TERTIARY MAGMATISM in NORTHERN SARDINIA by Michael

Total Page:16

File Type:pdf, Size:1020Kb

TERTIARY MAGMATISM in NORTHERN SARDINIA by Michael TERTIARY MAGMATISM IN NORTHERN SARDINIA by Michael John Rutter A Thesis submitted for the Degree of Doctor of Philosophy, University of London Department of Geology, Imperial College of Science & Technology, Prince Consort Road, LONDON SW7. ABSTRACT Tertiary magmatism in northern Sardinia is dominated by a temporal transition from subduction-related (29.9-13 Ma) to extensional (5-0.12 Ma) volcanism. Geochemical parameters of lavas, independent of any differentiation processes, have been used to constrain the changing chemical characteristics of magma-producing source mantle beneath Sardinia, during and after active subduction. Late Oligocene and Miocene (29.9-13 Ma) basalt-andesite- dacite-rhyolite lavas were associated with active subduction, to the east of the Sardinia continental block. They are associated with contemporaneous extension, possibly in a back-arc environment, which facilitated passage of magmas to the surface, and high-T low-P fractionation of an anhydrous gabbroic mineral assemblage. Low K/Cs and high Ba/La ratios in Sardinian subduction-related magmas, may reflect the influx of fluids or melts, derived from the subducted slab, into their mantle source. Low Nb and Ta abundances can be explained by the retention of these elements in some residual phase, stable under the hydrous conditions which may exist in the mantle wedge, although this phase is probably not titaniferous. High LILE-HFSE ratios may represent the addition of LILE-enriched fluids or melts from the subducted oceanic lithosphere to MORB-source mantle, or to magma generation in OIB-source mantle. Following a gap in magmatic activitiy, volcanism resumed in the Pliocene with the eruption of high-Al basalt, dacite and rhyolite lavas, which require the persistence of subduction-related source mantle beneath Sardinia at least 8 Ma after the cessation of active subduction. Hawaiites and basaltic andesites were erupted contemporaneously during the Plio-Pleistocene, although probably from separate vents or fissures. Basaltic andesites predominate in the lower part of the sequence. The hawaiites are LILE-enriched relative to most OIB, which can be explained by the mixing of OIB magmas with mantle which had been previously metasomatised by LILE-enriched fluids or melts, derived from the subducted slab. The genesis of siliceous basaltic andesites and high-Mg andesites can be explained by relative shallow melting of hydrous mantle peridotite, possibly within the sub­ continental mantle lithosphere. The heat input required for melting may have been supplied by the injection of mafic alkaline magmas derived -fr0™ the asthenospheric mantle, and later to form hawaiite lava flows and pyroclastic eruptives. However, magma genesis by assimilation of time-integrated low Rb/Sr sialic crust during ascent of oceanic magmas to the surface cannot be excluded. Mafic alkaline lavas contain abundant inclusions of mantle peridotite. These inclusions are predominantly porphyroclastic-textured spinel lherzolite and harzburgite, which have been depleted, relative to a model pyrolite composition, by about 20% partial fusion and loss of a basaltic melt. Equilibration temperatures, calculated using the two-pyroxene geothermometer, imply that the xenoliths were incorporated into rising mafic alkaline magmas, somewhere near the top of the lithospheric mantle. ACKNOWLEDGEMENTS I would like to thank Dr. Bob Thompson for his supervision of this research project. Field work in Sardinia was partly financed by the N.E.R.C. Special thanks are due to Dr. Jack Nolan and Peter Watkins, for their constant help and advice, regarding the analytical work undertaken during the course of this project. Analytical work also benefitked from the efforts of many other people. In particular, Paul Suddaby and Nick Royale, for help with the electron microprobe; Sue Parry and