PaleofloodingintheSolarSystem:comparisonamongmechanismsforfloodgenerationon Earth,,andTitan DevonBurr EarthandPlanetarySciencesDepartment EPS306 UniversityofTennesseeKnoxville 1412CircleDr. KnoxvilleTN397761410USA [email protected] ABSTRACT ConditionsallowsurficialliquidflowonthreebodiesintheSolarSystem,Earth,Mars,and Titan.Evidenceforsurficialliquid flood flowhasbeenobservedonEarthandMars.The mechanismsforgeneratingfloodflowvaryaccordingtothesurficialconditionsoneachbody. ThemostcommonfloodgeneratingmechanismonEarthiswidespreadglaciation,which requiresanatmosphericcycleofavolatilethatcanassumethesolidphase.Volcanismisalsoa prevalentcauseforterrestrialflooding,whichothermechanismsproducingsmaller,thoughmore frequent,floods.OnMars,themechanismforfloodgenerationhaschangedovertheplanet’s history.SurfacestorageoffloodwaterearlyinMars’historygavewaytosubsurfacestorageas Mars’climatedeteriorated.AsonEarth,Mars’floodingisaneffectoftheabilityofthe operativevolatiletoassumethesolidphase,althoughonMars,thishasoccurredinthe subsurface.Accordingtothisparadigm,Titanconditionsprecludeextremefloodingbecausethe operativevolatile,whichismethane,cannotassumethesolidphase.Mechanismsthatproduce smallerbutmorefrequentfloodsonEarth,namelyextremeprecipitationevents,arelikelythe mostimportantfloodgeneratorsonTitan. 1. Introduction Thehistoricalflowofpaleofloodsciencehasrisenandfallenlargelyinconcertwith prevailingscientificparadigms(Baker1998).Theparadigminthe17 th centurywas catastrophism,theideathatgeologyistheproductofsudden,short,violentevents.Inpaleoflood science,thisparadigmwasexpressedasdiluvialism,theviewthattheBiblicalfloodwas historicallyaccurateandcouldexplainvariousgeologicalformationsandfossilremains. Catastrophismgaveplacetouniformitarianism,firstintroducedin1830,whichstipulatedthatthe Earth’sformationsaretheproductofslow,gradualchange.Underthisparadigm,geologic formationspreviouslyexplainedbycatastrophic(Biblical)floodingwereoftentransmutedinto theeffectsofsustainedriverfloworofglaciation.TheChanneledScabland,Washington,USA, wasoriginallyinterpretedatglacialinorigin,eitherdirectly(throughflowofglacialice)or indirectly(throughdiversionofrivers).Consequently,theproposalbyJ.HarlanBretzof massivefloodingasanexplanationfortheChanneledScablandwasoriginallytreatedasan absurdoroutrageoushypothesis(cf.Davis1926,Baker1978).Decadesofstudydemonstrated theverityofthishypothesis,establishingpaleofloodhydrologyandgeomorphologyasa geologicsubdiscipline(e.g.,KochelandBaker1982). Duringthistime,thestudyofpaleofloodswasalsoextendedtoMars.The9and VikingorbitermissionsfirstobservedMars’giganticfloodchannels,identifiedonthebasisof theirmorphologicsimilaritytotheChanneledScabland(MarsChannelWorkingGroup1983). FutureanalysisandfollowonspacecraftmissionstoMarssupportedcontinuedstudyofthese andotherfloodchannels(Baker1982,Carr1996),providingquantitativeestimatesofdischarge andotherflowparameters,althoughwithlargeerrorbars(Wilsonetal.2004).Asaresult, catastrophicfloodingwasestablishedasanextraterrestrialpursuit. ThemissiontotheSaturniansystem(Matsonetal.2002)openedupa newfrontierinplanetarygeology.MissiondatarevealedthesurfaceofTitan,Saturn’slargest moon,ashavingstrikinglyEarthlikelandforms–includingaeoliandunes(Lorenzetal.2006) andlakes(Stofanetal.2007)–,althoughcomprisedofexoticallyunEarthlikematerials. Fluviatilefeatureshavebeeninterpretedasriverchannels(Elachietal.2005,Porcoetal.2005, Tomaskoetal.2005),whichmayhavedischargesoforder10 4m 3/s(Jaumannetal.2007). ThoughmuchsmallerthanflooddischargesonMarsorEarth,suchadischargewouldbelarge forterrestrialrivers. Thispapercomparesandcontrastsevidenceforpaleofloodsonthesethree3planetary bodies,Earth,Mars,andTitan.Eachofthesethreebodieshasitsownsetofconditionsand materials(someofwhicharelistedinTable1),sothateachhasitsownmechanismsfor generatingfloods.ThispapercomparesandcontrastsfloodingintheSolarSystembyreviewing thefloodmorphologiesandthenthefloodgenerationmechanismsforeachofthesethreebodies inturn. 2. Flooding on Earth A. Glaciation ThelargestpaleofloodsonEarth,withdischargesoforder10 6–10 7 m3/s,areassociated withglaciation(Baker1996,O’ConnorandCosta2004).Theprimarymechanismthatthe producedthesefloodswasthesuddenreleaseofwaterfromglaciallakes.Proglaciallakesresult fromdammingbytheglacierofpreexistingrivervalleys.Theseglaciallakesandtheir outburstsoccurredfrequentlyduringtheQuaternaryglaciationsasaresultofdisruptionofpre existingfluvialdrainage(Starkel1995).Icemarginallakesresultfromimpoundmentofthe glacialmeltwateragainsttheglaciermargin,commonlybymorainaldebris.Icemarginal(or morainebasin)lakesusuallystorelesswaterthanproglaciallakes,andsogenerallyproduce relativelysmallerdischarges(O’ConnorandBeebee2008).Themostextensiveknown examplesofglaciallakeoutburstfloodingarelocatedinthenorthernmidlatitudes,where continentalicesheetsdisruptedpreexistingfluvialflow(e.g.,Grosswald1998).Themost voluminousexamples(intermsofdischarge)havebeenfoundinareasofsignificantreliefwhere deepvalleyssupportedtallicedamsthatimpoundedlargelakes.Earth’slargesticedamfailure floodsinclude:theKurayandotherfloodsintheAltaiMountains,Siberia,duringtheLate Pleistocene(Bakeretal.1993;Rudoy1998;Carlingetal.2002;Herget2005);theMissoula floodsthatcarvedtheChanneledScablandinWashington,USA(Baker2008andreferences therein);andearlyHolocenefloodsdowntheTsangpoRivergorgeinsoutheasternTibet (Montgomeryetal.2004).Thelargesticemarginalormorainedamfailurefloodsincludethe LakeoverflowfloodsinNorthAmerica(Kehewetal.2008andreferencestherein).

