to you for free and open access by the School of Osteopathic Medicine at Rowan Digital Works. It has been accepted for inclusion in School of Osteopathic Medicine Faculty Scholarship by an authorized administrator of Rowan Digital Works. HHS Public Access Author manuscript Author Manuscript Author ManuscriptBiol Psychiatry Author Manuscript. Author Author Manuscript manuscript; available in PMC 2016 June 01. Published in final edited form as: Biol Psychiatry. 2015 June 1; 77(11): 940–950. doi:10.1016/j.biopsych.2014.09.013. The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex Robert C. Spencer, David M. Devilbiss, and Craig W. Berridge* Department of Psychology, University of Wisconsin, Madison, WI Abstract Psychostimulants are highly effective in the treatment of attention deficit hyperactivity disorder (ADHD). The clinical efficacy of these drugs is strongly linked to their ability to improve cognition dependent on the prefrontal cortex (PFC) and extended frontostriatal circuit.
    [Show full text]