Ian Sinclair for their assistance with neutron activation analysis at Silwood Park, and Dr. C.T. Williams for making available, and helping with, neutron activation counting facilities at the British Museum. Strontium isotopic work was carried out at the University of Oxford, thanks to the co-operation and advice of Dr. S. Moorbath and Dr. P. Taylor. Day to day running of the mass spectrometer depended much on the labours of Roy Goodwin. Thanks are also due to all the technical staff at Imperial College. Many friends and colleagues have helped (or hindered) the completion of this thesis, and I would like to thank all of them, for their advice and friendship. Lastly, special thanks to my Mum and Dad for constant encouragement, and to Sue Salter for her enthusiastic typing of an unintelligible thesis. LIST OF CONTENTS CHAPTER 1 INTRODUCTION 1.1 Geographical location of Sardinia 1.2 Geological structure of Sardinia 1.3 Nature of the Sardinian crystalline basement 1.4 Late Oligocene and Miocene subduction- related volcanism 1.5 Plio-Pleistocene extensional volcanism 1.6 Magmatism and tectonics in northern Sardinia CHAPTER 2 PETROGRAPHY AND MINERAL CHEMISTRY OF SARDINIAN TERTIARY VOLCANIC ROCKS 2.1 High-Al basalts 2.2 Basaltic andesites and high-Mg andesites 2.3 Hawaiites and alkali basalts 2.4 Analcite basanites 2.5 Oligo-Miocene subduction-related silicic lavas CHAPTER 3 MAJOR AND TRACE ELEMENT VARIATION WITHIN THE SUBDUCTION-RELATED ROCK SUITE 3.1 K^O vs. SiO^ trend 3.2 Major element variation 3.3 Geochemical modelling of the major element variation 3.4 Trace element variation 3.5 REE 3.6 Synthesis 7 Page CHAPTER 4 COMPARATIVE MAJOR AND TRACE ELEMENT 71 VARIATION WITHIN THE PLIO-PLEISTOCENE MAGMA SUITE 4.1 High-Al basalt 7^ 4.2 Alkali basalts, hawaiites, basaltic 71 andesites and high-Mg andesites 4.3 Basanites 72 4.4 Primary or differentiated magmas in 74 northern Sardinia? 4.5 CIPW normative compositions 75 4.6 Major element chemical variation 77 4.7 Trace element chemical variation 8 i 4.8 Sr-isotope variation 35 4.9 REE abundances in Plio-Pleistocene 22 lavas CHAPTER 5 ELEMENTAL AND ISOTOPIC EVIDENCE 92 RELATING TO THE SOURCE OF SARDINIAN SUBDUCTION-RELATED MAGMAS 5.1 Magma generation in subduction- g3 related tectonic settings 5.2 Mantle peridotite source for 93 subduction-related magmas 5.3 Elemental characteristics of 94 Sardinian subduction-related basalts 5.4 Isotopic evidence for the recyclirtg_ 99 of pelagic sediment via subduction zones 5.5 Geochemistry of pelagic sediments 5.6 REE geochemistry of Sardinian mafic 104 rocks 5.7 , MORB plus subducted sediment source 106 for Sardinian basalts 5.8 OIB plus subducted sediment source m for Sardinian basalts? 5.9 Summary 8 Page CHAPTER 6 LILE-ENRICHED MAFIC ALKALINE MAGMAS 116 IN NORTHERN SARDINIA 117 6.1 Continental crustal source 6.2 Sub-continental mantle lithospheric 118 source 6.3 Asthenospheric upper mantle source 119 6.4 Elemental composition of hawaiites 120 from northern Sardinia 6.5 LILE-enriched basanites in northwestern 126 Sardinia 6.6 Sr-isotope composition of hawaiite lavas 129 in northern Sardinia 6.7 Evidence for partial melting within the 130 Sardinian upper continental crust 6.8 Geochemical nature of the Sardinian 137 crystalline basement rocks 6.9 High LILE abundances in Sardinian 139 mafic alkalic magmas - a crustal signature CHAPTER 7 THE TRANSITION FROM SUBDUCTION- 149 RELATED TO EXTENSIONAL MAGMATISM - GEOCHEMISTRY OF PLIO-PLEISTOCENE HIGH-MG ANDESITES AND BASALTIC ANDESITES 7.1 Geochemistry of basaltic andesites 149 and high-Mg andesites 7.2 Role of varying degrees of melting 156 of mantle peridotite in the genesis of Sardinian Plio-Pleistocene magmas 156 7.3 Role of crustal contamination in the genesis of basaltic andesites and high-Mg andesites 7.4 The role of water in magma genesis 159 7.5 Mantle dynamics during the transition 165 from subduction-related to extensional volcanism 9 Page CHAPTER 8 THE NATURE OF THE DEEP CRUST AND UPPER 167 MANTLE BENEATH SARDINIA - EVIDENCE FROM INCLUSIONS IN ALKALINE MAGMAS 8.1 Field occurrence 167 8.2 Petrography- 168 8.3 Mineral chemistry 176 8.4 Geothermometry of magnesian peridotites 186 and anhydrous pyroxenites 8.5 Major element whole-rock chemistry of 191 spinel peridotites 8.6 REE geochemistry of spinel peridotites 194 8.7 Sr-isotopic composition of Cr-diopsides 196 from Sardinian spinel peridotites 8.8 Origin of Sardinian spinel peridotites 199 8.9 The nature of the lower crust beneath 204 Sardinia 210 BIBLIOGRAPHY 225 APPENDIX A ANALYTICAL TECHNIQUES APPENDIX B MAJOR AND TRACE ELEMENT DATA 247 SAMPLE LOCALITIES 290 APPENDIX C MINERAL CHEMISTRY OF LAVAS 294 APPENDIX D MINERAL CHEMISTRY OF SPINEL PERIDOTITES 305 APPENDIX E PROBLEMS AND ASSUMPTIONS INHERENT IN 318 GEOTHERMOMETRY APPENDIX F NORMALISATION FACTORS 322 10 LIST OF FIGURES Page Figure Title 1.1 Location of Sardinia in the Western 18 Mediterranean 1.2 Simplied geological map of Sardinia 20 1.3 Surface exposure of Tertiary volcanic 21 rocks in N. Sardinia 1.4 K-Ar dates for Plio-Pleistocene 25 volcanic rocks 1.5 Evolution of western Mediterranean 30 basin 2.1 Pyroxene compositions for some 33 Tertiary volcanic rocks 2.2 Feldspar compositions for some 34 Tertiary volcanic rocks 3.1 K^O vs. SiO„ in Sardinian subduction- 42 related rocks 3.2 FeOT/MgO in Sardinian subduct; on - 44 related rocks 3.3 Major element chemical variation among 46 Sardinian subduction-related lavas 3.4 Trace element chemical variation among 55 Sardinian subduction-related lavas 3.5 REE data for selected Sardinian high-Al 60 basalts 3.6 REE data for two Sardinian andesites 61 3.7 REE data for several Sardinian dacites 62 and rhyolites 3.8 Rb, Ni and V vs. 8 ?Sr/86Sr 66 3.9 Multi-element diagram showing effects 69 of fractional crystallisation in andesite-dacite-rhyolite sequence 4.1 K^O vs. Si02 in all analysed Tertiary 72 volcanic rocks 11 Page Figure Title 76 4.2 CIPW normative composition of selected Plio-Pleistocene rocks 4.3 Major element variation among 79 Plio-Pleistocene volcanics 4.4 Trace element variation among 82 Plio-Pleistocene volcanics 4.5 Sr-isotope ratios in all analysed gg Plio-Pleistocene rocks 87 86 4.6 Sr/ Sr vs.
Recommended publications
  • GIS-Based Landscape Analysis of Megalithic Graves in the Island of Sardinia (Italy) Riccardo Cicilloni 1, Marco Cabras 2
    GIS-based landscape analysis of megalithic graves in the Island of Sardinia (Italy) Riccardo Cicilloni 1, Marco Cabras 2 1. Department of History, Cultural Heritage and Territory, University of Cagliari. Via Is Mirrionis 1, 09123 Cagliari, Italy. Email: [email protected] 2. Ph.D. Candidate, Doctorado en Historia y Artes – Arquelogía y Cultura Material, Universidad de Granada. Via Is Mirrionis 119, 09121 Cagliari, Italy. Email: [email protected] Abstract: One of the most important megalithic groups in Western Europe in terms of number and characteristics is the group of over 200 monuments of various types in Sardinia. It now seems to be confirmed that the rise of the megalithic phenomenon was during the culture of San Michele of Ozieri (Late Neolithic, 4000-3300 B.C.E.). The Sardinian dolmen graves, however, had a maximum distribution during the Chalcolithic, as evidenced by most of the finds from excavations. The phenomenon also shows a close relationship beyond Sardinia and especially with the monuments of Catalonia, Pyrenees, non-coastal departments of French-midi, Corsica and Puglia. About 90 dolmen graves of various types have been investigated, namely the simple type, “corridor” type, “allée couverte” type, and others of uncertain attribution, located in central-western Sardinia, and particularly in a significant area of ca. 3500 km2 coinciding with the historical regions of Marghine-Planargia, Middle Valley of Tirso and Montiferru. This includes some 40% of all Sardinian dolmens. Locational trends and relationships with regard to landscape elements were studied with the aid of GIS methodologies such as viewshed and cost surface analysis.