B. Volcanism InadditiontodirectlyproducingpaleofloodsonEarth,glaciationcontributestoflood productionindirectlyinconjunctionwithnearsurfacevolcanismorenhancedgeothermalheat flow(Björnsson2008).Someofthelargestfloodsassociatedvolcanismresultfromdirect meltingofoverlyingsnowandicebyeruptionorgeothermalheatflow.Persistentsubglacial hydrothermalsystemsmayresultfromtheinteractionoftheresultantglacialmeltwaterwith shallowmagmaticintrusions.Continuedincreaseofthesubglaciallakevolumeeventually breaksthehydraulicsealoftheoverlyingglacier,andthemeltwateriscatastrophicallyreleased. ThisprocesstakesplacetodayinIceland,asinthe1996subglacialeruptionandresultant jökulhlaupfromtheGrímsvötncauldronbeneaththeVatnajökullglacier(Figure1) (Guðmundssonetal.1997)andthe1918jökulhlaupfrombeneaththeKötlujökullglacier (Tómasson1996).EarlyHolocenejökulhlaupswithdischargesoforder10 5m 3/sdrained northwardfromtheKverkfjöllglacier(Carrivick2005),carvingtheJökulsááFjöllumflood channel(Waitt2002). Volcanismalsocausesfloodingbyothermeansthandirectmelting.Calderalake breachingcanproducedischargesofsimilarmagnitudetoicedambreaches,asinthecaseofa lateHolocenefloodfromtheAniakchakvolcano,Alaska(Waythomasetal.1996).More commonly,breachingofwaterfilledcalderasproducesfloods1–2ordersofmagnitudelower. ThenearinstantaneousfailureofalargeignimbritedamattheLakeTaupo,NewZealand,for example,producedacalderafloodoforder10 5m 3/s(Manvilleetal.1999).Otherexamplesof largefloodsfrombreachedvolcaniclasticdamsincludefloodsfromTaraweracaldera,New Zealand(Manvilleetal.2007)andtheHolocenefloodfromMountMazama,USA(Conaway 1999inO’ConnorandBeebee2008).LargefloodsresultedfromlavadamsontheColorado River,USA(Fentonetal.2006),andpyroclasticflows,lahardeposits,andlandslidestriggered byeruptionshavelikewisecausedflooding. C. Tectonic Basin Overflow Volcaniccalderasareoneofthreetypesofgeologicbasinsthatproduceflooding,the othertwobeingmorainebasins(reviewedinthesectiononglacialfloodingabove)andtectonic basins.Floodsfromtectonicbasinscanbethevolumetricallylargestofthethreebasinbreach typefloodsbecausetheycanimpoundthemostwater(seeO’ConnorandCosta2004and O’ConnorandBeebee2008,fromwhichthefollowingdiscussionistaken). Mostcommonly,floodsfromclosedtectonicbasinsarearesultofthebasinbecoming filledwithwaterduetosustainedpositivewaterbalance.Thisoccurredforexampleduringthe Quaternaryinthebasinandrangeprovince,westernUSA,wherenaturaltectonicbasinfilling coincidedwithglacialadvance(Baker1983,Reheisetal.2002).Lake(Malde1968, O’Connor1993)andotherPliocenePleistocenelakesinthewesternUSA(seeCurrey1990, Reheisetal.2002)provideexamplesoftectonicbasinbreachfloodsfedbycombinedrainfall andgroundwaterflow. Morerarely,floodsmaybeproducedfromtectonicbasinsbysuddeninputofwater.This mayhaveoccurredincludedthelowerColoradoRiver,whichmayhaveconnectedtotheupper Coloradodrainageabout5Maagoduetoaseriesofupstreambasinbreachesinvolvinglarge floods(Houseetal.2005).AndcatastrophicbreachingofbasinsmayhavecarvedHellsCanyon andthewesternSnakeRivergorge,leadingtointegrationwiththeColumbiaRiver(Othberg 1994;WoodandClemens2002). Earth’sgeologyalsorecordsimmensemarinefloods,bothintoandoutoftectonicbasins. FloodingoftheMediterraneanBasinviaabreachatthepresentdayStraitsofGibraltar(Hsü 1983)isthelargestknownexampleofmarineflooding.Asmallerfloodmayhaveoccurred whentherisingMediterraneanSeathenfloodedintotheBlackSeaviatheBosporusStrait(Ryan andPitman1999). Acommongeologicsettingforthesetectonicbasinbreachfloodsisasemiarid environmentduringchanginghydrologicalconditions(O’ConnorandBeebee2008).The negativewaterbalanceinsemiaridclimatesminimizesbasinintegration,allowinglarge volumesofwatertoaccumulateovergeologictime.Thechanginghydrologicalconditions providetheinputtoeventuallytriggertheflooding.Freshwaterfloodsareassociatedwith pluvialperiodsduringglacialadvance,andmarinefloodsprobablyresultedfromsealevelrise duringdeglaciation. D. Other natural dam failures: landslides and ice-jams Twoothertimesofdambreachescausecatastrophicflooding.Landslidesthatwerenot directlyrelatedeithertoglacialorvolcanicconditionscausedtwoofEarth’s27largestfloods (O’ConnorandCosta2004).Landslidedamscanforminawidevarietyofsettings,andare mostcommonlytriggeredbylubricationduetowater(precipitationorsnowmelt)orby earthquakes.Aswithglacialiceormorainedams,thepotentialdischargeincreaseswith increasingdamheight(O’ConnorandBeebee2008). IcejamfloodsaccountforthreeofEarth’slargestknownfloods(O’ConnorandCosta 2004),allofwhichoccurredontheLenaRiver,Russia(RodierandRoche1984).Icejam floodingoccurswhenbrokenrivericeaccumulatesatconstrictionsorbendsintheriver,causing pondingupstreamoftheconstrictionandsuddenreleasewhentheicejambreaks.Large, northwardfloodingarcticriversarethusmostsusceptibletoicejamfloodingbecausethe southernreachesaremorelikelytothawandflowbeforethenorthernreaches. E. Precipitation Precipitationfedfloods,alongwithicejamfloods,areEarth’ssmallestfloods.These ‘meteorologicalfloods’(O’ConnorandCosta2004)resultfromextremeprecipitationevents, e.g.,monsoons.Thus,thelargestsuchfloodsoccurintropicalclimatesdominatedbymonsoons ortropicalstorms.Floodsizeisalsocorrelatedwithriverbasinsize,becausethelargestriver basinsreceivethelargesttotalamountofrain.TheAmazonRiverinAmerican,which drainstheworld’slargestbasinwithanareaof7millionkm 2,hasproduced3ofthefour precipitationfedfloods,andtheYangtzeRiverofChinahasproducedthefourth. Insummary,Earth’slargestfloodresultfromglaciation,withsmallerdischargefloods contributedbyvolcanisminconjunctionwithglaciation,andmuchsmallerfloodsfromicejams onpolarrivers.Thus,forthesemechanisms,theplanetarybodyneedsavolatilethatiscloseto thefreezingpoint.Tectonisminsemiaridclimatesproducessignificantbasinbreachfloods. 3. Flooding on Mars ThecausesforfloodingonMarsarelesswellknownthanforfloodingonEarthbecause in situ dataarenotyetavailablefromfloodchannelsandbecauseMartianfloodinghas notbeenobserved.Thus,unlikeforEarth,floodingonMarscannotbeanalyzedsolelyonthe basisoffloodproducingmechanisms.However,Martianchannelshavedistinctive morphologiesthatmaybegroupedintothreecategorieswhichroughlycorrespondwithMars’ threechronostratigraphicepochs.Onthebasisofthesemorphologies,floodmechanismscanbe discussed. A. flooding from large basins Mars’oldestchannelsdatetothelateNoachianepoch(>3.7Ga;datesofMartianepochs arebasedonTanaka1986andHartmannand2001),atimeofinferredwarmerand wetterclimatethanatpresent(Carr1996).Thesechannelsoriginateatlargebasinsformed eitherbyimpactcrateringorbyintercraterplainstopography(IrwinandGrant2008).Several suchbasinoverflowchannelshavebeeninferredforMars(seeIrwinandGrant2008,Table1), ofwhichthethreemostdistinctarediscussedhere. Mars’longestbasinoverflowchannelisthesegmentedmesooutflowUzboiLadon Margaritifer(ULM)channelsystem(Saunders1979,Baker1982).TheULMchanneloriginates fullwidthatthenorthernedgeofthelargeArgyreimpactcraterbasin,fromwhichitstretches severalhundredkilometersnorthwardtotheMargaritifertopographicbasin.Argyreitselfwas fedthroughseveralotherlargevalleysystems(Parker1985,1994),sothatthetotalcontributing areatotheULMsystemwas~10 7km 2,orabout9%ofMars(Banerdt2000,Phillipsetal.2001). SubsequentcrateringofproximalULMhasobscuredimmediateoutletarea,andthusthewater releasemechanism.However,deeplyincisedreaches,nearlyconstantswidths,hangingvalleys, smallstreamlinedforms,andapoorlydevelopedtributarynetworkallsuggestformationby flooding(IrwinandGrant2008).Dischargeestimatesvaryfrom150,000m 3/sto450,000m 3/s (seeIrwinandGrant2008andreferencestherein). Ma’adimVallis,liketheULMsystem,hasawide,deepchannelandoriginatesfull widthatthenorthernsideofanenclosedbasin.Thissourcebasinisaproductofintercrater plainstopography,withmultiplesubbasins,andcovers~10 6 km 2 (Irwinetal.2002,2004). FloodinginMa’adimVallisissuggestedbythechannel’snearlyconstantwidth,adjacent hangingvalleys,andlongitudinalridgesonthechannelfloor.Thecalculateddischargeis consistentwithadambreachof~100mdepth,whichislessthanhalfofthetotalobserved breachdepth.Andadequatewatercouldhavebeenstoredinthepresentdaysourcebasinto carveMa’adimValliswithreasonablewater:sedimentratios(seeIrwinandGrant2008and referencestherein). MawrthVallesisthesmallestoftheselateNoachianfloodchannels,andappeartohave originatedattheMargaritiferbasin,anintercraterbasinwhichwouldhavereceiveddischarge fromtheULMchannelsystem(IrwinandGrant2008).Thisisbasedonreconstruction, however,asoverflowfromMargaritiferatMawrth‘soriginationpointisnotpossiblewith currenttopography.Thatis,fowwouldfirstspilloveratlowerpointstotheeast.Possible explanationsincludetiltingduetogrowthofthenearbyvolcanicedificeand/ortheinflux ofULMfloodwatersasdiscussedabove(IrwinandGrant2008). B. flooding from chaos and chasmata Mars’largestfloodchannelsareenormousinsize,withwidthsuptoseveraltensof kilometers,lengthsofhundredsofkilometers,anddepthsofoverathousandmeters(Figure2) (etal.1998).ThesechannelsdebouchintoChrysePlanitia,locatednortheastoftheValles Marineriscanyonsystem,andarecollectivelyreferredtoasthecircumChrysechannels. SmallerHesperianagedchannelsarealsofoundattheeasternendofVallesMarineris,southof ChrysePlanitia.AllthesechannelsdatetotheHesperianepoch(3.7–3.0Ga),aneraof decliningsurfaceconditionsfromawarm,wetclimatetocold,dryconditions. TheseHesperianagedchannelsmaybegroupedaccordingtotheirsizeandmorphology atorigin(ColemanandBaker2008).Thelargest,circumChrysechannelsgenerallyoriginateat chasmata.Chasmataaredeep,steepsideddepressions,whichcommonlycontainchaos,areasof kilometersizedorlargerblockssurroundedbyflatter,lowerelevationterrain(Figure2)(see http://planetarynames.wr.usgs.gov/jsp/append5.jsp fordefinitionsofdescriptorterms). Chasmataandtheirinsetchaosareattributedtosurfacecollapseasaresultofsubsurfacevolatile (water)outburst(e.g.,Carr1996andreferencestherein,Rodriguezetal.2006).Thecauseofthe outburstinglikelyinvolvedpressurizationofgroundwaterbyagrowingcryosphere(Cliffordand Parker2001).Cryospheredisruptioncouldhavebeencausedbymagmaticintrusions(Leasket al.2006),cryospheremelting(McKenzieandNimmo1999),and/orbydissociationofCO 2iceor clathrate(Komatsuetal.2000).Inthefewinstancesofchaosonchannelfloors,outburstingmay havebeentriggeredbyflooderosionthatreducedtheoverburdenpressure(Coleman2005). Followingoutbreakofwaterfromapressurizedaquifer,lakesapparentlyformedinthese chasmataandthenoverflowed,asindicatedbytopographicrelationshipsamonginferred spillways,scabland,orotherfloodformedfeatures(seeColemanandBaker2008andreferences therein).Theinterpretationoflayereddepositswithinthechasmataaslacustrinesediments (Lucchittaetal.1992)wasanearlyindicationofthispossibility.Theoverflowfloodingmay