    [Show full text]
  • Ambito Di Paesaggio N. 16 "Montiferru"
    Ambito di Paesaggio PPR Nuova individuazione Ambito di Paesaggio n. 16 "Montiferru" Cuglieri, Narbolia, Santu Lussurgiu, Scano Montiferro, Seneghe, Sennariolo ELEMENTI STRUTTURA PERCETTIVA SARDEGNA NUOVE IDEE TAVOLO 2 “IL PROGETTO DEI PAESAGGI” Ambiente Incontri preliminari quaderno di lavoro - L’articolato sistema costiero delle baie di Santa Caterina di Pittinurri e di s’Archittu, delimitato dallo sviluppo irregolare di archi rocciosi, falesie e scogliere scolpite su arenarie e calcareniti biancastre del terziario; AMBITO n. 16 “MONTIFERRU” - il complesso orografico vulcanico del Montiferru e le formazioni boschive che caratterizzano i versanti che si presentano in un mosaico di comunità COMUNI COINVOLTI DESCRIZIONE vegetali diverse, rappresentate da una maestosa foresta composta da Cuglieri, Narbolia, Santu Lussurgiu, Scano Montiferro, Seneghe, Sennariolo La struttura dell'Ambito è definita dalla dominante ambientale del lecci, querce caducifoglie, tasso, agrifoglio, acero minore e la copertura massiccio del Montiferru. La denominazione è derivante dal che doveva caratterizzare anche i versanti che, dopo i tagli e gli incendi, INQUADRAMENTO TERRITORIALE filone di ferro presente presso il Monte alle spalle della piana di sono stati trasformati parzialmente in aree di pascolo; Cornus. L'Ambito corrisponde all'esteso territorio che incorpora il - la valle del Rio S'Abba Lughida, nel versante occidentale, regno della fitta profilo del cono vulcanico del Montiferru, con la maggiore lecceta associata all'agrifoglio, alla roverella e al corbezzolo;
    [Show full text]
  • Geochemistry of Sideromelane and Felsic Glass Shards in Pleistocene Ash Layers at Sites 953, 954, and 9561
    Weaver, P.P.E., Schmincke, H.-U., Firth, J.V., and Duffield, W. (Eds.), 1998 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 157 25. GEOCHEMISTRY OF SIDEROMELANE AND FELSIC GLASS SHARDS IN PLEISTOCENE ASH LAYERS AT SITES 953, 954, AND 9561 Andrey A. Gurenko2 and Hans-Ulrich Schmincke2 ABSTRACT Sideromelane and felsic glass shards from unconsolidated Pleistocene volcaniclastic sediments drilled at Sites 953, 954, and 956 are thought to have derived from submarine and subaerial volcanic eruptions on Gran Canaria (Sites 953 and 954) and Tenerife (Sites 954 and 956). We analyzed these glasses by electron microprobe for major elements and sulfur, chlorine, and fluorine. Sideromelane glasses represent a spectrum from alkali basalt through basanite, hawaiite, mugearite, and tephrite to nephelinite. Felsic glasses have compositions similar to benmoreite, trachyte, and phonolite. Vesiculated mafic and felsic glass shards, which are characterized by low S and Cl concentrations (0.01−0.06 wt% S and 0.01–0.04 wt% Cl), are interpreted to have formed by pyroclastic activity on land or in shallow water and appeared to have been strongly degassed. Vesicle-free blocky glass shards having 0.05−0.13 wt% S are likely to have resulted from submarine eruptions at moderate water depths and represent undegassed or slightly degassed magmas. Cl concentrations range from 0.01 to 0.33 wt% and increase with increasing MgO, suggesting that Cl behaves as an incompatible element during magma crystallization. Concentrations of fluorine (0.04− 0.34 wt% F) are likely to represent undegassed values, and the variations in F/K ratios between 0.02 and 0.24 are believed to reflect those of parental magmas and of the mantle source.