havebeentriggeredbyfailureofdebrisoricebarriersbetweenchasmata,resultinginsudden influxesofwaterfromotherchasmatalakes(ColemanandBaker2008).However,other suggestedmechanismsforflooding,suchascatastrophicreleasefromextensivecaverns (Rodriguezetal.2005),donotrequiresurfacestorageofwater. Althoughsmaller,theHesperianagedchannelseastofVallesMarinerismayhavehada similarfloodgeneratingmechanism.Thesechannelslackchasmataattheiroriginsandsoare unlikelytohavehadlakesorothersurfacewatersources.However,varioussurfacefeatures suggestlateralsubsurfaceflowwaysfromadistalchasmatatochannelorigins,perhaps augmentedbygroundicemelting(Carr1995,Cabroletal.1997,Rodriguezetal.2003).The relativeelevationsofthesechannelsincomparisontothemassiveTharsisvolcanicedificewould haveallowedmagmaticrecyclingofgroundwater(cf.Gulick1998)tohavefedtheseinferred paleolakes(Colemanetal.2007). Thus,thesourceforMars’Hesperianagedfloodchannelswasamixtureofponded surfacewaterandpressurizedsubsurfacewater.Thecontributionfromboththesesourcesmay havegivenrisetotheselargestofMartianfloods. C. flooding from extensional fossae FourofMars’floodchannelsdatedtotheAmazonianepoch(3.0Gatopresent),with modelagesrangingfromearliestAmazoniantothelastfewMa.Widthanddepthdimensions roughlyanorderofmagnitudesmallerthanthoseofMars’Hesperianaged,circumChryse channels(Burretal.2008). Thesechannelsoriginateatfossae(e.g,Figure3),definedaslong,narrowdepressions (see http://planetarynames.wr.usgs.gov/jsp/append5.jsp ).Thefossaehavevariedmorphologies, suggestingmultiplepossiblemechanismsforfloodwaterrelease.Someofthefossaehave grabenmorphology,whichisinterpretedtoreflectsubsurfacedikes(WilsonandHead2002, Headetal.2003,Ghatanetal.2005,Leasketal.2007).Inthesecases,thefloodwaterrelease mechanismisinferredtohavebeencrackingbythedikeofaconfiningcryosphereandreleaseof pressurizedgroundwater.Thewestwardmigrationthroughtimeofbothvolcanicandaqueous floodingfromtheFossaeisconsistentwithavolcanictriggeringmechanism(seeBurr etal.2008andreferencestherein). Alternativelyoradditionally,fossaemaybetheresultamagmaticextensionaltectonics. BasedoninferredhydrologicpropertiesoftheMartiancrust(HannaandPhillips2005), modelingshowsthatextensionalstressreliefcanproducesufficientexcessporepressuresto drivecatastrophicreleaseofgroundwater(HannaandPhillips2005).Thismechanismmayhave actedinconcertwithotherfactors,suchasincreasedelevationalheadintheformofperched aquifers(cf.TanakaandChapman1990)oraquiferpressurizationduetocryospheregrowth (CliffordandParker2001),butdoesnotrequirethem. Icerichgroundmayhavebeenmelted(Zimbelmanetal.1992),perhapsbythedike intrusion(cf.Headetal.2003),providingwaterandsedimentcontributiontotheflood discharge.However,meltingbydikeintrusionaloneisnotsufficienttoreleasefloodwateratthe volumetricratemodeledfromsurfacechannelsizeandslope(cf.McKenzieandNimmo1999), whichisoforder10 510 6m 3/sforchannelsthatheadatfossae(seediscussionandreferencesin Burretal.2008).Shorttermpondingmayhaveoccurredinthefossaebeforebreachingand/or overflowingthefossaerim(Ghatanetal.2005,Keszthelyietal.2007),contributingtohigh instantaneousdischarges. Giventhevarietyoffossaemorphologyattheoutflowchannels’origins,itislikelythat multiplefloodwatermechanismsgaverisetoMars’mostrecentfloods. Insummary,Mars’Noachianfloodsgeneratedbyoverflowfromimpactcraterorintercrater topographicbasins.Thesefloodswerethelowestindischargeandapparentlythefewestin number,althoughcontinualimprovementsindatamaymodifythatperception(e.g.,Mangoldet al.inrevision).FloodingduringtheHesperianwasthemostvoluminousandlikelyinvolved bothsurfaceandsubsurfacewatersources,whichlikelyexplainsthemaximaldischargeduring thistime.Amazonianagedfloodingfromfossaewasfedbysubsurfacesources.Megaflooding onMarsmaybesummarizedvisuallywithFigure4. Forcomparisonbetweenthetwoplanets,Mars’Noachianbasinoverflowflooding,as wellasputativechasmatalakeoverflows,issimilartobasinbreachfloodingonEarth.Ason Earth,thisrequiresaclimatethatgeneratesprecipitation.Hypothesizedmechanismsthatinvoke apressurizedaquiferaredissimilartoanyterrestrialmechanisms.However,triggeringdueto volcanoiceinteractionsissimilarinconcepttoterrestrialfloodsproducedbyvolcanicevents, althoughdifferentincontext(i.e.,subsurfaceversussurface). 4. Flooding on Titan? FloodingonTitanoccurswithdifferentmaterialsandconditionsthanonEarthand Mars.FloodingonEarthandMarsentailswaterflowandthesedimentissilicatematerial. However,modelsofTitanrelegateanysilicatematerialtoitscore(Tobieetal.2006).Wateron TitanisinthesolidphaseandlargelycomprisesTitan’scrust(Griffithetal.2003,Lorenzand Lunine2005).Thus,givensufficienterosiononTitan(LorenzandLunine1996),fluvial sedimentislikelycomposedofwatericegrains.Analternativeoradditionalsourceoffluvial sedimentisorganicmaterialderivedfromtheatmospherethroughphotochemicalreactionsof hydrocarbons(Waiteetal.2007andreferencestherein).AtTitan’ssurfacetemperature(~94K) andpressure(~1.44bar),liquidflowwouldentailhydrocarbons,likelyamixtureofmethaneand nitrogen(Lorenzetal.2003,LorenzandLunine2005).Despitethesedifferencesbetween materialsonTitan,Earth,andMars,however,theoreticalmodelingusingthevaluesinTable1 showsthatsedimenttransportparametersaresimilaronthethreebodies(Burretal.2006). Fluvialerosionalprocessesmayalsotobesimilar(Collins2005). ImagesfrommultipleinstrumentsbothontheCassinispacecraft(Porcoetal.2005, Elachietal.2005,Tomaskoetal.2005,Barnesetal.2007)andontheHuygensprobe(Tomasko etal.2005)showelongate,sinuousfeaturesinferredtobefluvialchannels(Figure5),although theymaymorelikelybefluvialvalleys(Perronetal.2006,Burr2007).Someofthesefeatures areafewhundredmetersinwidth,andanempiricalrelationshipbetweendischargeandwidth scaledforTitangravitysuggeststhatthesefeatures,iftruechannels,mayhavetransportedof order10 3m 3/sofmaterial(Jaumannetal.2007),similartolargeriversystemsonEarth. OfinteresthereiswhetherthesefluvialchannelsonTitanshowevidencefor paleoflooding.Someofthesefeatureshaveananastomosingappearanceinplanview,similarto thatofterrestrialdesertfloodchannelsproducedbymonsoonalrains(Lorenzetal.2008).Titan ishypothesizedtohavea‘methanemonsoon’(LorenzandMitton2002)onthebasisoftheory andobservations(Lorenzetal.2005).However,atpresent,rainisapparentlyfallingslowlyand continuouslyonTitan(Tokanoetal.2006,Ádámkovicsetal.2007).Thus,iftheanastomosing featuresareindeedfloodchannels,theymayindicateapreviousepochofdifferentclimatic conditions(LunineandAtreya2008). AglacialfloodmechanismisunlikelyonTitan,giventhetriplepointofhydrocarbon(see LorenzandLunine2005).However,imagesandspectraindicatetheoccurrenceof cryovolcanismonTitan(Sotinetal.2005,Lopesetal.2007).Byanalogywithvolcanismon Earth,Titan’scryovolocanismmayprovidethegeologiccontextfordebrisdamfloods;calderas largeenoughtogeneratefloodshavenotyetbeeninferredfromCassiniHuygensdatapublished todate,butmaybealsopossible.TheimpactcraterpopulationonTitanissparse(Lorenzetal. 2007a),butexamplesofpossibleimpactcratersshowelongatesinuousfeaturesontheirflanks. Thesefeaturesmaybeeitherlavachannelsorfluvialchannels(Lopesetal.2007).Iffluvial channels,theymayindicatefloodsfromcratersanalogousinmechanismtobasinbreachfloods thatoccurfromoverflowofmartianimpactcraterbasins.Titantopographyismutedrelativeto EarthorMars(Lorenzetal.2007b),sotopographicbasinbreachfloodingmaybelesslikely. AcomparisonoffloodingonEarth,Mars,andTitanissummarizedinTable2.Thelargest floodsonEarthandonMarsareproducedinanatmosphericvolatilecycleinwhichthevolatile caneasilyassumethesolidphase.OnEarth,thissolidphaseisasurficialphenomenon,whereas onMarsitisapparentlyasubsurfacephenomenon.OnTitan,thetemperatureandpressure conditionsrendersuchcatastrophicpaleofloodsunlikelybecausethevolatileisunlikelyto assumethesolidphase.However,theleastimportantmechanismforgeneratingfloodsonEarth andNoachianageMars,namelyprecipitation,islikelythemostimportantfloodgenerating mechanismonTitan.WhereasonEarthandMars,thismechanismgeneratedbasinoverflow floods,onTitan,heavyprecipitationappearsmorelikelyto(have)cause(d)floodsdirectly. CatastrophicfloodingchangedtheclimateonEarthandMars.Continuedinvestigations mayindicateiforhowfloodingchangedtheclimateonTitan. TABLE1:SomeparametersofinterestforEarth,Mars,andTitan. Parameter Earth Mars Titan Surfacegravity(m/s 2) 9.81 3.71 1.35 Surfacetemperature(K) 287 210 94 Surfacepressure(bars) 1.01 0.007 1.44 3 Fluvialliquid,density(kg /m ), Water,1000, Water,1000, CH 4/N 2,450, viscosity(Pas) 1×10 −3 Pas 1×10 −3 Pas 2×10 −4Pas Fluvialsediment,density(kg /m3) Quartz,2650 Basalt,2900 Waterice,992 Organics,1500 Atmosphericcomposition ~79%N 2,20%O 2 ~95%CO 2,2.7%N 2 ~95%N 2,~5%CH 4 TitanfluiddensityandviscosityvaluesfromLorenzetal.(2003);organicdensityfromKhareet al.(1994),butlowervaluesarepossible. Table2:summaryofcomparisonamongfloodgeneratingmechanismsonEarth,Mars,and Titan.

Cause: Earth Mars Titan glaciation mostsignificant possible,butevidence unlikely,given directcause notobserved materials,surface conditionsonTitan volcanism/ significantdirect Hesperianchaosterrain possible,since geothermal cause,most floods,Amazonian evidencefor heatflow importantindirect fissurefloods cryovolcanism cause (alternative=tectonism) observed damfailure importantindirect Noachianbasin damsofcryovolc. cause(post overflowfloods, materialpossible; glaciation);icejams Hesperianchasmata morainaldams floods unlikely precipitation monsoonimportant Noachianbasin ‘methanemonsoon’ intropics,snowmelt overflowfloods mostsignificant incontinentalinlands causeonTitan? FIGURES Figure1:Obliqueaerialphotoof1996jökulhlaupatSkeiðarársandur,Iceland,Nov1996.Flow fromVatnajökullglacieristowardtheviewer;twolanebridgeinphotocentersuggestsscale. (PhotobyMagnusTumiGuðmundssonandFinnurPaulson)

Figure2:TopographyshowingthewesternmostcircumChrysechannels.Blackboxshows locationofblackandwhitemosaic;annotatedlengthofVallesMarinerissuggestsscale.Black andwhiteimageisamosaicofdayinfraredimagesshowinganexampleofchaosterrainlocated inEos(imagecenter;chaosalsovisibletotherightandlowerleft).(Topographycredit: MOLAteam.Mosaiccredit:THEMISteam/ASU.)

Figure3:TopographyofMangalaValles.Channeloriginatesatthenotchinthenorthernsideof thefissure(belowlowestarrow)andstretchesnorthward(notestreamlinedforminimagecenter belowmiddleblackarrow),beforedivergingintotwochannels.Channelis~550kmlongfrom fossaetodivergence. Figure4:SchematicplotshowingrelativefrequencyoffloodingthroughMars’history.

Figure5:ImagemosaicfromtheDescentImager/SpectralRadiometerontheHuygensprobe, showinginferredfluvialchannelsandadrylakebedshoreline.Theimageis~12kmwide.The arcinthelowerrightisanartificialmarking.(ImageCredit:ESA/NASA/JPL/Universityof Arizona).