    [Show full text]
  • Nonexplosive and Explosive Magma/Wet-Sediment Interaction
    Journal of Volcanology and Geothermal Research 181 (2009) 155–172 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Nonexplosive and explosive magma/wet-sediment interaction during emplacement of Eocene intrusions into Cretaceous to Eocene strata, Trans-Pecos igneous province, West Texas Kenneth S. Befus a,⁎, Richard E. Hanson a, Daniel P. Miggins b, John A. Breyer a, Arthur B. Busbey a a Department of Geology, Texas Christian University, Box 298830, Fort Worth, TX 76129, USA b U.S. Geological Survey, Denver Federal Center, Box 25046, Denver, CO 80225, USA article info abstract Article history: Eocene intrusion of alkaline basaltic to trachyandesitic magmas into unlithified, Upper Cretaceous Received 16 June 2008 (Maastrichtian) to Eocene fluvial strata in part of the Trans-Pecos igneous province in West Texas produced Accepted 22 December 2008 an array of features recording both nonexplosive and explosive magma/wet-sediment interaction. Intrusive Available online 13 January 2009 complexes with 40Ar/39Ar dates of ~47–46 Ma consist of coherent basalt, peperite, and disrupted sediment. Two of the complexes cutting Cretaceous strata contain masses of conglomerate derived from Eocene fluvial Keywords: deposits that, at the onset of intrusive activity, would have been N400–500 m above the present level of phreatomagmatism peperite exposure. These intrusive complexes are inferred to be remnants of diatremes that fed maar volcanoes during diatreme an early stage of magmatism in this part of the Trans-Pecos province. Disrupted Cretaceous strata along Trans-Pecos Texas diatreme margins record collapse of conduit walls during and after subsurface phreatomagmatic explosions.
    [Show full text]
  • Alkalic-Type Epithermal Gold Deposit Model
    Alkalic-Type Epithermal Gold Deposit Model Chapter R of Mineral Deposit Models for Resource Assessment Scientific Investigations Report 2010–5070–R U.S. Department of the Interior U.S. Geological Survey Cover. Photographs of alkalic-type epithermal gold deposits and ores. Upper left: Cripple Creek, Colorado—One of the largest alkalic-type epithermal gold deposits in the world showing the Cresson open pit looking southwest. Note the green funnel-shaped area along the pit wall is lamprophyre of the Cresson Pipe, a common alkaline rock type in these deposits. The Cresson Pipe was mined by historic underground methods and produced some of the richest ores in the district. The holes that are visible along several benches in the pit (bottom portion of photograph) are historic underground mine levels. (Photograph by Karen Kelley, USGS, April, 2002). Upper right: High-grade gold ore from the Porgera deposit in Papua New Guinea showing native gold intergrown with gold-silver telluride minerals (silvery) and pyrite. (Photograph by Jeremy Richards, University of Alberta, Canada, 2013, used with permission). Lower left: Mayflower Mine, Montana—High-grade hessite, petzite, benleonardite, and coloradoite in limestone. (Photograph by Paul Spry, Iowa State University, 1995, used with permission). Lower right: View of north rim of Navilawa Caldera, which hosts the Banana Creek prospect, Fiji, from the portal of the Tuvatu prospect. (Photograph by Paul Spry, Iowa State University, 2007, used with permission). Alkalic-Type Epithermal Gold Deposit Model By Karen D. Kelley, Paul G. Spry, Virginia T. McLemore, David L. Fey, and Eric D. Anderson Chapter R of Mineral Deposit Models for Resource Assessment Scientific Investigations Report 2010–5070–R U.S.
    [Show full text]
  • Bosa, Planargia E Montiferru
    A.D. MDLXII UNIVERSITÀ DEGLI STUDI DI SASSARI DIPARTIMENTO DI SCIENZE UMANISTICHE E SOCIALI ___________________________ SCUOLA DI DOTTORATO IN SCIENZE UMANISTICHE E SOCIALI CICLO XXVIII Bosa, Planargia e Montiferru: storia e istituzioni, geografia e toponomastica Relatore: Prof. ANGELO CASTELLACCIO Direttore della Scuola: Prof. MASSIMO ONOFRI Dottorando: CINZIO CUBEDDU ANNO ACCADEMICO 2012/2013 INDICE LA GEOGRAFIA p. 1 Il territorio della Planargia p. 1 Gli insediamenti p. 5 La cartografia p. 5 Le dinamiche insediative p. 8 TOPONOMASTICA MEDIEVALE DI BOSA p. 10 Toponomastica urbana p. 10 Toponomastica extraurbana p. 17 Bainas p. 17 Calameda p. 18 Campu de mare p. 19 Sa Sea p. 21 Castangias p. 22 Querquetannos p. 23 Sierra Ispinas p. 24 S’istagnone p. 24 Toponomastica costiera p. 26 Cala Fenuggiu p. 26 Cala de Moro p. 26 Castillo Barisone p. 27 Columbargia p. 27 Cumpoltittu p. 29 Isola Rossa p. 29 Marrargiu p. 31 Monte Mandrone p. 32 Punta Argentina p. 33 Il territorio del Montiferru p. 34 Il paesaggio p. 34 I fiumi p. 37 LA STORIA p. 38 Le vicende storiche: dalle invasioni arabe ai regni giudicali fino al 1317 p. 38 Gli Arabi e la Sardegna p.38 L’origine dei Regni giudicali p. 45 I Regni giudicali p. 47 Caratteri generali dei Regni giudicali p. 48 Le chiese in Planargia p. 50 Le chiese di Bosa p. 50 San Pietro Apostolo p. 50 San Giovanni Battista p. 53 Sant’Antonio Abate p. 55 Cattedrale della Beata Vergine Maria Immacolata p. 57 N. S. de Regnos Altos p. 60 Santa Maria Caravetta p.