REFERENCES Ádámkovics,M.,Wong,M.H.,Laver,C.,dePater,I.,2007.Widespreadmorningdrizzleon Titan. Science 318,962965, Baker,V.R.,1978.TheSpokaneFloodControversy.In:Baker,V.R.,Nummedal,D.(Eds.),The ChanneledScabland.NASA,Washington,D.C.,pp.315. Baker,V.R.,1982.TheChannelsofMars.Austin:UniversityofTexasPress. Baker,V.R.,1983.LatePleistocenefluvialsystems.In The Late Pleistocene ,ed.S.C. ,Volume1of Late-Quaternary Environments of the United States ,ed.H.E. ,Jr.,Minneapolis,MN:UniversityofMinnesotaPress,pp.115129. Baker,V.R.,1996.Megafloodsandglaciation.In:Martini,I.P.(Ed.),LateGlacialand PostglacialEnvironmentalChanges.OxfordUniversityPress,pp.98108. Baker,V.R.,1998.Catastrophismanduniformitarianism:logicalrootsandcurrentrelevance.In: Blundell,D.J.,Scott,A.C.(Eds.),:thePastistheKeytothePresent.GeologicalSocietyof London,Spec.Publication143,GeologicalSocietyofLondon,Bath,pp.171182. Baker,V.R.,2008.ChanneledScablandmorphology.In:Burr,D.M.,Baker,V.R.,Carling,P.A. (Eds),MegafloodingonEarthandMars.CambridgeUniversityPress. Baker,V.R.,Benito,G.,Rudoy,A.N.,1993.PaleohydrologyofLatePleistocene superflooding,AltayMountains,Siberia. Science , 259 ,348350. Barnes,J.W.,Radebaugh,J.,Brown,R.H.,Wall,S.,Soderblom,L.,Lunine,J.,Burr,D., Sotin,C.,LeMouélic,S.,Rodriguez,S.,Buratti,B.J.,,R.,Baines,K.H.,Jaumann,R., Nicholson,P.D.,Kirk,R.L.,Lopes,R.,Lorenz,R.D.,Mitchell,K.,Wood,C.A,,2007.Near infraredspectralmappingofTitan'smountainsandchannels. J. Geophys. Res. 112,E11006, 10.1029/2007JE002932. Björnsson,H.,2008.JökulhlaupsinIceland:sources,releaseanddrainage.In:Burr,D.M., Baker,V.R.,Carling,P.A.(Eds),MegafloodingonEarthandMars.CambridgeUniversityPress. Burr.,D.M.,2007.FluvialflowonTitan:contextforgeomorphicinterpretation. Outer Solar System Satellites Workshop ,Boulder,CO,Aug1315(Abstract6088). Burr,D.M.,Emery,J.P.,Lorenz,R.D.,Collins,G.C.,Carling,P.A.,2006.Sedimenttransportby liquidoverlandflow:applicationtoTitan. Icarus 181, 235242, doi:10.1016/j.icarus.2005.11.012 Burr,D.M.,Wilson,L.,Bargery,A.S.,2008.Floodsfromfossae:areviewofAmazonianaged extensionaltectonicmegafloodchannelsonMars.In:Burr,D.M.,Baker,V.R.,Carling,P.A. (Eds),MegafloodingonEarthandMars.CambridgeUniversityPress. Cabrol,N.A.,Grin,E.A.,Dawidowicz,G.,1997.Amodelofoutflowgenerationby hydrothermalunderpressuredrainageinvolcanotectonicenvironment,ShalbatanaVallis(Mars). Icarus , 125, 455464. Carling,P.A.,Kirkbride,A.D.,Parnachov,S.,Borodavko,P.S.,Berger,G.W.,2002.Late QuaternarycatastrophicfloodingintheAltainMountainsofsouthcentralSiberia:asynoptic overviewandanintroductiontoflooddepositsedimentology.In:Martini,I.P.,Baker,V.R.,and Garzón,G.(Eds.),FloodandMegafloodProcessesandDeposits:RecentandAncientExamples. Spec.PublsintAss.Sediment.32,pp.1735. Carr,M.H.1996. .OxfordUniversityPress,NewYork. Carrivick,J.L.,2005.Characteristicsandimpactsofjökulhlaups(glacialoutburstfloods)from Kverkfjöll,Iceland.KeeleUniversityunpublishedPhDthesis. Coleman,N.M.,Dinwiddie,C.L.,Casteel,K.,2007.HighoutflowchannelsonMarsindicate Hesperianrechargeatlowlatitudes. Icarus , 189 ,doi:10.1016/j.icarus.2007.01.020,344–361. Coleman,N.M.,Baker,V.R.,2008.Surfacemorphologyandoriginofoutflowchannelsinthe VallesMarinerisregion.In:Burr,D.M.,Baker,V.R.,Carling,P.A.(Eds),Megafloodingon EarthandMars.CambridgeUniversityPress. Collins,G.C.,2005.RelativeratesoffluvialbedrockincisiononTitanandEarth. Geophys. Res. Lett. 32 ,L22202,doi:10.1029/2005GL024551. Conaway,J.S.,1999.HydrogeologyandpaleohydrologyoftheWilliamsonRiverbasin, KlamathCounty,Oregon.UnpublishedM.S.thesis,PortlandStateUniversity,Portland, Oregon. Currey,D.R.,1990.Quaternarypalaeolakesintheevolutionofsemidesertbasins,with specialemphasisonLakeBonnevilleandtheGreatBasin,U.S.A. Palaeogeography, Palaeoclimatology, and Palaeoecology ,76,189214. Davis,W.M.,1926.Thevalueofoutrageousgeologicalhypotheses. Science 63,no.1636,463 468. Elachi.C.and34coauthors,2005.CassiniRadarViewstheSurfaceofTitan. Science 308 ,970 974. Fenton,C.R.,Webb,R.H.,Cerling,T.E.,2006.PeakdischargeofaPleistocenelavadam outburstfloodinGrandCanyon,Arizona,USA.QuaternaryResearch,65(2).324335. Ghatan,G.J.,Head,J.W.,Wilson,L.,2005.MangalaValles,Mars:assessmentofearlystagesof floodinganddownstreamfloodevolution.EarthMoonPlanets,96,(12),157,doi: 10.1007/s110380059009y. Griffith,C.A.,Owen,T.,Geballe,T.R.,Rayner,J.,Rannou,P.,2003.Evidenceforexposureof watericeonTitan’ssurface.Science300,628–630. Grosswald,M.G.,1998.NewapproachtotheiceagepaleohydrologyofnorthernEurasia.In: Benito,G.,Baker,V.R.,Gregory,K.J.(Eds.), Palaeohydrology and Environmental Change , Wiley,Chichester,pp.199214. Gulick,V.C.,1998.MagmaticintrusionsandahydrothermaloriginforfluvialvalleysonMars. J. Geophys. Res. 103,19,365–19,387. Guðmundsson,MT.,Sigmundsson,F.,Björnsson,H.1997.Icevolcanointeractionofthe1996 Gjálpsubglacialeruption,Vatnajökull,Iceland. Nature, 389 ,954957. Hartmann,W.K.,G.Neukum,2001.CrateringchronologyandevolutionofMars.In ChronologyandEvolutionofMars,(eds.,R.Kallenbach,J.Geiss,W.K.Hartmann),SpaceSci. Rev.,96,165–194. Hanna,J.C.,Phillips,R.J.,2005.HydrologicalmodelingoftheMartiancrustwithapplicationto thepressurizationofaquifers, J. Geophys. Res., 110 ,E01004,doi:10.1029/2004JE002330. Hanna,J.C.,Phillips,R.J.,2006.TectonicpressurizationofaquifersintheformationofMangala andAthabascaValles,Mars, J. Geophys. Res. ,111,E03003,doi:10.1029/2005JE002546. Head,J.W.III,Wilson,L.,Mitchell,K.L.,2003.Generationofrecentmassivewaterfloodsat CerberusFossae,Marsbydikeemplacement,cryosphericcracking,andconfinedaquifer groundwaterrelease. Geophys. Res. Lett. 30(11),1577,doi:10.1029/2003GL0117135. Herget,J.,2005.ReconstructionofPleistoceneicedammedlakeoutburstfloodsinthe AltaiMountains,Siberia. Geological Society of America Special Paper 386 .Geological SocietyofAmerica. House,P.K.,Pearthree,P.A.,Howard,K.A.,Bell,J.W.,Perkins,M.E.,Faulds,J.E., Brock,A.L.,2005.BirthofthelowerColoradoRiver—Stratigraphicandgeomorphic evidenceforitsinceptionneartheconjunctionofNevada,Arizona,andCalifornia.In Interior Western United States: Geological Society of America Field Guide 6 ,ed.J. PedersonandC.M.Dehler.GeologicalSocietyofAmerica,pp.358387. Irwin,R.P.,III,Maxwell,T.A.,Howard,A.D.,Craddock,R.A.,Leverington,D.W.,2002.A largepaleolakebasinattheheadofMa’adimVallis,Mars, Science , 296 ,2209–2212. Irwin,R.P.,III,Howard,A.D.,Maxwell,T.A.,2004.GeomorphologyofMa'adimVallis,Mars, andassociatedpaleolakebasins, J. Geophys. Res. , 109 ,E12009,doi:10.1029/2004JE002287. Irwin,R.P.III,Grant,J.A.,2008.LargebasinoverflowfloodsonMars.In:Burr,D.M.,Baker, V.R.,Carling,P.A.(Eds),MegafloodingonEarthandMars.CambridgeUniversityPress. Jaumann,R.,Brown,R.H.,Stephan,K.,Soderblom,L.A.,Sotin,C.,LeMouélic,S.,Rodriguez, S.,Clark,R.N.,Barnes,J.,Buratti,B.J.,McCord,T.B.,Baines,K.H.,Cruikshank,D.P.,Griffith, C.A.,Nicholson,P.D.,Wagner,R.,2007.SurfaceerosionofTitan. Lunar Planet Sci. XXXVIII (abstract2100). Keszthelyi,L.,Denlinger,R.P.,O’Connell,D.R.H.,Burr,D.M.,2007.Initialinsightsfrom2.5D hydraulicmodelingoffloodsinAthabascaValles,Mars. Geophys. Res. Lett. 34,L21206, doi:10.1029/2007GL031776. Kochel,R.C.,Baker,V.R.,1982.Paleofloodhydrology. Science 215,no.4531,353361. KomatsuG,KargelJ.,BakerV.,StromR.,OriG.,MosanginiC.,TanakaK.,2000.Achaotic terrainformationhypothesis:explosiveoutgasandoutflowbydissociationofclathrateonMars. Lunar and Planetary Science Conference [CDROM], XXXI ,Abstract1434. Leask,H.J.,Wilson,L.,Mitchell,K.L.,2006.FormationofAromatumChaos,Mars: Morphologicaldevelopmentasaresultofvolcanoiceinteractions. J. Geophys. Res. 111, E08071. Lopes,R.M.and43coauthors,2007.CryovolcanicfeaturesonTitan’ssurfaceasrevealedby theCassiniTitanRadarMapper. Icarus 186,395412,doi:10.1016/j.icarus.2006.09.006. Lorenz,R.D.,Lunine,J.I.,1996.ErosiononTitan:Pastandpresent.Icarus122,79–91. Lorenz,R.D.,Mitton,J.,2002.LiftingTitan’sVeil. CambridgeUniversityPress,260pp. Lorenz,R.D.,Lunine,J.I.,2005.Titan’ssurfacebeforeCassini.Planet.SpaceSci.53,557–576. Lorenz,R.D.,Kraal,E.,Asphaug,E.,Thomson,R.E.,2003.TheseasofTitan.Eos84(14),125, 131–132.

Lorenz,R.D.,Griffith,C.A.,Lunine,J.I.,McKay,C.P.,Renno,N.O.,2005.Convectiveplumes andthescarcityofTitan’sclouds. Geophys. Res. Lett. 32,L01201.

Lorenz,R.D.and39coauthors,2006.TheSandSeasofTitan:CassiniRADARObservationsof LongitudinalDunes. Science 312,5774,724727. Lorenz,R.D.,Wood,C.A.,Lunine,J.I.,Wall,S.D.,Lopes,R.M.,Mitchell,K.L., Paganelli,F.,Anderson,Y.Z.,Wye,L.,Tsai,C.,Zebker,H.,Stofan,E.R.,2007a.Titan'syoung surface:InitialimpactcratersurveybyCassiniRADARandmodelcomparison. Geophys. Res. Lett. Volume34,Issue7,CiteIDL07204,doi:10.1029/2006GL028971. Lorenz,R.D.and16coauthors,2007b.Titan’sshape,radius,andlandscapefromCassiniRadar altimetry. Lunar Planet. Sci. XXXVIII ,abstract1329. Lorenz,R.D.and13coauthors,2008.FluvialchannelsonTitan:initialCassiniRadar observations. Planet. Space Sci. inrevision. Lucchitta,B.K.,McEwen,A.S.,Clow,G.D.,Geissler,P.E.,Singer,R.B.,Schultz,R.A., Squyres,S.W.,1992.ThecanyonsystemonMars.In Mars (Kieffer,H.H.,etal.,eds) UniversityofArizonaPress,Tucson,pp.453492. Lunineand Malde,H.E.(1968).ThecatastrophiclatePleistoceneBonnevilleFloodintheSnake RiverPlain,Idaho,U.S.GeologicalSurveyProfessionalPaper596.U.S.Geological Survey. Manville,V.,White,J.D.L.,Houghton,B.F.,Wilson,C.J.N.,1999.Paleohydrologyand sedimentologyofapost1.8kmbreakoutfloodfromintracalderaLakeTaupo,NorthIsland,New Zealand. Geol. Soc. Am. Bull. 111(10),14351447. Manville,V.,Hodgson,K.A.,Nairn,I.A.,2007.Areviewofbreakoutfloodsfrom volcanogeniclakesinNewZealand. New Zealand Journal of Geology & Geophysics, 50,131 150. MarsChannelWorkingGroup,1983.ChannelsandvalleysonMars. Geol. Soc. Am. Bull. 94, 10351054. Matson,D.L.,Spilker,L.J.,Lebreton,L.J.,2002.TheCassiniHuygensmissiontothesaturnian system. Space Sci. Rev. 104,158. McKenzie,D.,Nimmo,F.,1999.Thegenerationofmartianfloodsbythemeltingofgroundice abovedykes. Nature 397(6716),231233. Montgomery,D.R.,Hallet,B.,Yuping,L.,Finnegan,N.,Anders,A.,Gillespie,A.,Greenberg, H.M.,2004.EvidenceforHolocenemegafloodsdowntheTsangpoRivergorge,southeastern Tibet. Quaternary Research 62,201207. O’Connor,J.E.,1993.Hydrology,hydraulics,andgeomorphologyoftheBonneville Flood. Geological Society of America Special