    [Show full text]
  • Linea 702 Padria-Pozzomaggiore-Bonorva-Giave-Thiesi-Sassari
    LINEA 702 PADRIA-POZZOMAGGIORE-BONORVA-GIAVE-THIESI-SASSARI Condizione pianificazione PENT FNSC SCO FER SCO FNSC SCO SCO SCO SCO SCO FER FNSC SCO FNSC FER SCO FER SCO FER FER Numero corsa 5 7 9 11 13 17 15 1 3 39 19 21 41 23 25 27 31 29 33 35 37 PADRIA via Nazionale-Poste 05:30 06:40 06:50 06:50 08:50 08:58 13:25 16:00 19:10 MARA 05:36 06:46 06:56 06:56 13:31 16:06 MARA via Gramsci 65 05:36 06:46 06:56 06:56 13:31 16:06 POZZOMAGGIORE via Grande-Rifornitore 05:43 06:53 07:03 07:03 08:55 09:03 13:38 16:13 19:15 POZZOMAGGIORE Scuole Medie 13:40 POZZOMAGGIORE Liceo Scientifico 13:42 POZZOMAGGIORE 05:45 06:00 06:15 06:35 06:55 07:05 07:05 07:10 07:10 08:57 09:05 13:30 13:40 16:15 19:17 POZZOMAGGIORE Liceo Scientifico 13:42 POZZOMAGGIORE via Grande 18 05:46 06:01 06:16 06:56 07:11 13:31 13:43 16:16 COSSOINE 05:56 06:11 06:26 07:06 07:21 13:41 13:53 16:26 COSSOINE via Vittorio Emanuele 131 05:56 06:11 06:26 07:06 07:21 13:41 13:53 16:26 SEMESTENE 06:43 07:13 07:13 07:18 09:05 09:13 13:48 BONORVA corso Umberto 76 06:52 07:22 07:22 07:27 09:14 09:22 13:57 BONORVA 06:53 07:23 07:23 07:28 09:15 09:23 13:58 BONORVA piazza Sant`Antonio 06:53 07:23 07:23 07:28 09:15 09:23 13:58 BONORVA Scuole 06:53 07:23 07:23 07:28 09:15 09:23 13:58 GIAVE Corso Repubblica 07:01 07:31 07:31 07:36 09:23 09:31 14:06 TORRALBA via Carlo Felice 171 06:10 06:25 06:40 07:44 07:35 13:55 16:40 TORRALBA via Carlo Felice 91 06:11 06:26 06:41 07:45 07:36 13:56 16:41 BONNANARO via Nazionale 43 06:13 06:28 06:43 07:47 07:38 13:58 16:43 BONNANARO via Nazionale 16 06:13 06:28 06:43
    [Show full text]
  • Writers' Landscapes], in Accordance with Bylaw 135/2001, Section 5, Paragraph 5
    Writers’ Landscapes Writers’ Landscapes © 2008 REGIONE AUTONOMA DELLA SARDEGNA ASSESSORATO DEL TURISMO, ARTIGIANATO E COMMERCIO Viale Trieste 105, 09123 Cagliari Guide produced within the Interregional Project “Itinerari turistici dei paesaggi d'autore” [Tourist Itineraries in Writers' Landscapes], in accordance with bylaw 135/2001, section 5, paragraph 5 Coordination and Editorial Staff: Katia De Marco, Emilia Fulli, Mattea Lissia Images: Archivio Ilisso Edizioni, Gianluigi Becciu, Renato Brotzu, Antonio Saba, Max Solinas (with permission from Museo Man), Giorgio Todde, Egidio Trainito Translation: Sally Davies Pagination: Giancarlo Murgia The “Assessorato del Turismo, Artigianato e Commercio della Regione Autonoma della Sardegna” publishes these contents for information purposes only and thus declines all responsibility for any eventual printing errors or involuntary omissions. Writers’ Landscapes Index Pag. Introduction 7 Cagliari and the Between the war and the Mal di Pietre 10 surrounding area The town of my childhood 16 The town with two faces 20 The transformed town 23 The town in the early hours 26 The books 30 Capo di Sopra Hints of winter 31 The magic of La Maddalena 34 The books 36 Nuoro, Barbagia and Satta’s Nuoro 37 the Baronia areas The hill of solitude 41 A reinvented Barbagia 44 The books 47 Amidst woods and Between Carbonia and the west 48 mines A sea of pines 51 The books 54 From north to south The silent valley 55 On Gramsci’s trail 57 The village on the plateau 61 The books 63 Introduction This is a guide to writing places. These places exist and come into being again, if someone mentions them or photographs them.
    [Show full text]
  • Gestione Servizio Bibliotecario Montiferru
    UNIONE DEI COMUNI DEL MONTIFERRU E ALTO CAMPIDANO (già Unione dei Comuni Montiferru Sinis) Sede: Via S.Agostino, 18 – 09070 - Milis (OR) Codice fiscale: 90040120959 - tel.0783 590100 fax. 0783 518226 Comuni di Bauladu - Bonarcado - Cuglieri - Milis - Nurachi Santu Lussurgiu - Scano di Montiferro - Seneghe - Sennariolo - Tramatza – Zeddiani Sito internet: www.unionemontiferrusinis.it E-mail: [email protected] - [email protected] COPIA DETERMINAZIONE AREA AMMINISTRATIVA N. 35 DEL 14-04-2020 Oggetto: Servizio di gestione Sistema Bibliotecario Montiferru - dichiarazione efficacia aggiudicazione definitiva. Premesso che con decreto del Presidente n. 1 dell’08/01/2020 alla sottoscritta è stata confermata la responsabilità dell’area amministrativa. Richiamati i seguenti atti: - la deliberazione dell'Assemblea n. 9 del 24 giugno 2019 con la quale è stato approvato il progetto per la gestione del Sistema Bibliotecario Montiferru 2019/2020 con opzione per la stessa durata contrattuale. - la determina a contrarre dell’area amministrativa n. 84 del 03.07.2019 con la quale sono stati approvati gli atti di gara relativi all'affidamento della gestione del Sistema Bibliotecario Montiferru. e -la determina n. 143 del 22/11/2019 con la quale sono stati approvati i verbali di gara e la proposta di aggiudicazione a favore di Socio Culturale Cooperativa Sociale Onlus - Via Boldani, 18 – Mira. Considerato che l’efficacia dell’aggiudicazione è subordinata alla verifica dei requisiti dichiarati in sede di gara dalla ditta aggiudicataria attraverso il sistema AVCPass. Dato atto che è stata acquisita e verificata con esito positivo, fatta eccezione per la verifica del nulla osta antimafia, la documentazione relativa al possesso dei requisiti dichiarati in sede di gara, come risulta dalla documentazione agli atti di questo ufficio.
    [Show full text]
  • THE PETROCHEMISTRY of JAKE M: a MARTIAN MUGEARITE. Stolper
    44th Lunar and Planetary Science Conference (2013) 1685.pdf THE PETROCHEMISTRY OF JAKE_M: A MARTIAN MUGEARITE. Stolper, E.M.1, Baker, M.B.1, Fisk, M.2, Gellert, R.3, King, P.L.4, McLennan, S.M.5, Minitti, M.6, Newcombe, M.1, Schmidt, M.E. 7, Treiman, A.H.8, and the MSL Science Team. 1Caltech, Pasadena, CA 91125, 2Oregon State Univ., 3Univ. Guelph, 4Res. School Earth Sci., ANU, 5SUNY, Stony Brook, 6Applied Phys. Lab., Johns Hopkins Univ., 7Brock Univ., 8Lunar & Planet. Inst. Introduction: Rock “Jake_M” (JM; named for JPL The surface of JM was not brushed or abraded prior engineer Jake Matijevic) was the first sample analyzed to analysis, so the APXS analyses probably include by the Alpha Particle X-ray Spectrometer (APXS) in- contributions from surface coatings, including adhering strument on MSL [1]. Although it is an isolated frag- dust, and these are the probable source of the S and Cl ment lacking field context, its dark color and apparently in JM. Experience with MER, however, indicates that fine-grained texture suggested it was a relatively homo- the characteristics of rock compositions are typically geneous igneous rock and thus an appropriate sample to not obscured by surface components, and the levels of S initiate the APXS analytical program. We report here and Cl in JM are lower than virtually all unbrushed the preliminary APXS analyses of JM and a plausible analyses from the Spirit rover and lower than many of interpretation of their significance for petrogenesis. the brushed analyses, so the level of surface contamina- Results: Three spots on JM were analyzed with the tion and alteration are likely relatively minor [5].