Paper 274 .GeologicalSocietyofAmerica. O’Connor,J.E.,Costa,J.E.,2004.Theworld’slargesfloods,pastandpresent–Theircausesand magnitudes.U.S.GeologicalSurveyCircular1254,13p. O’Connor,J.E.,Beebee,R.A.,2008.Floodsfromnaturalrockmaterialdams.In: Megaflooding on Earth and Mars ,D.M.Burr,V.R.BakerandP.A.Carling,eds.CambridgeUniversityPress. Othberg,K.L.,1994. Geology and Geomorphology of the Boise Valley and Adjoining Areas, Western Snake River Plain, Idaho. Bulletin 29, Idaho Geological Survey . Moscow,ID:IdahoGeologicalSurveyPress. Perron,J.T.,Lamb,M.P.,Koven,C.D.,Fung,I.Y.,Yager,E.,Adamkovics,M.,2006.Valley formationandmethaneprecipitationratesonTitan, J. Geophys. Res. ,111,E11001, doi:10.1029/2005JE02602. Phillips,R.J.,Zuber,M.T.,Solomon,S.C.,Golombek,M.P.,Jakosky,B.M.,Banerdt,W.B., Williams,R.M.E.,Hynek,B.M.,Aharonson,O.,HauckII,S.A.,2001.Ancientgeodynamicsand globalscalehydrologyonMars.Science , 291 ,2587–2591. Porco,C.C.and25coauthors.2005.ImagingofTitanfromtheCassinispacecraft. Nature 434, 159168. Reheis,M.C.SarnaWojcicki,A.M.,,R.L.,Repenning,C.A.andMifflin,M.D., 2002.PliocenetoMiddlePleistocenelakesinthewesternGreatBasin:agesand connections.In Great Basin Aquatic Systems History ,ed.R.Hershler,D.B.Madsenand D.R.Currey.WashingtonD.C.:SmithsonianInstitutionPress,pp.53108. Rodier,J.A.,Roche,M.,1984.Worldcatalogueofmaximumobservedfloods. International Association of Hydrologic Sciences Publication143,354p. Rodriguez,J.A.,Sasaki,S.,,H.,2003).Natureandhydrologicalrelevanceofthe Shalbatanacomplexundergroundcavernoussystem. Geophysical Research Letters , 30 ,1304, doi:10.1029/2002GL016547. Rodriguez,J.A.,Sasaki,S.,Kuzmin,R.O.,Dohm,J.M.,Tanaka,K.L.,Miyamoto,H.,Kurita, K.,Komatsu,G.,Fairén,A.G.,andFerris,J.C.,2005.Outflowchannelsources,reactivation, andchaosformation,XantheTerra,Mars. Icarus , 175 ,3657. Rodriguez,J.A.P.,Kargel,J.,Crown,D.A.,Bleamaster,L.F.,III,Tanaka,K.L.,Baker,V., Miyamoto,H.,Dohm,J.M.,Sasaki,S.,Komatsu,G.,2006.Headwardgrowthofchasmataby volatileoutbursts,collapse,anddrainage:EvidencefromGangeschaos,Mars,Geophys.Res. Lett.,33,L18203,doi:10.1029/2006GL026275. Rudoy,A.,1998.MountainicedammedlakesofsouthernSiberianandtheirinfluenceonthe developmentandregimeoftheintracontinentalrunoffsystemsofNorthAsiainthelate Pleistocene.Benito,G.,Baker,V.R.,Gregory,K.J.(Eds.),Palaeohydrology and Environmental Change ,Wiley,Chichester,pp.215234. Saunders,S.R.,1979. Geologic map of the Margaritifer Sinus Quadrangle of Mars :USGSMap I1144,MC19. Smith,D.G.,Fisher,T.G.,1993.GlacialLakeAgassiz–thenorthwestoutletandpaleoflood. Geology 21(1),912. Smith,D.E.,Zuber,M.T.,Frey,H.V.,Garvin,J.B.,Head,J.W.,Muhleman,D.O.,Pettengill, G.,H.,Phillips,R.J.,Solomon,S.C.,Zwally,H.J.,Banerdt,W.B.,Duxbury,T.C.,1998. TopographyofthenorthernhemisphereofMarsfromtheMarsOrbiterLaserAltimeter. Science 279,1686–1692. Sotin,C.and25coauthors,2005.Releaseofvolatilesfromapossiblecryovolcanofromnear infraredimagingofTitan. Nature 435 ,786789. Starkel,L.,1995.Introductiontoglobalpalaeohydrologicalchanges.InGregory,K.J.,Starkel, J.,Baker,V.R.(Eds.), Global Contitnental Palaeohydrology ,Wiley,Chichester,120. Stofan,E.R.and37coauthors,2007.ThelakesofTitan. Nature 445(7123),6164. Tanaka, K. L. 1986. The stratigraphy of Mars. J. Geophys. Res. 91, 139–158. Tanaka,K.L.,Chapman,M.G.,1990.Therelationofcatastrophicfloodingof MangalaValles,Mars,tofaultingofMemnoniaFossaeandTharsisvolcanism. J. Geophys. Res. 95,14,315–14,323. Tobie,G.,Lunine,J.I.,Sotin,C.,2006.Episodicoutgassingastheoriginofatmospheric methaneonTitan. Nature 440,6164.doi:10.1038/nature04497. Tokano,T.,McKay,C.P.,Neubauer,F.M.,Atreya,S.K.,Ferri,F.,Fulchignoni,M., Niemann,H.B.,2006.MethanedrizzleonTitan, Nature 442,7101,432435. doi:10.1038/nature04948. Tomasko,M.G.,and39colleagues(2005).Rain,winds,andhazeduringtheHuygensprobe’s descenttoTitan’ssurface. Nature 438 ,765–778. Tómasson,H.1996.ThejökulhlaupfromKatlain1918. Annals of Glaciology 22 ,249254. Waite,J.H.,Young,D.T.,Cravens,T.E.,Coates,A.J.,Crary,F.J.,Magee,B.,Westlake,J.,2007. TheProcessofTholinFormationinTitan’sUpperAtmosphere. Science 316(5826),870875, doi:10.1126/science.1139727. Waitt,R.B.,2002.GreatHolocenefloodsalongJökulsááFjöllum,northIceland.In:Martini, I.P.,Baker,V.R.,andGarzón,G.(Eds.),FloodandMegafloodProcessesandDeposits:Recent andAncientExamples.Spec.PublsintAss.Sediment.32,pp.3751. Waythomas,C.F.,Walder,J.S.,McGimsey,R.G.,Neal,C.A.,1996.Acatastrophicfloodcaused bydrainageofacalderalakeatAniakchakVolcano,Alaska,andimplicationsofvolcanic hazardsassessment. Geol. Soc. Am. Bull. 108(7),861871. Wilson,L.,Ghatan,G.J.,Head,J.W.,Mitchell,K.L.,2004.Marsoutflowchannels:A reappraisaloftheestimationofwaterflowvelocitiesfromwaterdepths,regionalslopes,and channelfloorproperties. Journal of Geophysical Research , 109 ,E09003, doi:10.1029/2004JE002281. Wood,S.H.,Clemens,D.M.,2002.Geologicandtectonichistoryofthewestern SnakeRiverPlain,IdahoandOregon.In Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province. Idaho Geological Survey Bulletin 30 ,ed.B.Bonnichsen, C.M.WhiteandM.McCurry.Moscow,ID:IdahoGeologicalSurveyPress,pp.69103.