    [Show full text]
  • The Case of Sardinia
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Biagi, Bianca; Faggian, Alessandra Conference Paper The effect of Tourism on the House Market: the case of Sardinia 44th Congress of the European Regional Science Association: "Regions and Fiscal Federalism", 25th - 29th August 2004, Porto, Portugal Provided in Cooperation with: European Regional Science Association (ERSA) Suggested Citation: Biagi, Bianca; Faggian, Alessandra (2004) : The effect of Tourism on the House Market: the case of Sardinia, 44th Congress of the European Regional Science Association: "Regions and Fiscal Federalism", 25th - 29th August 2004, Porto, Portugal, European Regional Science Association (ERSA), Louvain-la-Neuve This Version is available at: http://hdl.handle.net/10419/116951 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence.
    [Show full text]
  • (Tel. 3452445440) Matteo Corrias ESCURSIONE: Isteone
    06 SETT - Janna Nurai Punta Catirina Usurtia Contu Antonio (Tel. 3452445440) Matteo Corrias ESCURSIONE: Isteone – Flumineddu – Monte Nuovo San Giovanni Data: 13 settembre 2020 Luogo: Isteone – Flumineddu – Monte Nuovo San Giovanni. Punto di interesse culturale: Letto del fiume ed Il Monte. Durata: 7 ore; Difficoltà – E Dislivello: 900 m; Distanza: 16 km. Coordinatori logistici: Doru Nicolae Potoroacă (Tel. 3897618553), Matteo Marteddu, Antonello Noli. Sezione: Nuoro Ritrovo dei Soci: alle ore 7:30 presso Piazza Veneto alle ore 8:00 presso Caserma forestale Montes. (trasferimento con mezzi propri) ESCURSIONE: Monte Ortobene Data: 20 settembre 2020 Luogo: Monte Ortobene Punto di interesse culturale: Rocce e punti panoramici Durata: 6 ore; Difficoltà – E Dislivello: 400 m; Distanza: 10 km. Coordinatori logistici: Doru Nicolae Potoroacă, (Tel. 3897618553) Giuseppe Santus Sezione: Nuoro Ritrovo dei Soci: alle ore 7:30 presso Chiesa della Solitudine (trasferimento con mezzi propri) ESCURSIONE: Riu Siccu – Punta Cupeti Data: 11 ottobre 2020 Luogo: Riu Siccu – Punta Cupeti Punto di interesse culturale: Paesaggio carsico Durata: 7 ore; Difficoltà – E Dislivello: 800 m; Distanza: 10 km. Coordinatori logistici: Doru Nicolae Potoroacă, (Tel. 3897618553) Antonio Contu Sezione: Nuoro Ritrovo dei Soci: alle ore 7:00 presso Piazza Veneto alle ore 8:00 presso parcheggio Fontana Sadde. (trasferimento con mezzi propri) ESCURSIONE: Dolovere – Su Praicargiu Data: 25 ottobre 2020 Luogo: Dolovere – Su Praicargiu Punto di interesse culturale/paesaggistico: Surtana, Scala Cuccutos Durata: 7 ore; Difficoltà – E Dislivello: 620 m; Distanza: 9 km. Coordinatori logistici: Doru Nicolae Potoroacă, (Tel. 3897618553) Matteo Marteddu, Giuseppe Santus. Sezione: Nuoro Ritrovo dei Soci: alle ore 7:30 presso Piazza Veneto alle ore 8:00 presso parcheggio sorgente Su Gologone.
    [Show full text]