Germane Facts About Germanium Sesquioxide: I. Chemistry and Anticancer Properties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Photochemistry of Some Acyclic Ketones Containing a Silicon Or a Tin Atom
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 1965 THE PHOTOCHEMISTRY OF SOME ACYCLIC KETONES CONTAINING A SILICON OR A TIN ATOM PERRY LESTER MAXFIELD Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation MAXFIELD, PERRY LESTER, "THE PHOTOCHEMISTRY OF SOME ACYCLIC KETONES CONTAINING A SILICON OR A TIN ATOM" (1965). Doctoral Dissertations. 816. https://scholars.unh.edu/dissertation/816 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 6 6-5974 MAXFIELD, Perry Lester, 1933- THE PHOTOCHEMISTRY OF SOME ACYCLIC KETONES CONTAINING A SILICON OR A TIN ATOM. University of New Hampshire, Ph.D., 1965 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan THE PHOTOCHEMISTRY OF SOME ACYCLIC KETONES CONTAINING A SILICON OR A TIN ATOM BY PERRY LESTER MAXFIELD B. S., Brigham Young University, 1961 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Chemistry August, 1964 This thesis has been examined and approved. Date ACKNOWLEDGMENT I wish to express my gratitude to the Department of Chemistry of the University of New Hampshire for the help and guidance which I have received during my stay here. Acknowledg ment is also due the United States Department of Health, Edu cation, and Welfare for a National Defense Education Fellow ship which has been so helpful in financing the three years of study. -
Kanker Begrijpen De Wijsheid Van Het Lichaam
TherapieWijzer Kanker begrijpen De wijsheid van het lichaam voeding beweging leefstijl bioactieve stoffen supplementen niet-toxische therapieën chemo & straling ondersteunen bijwerkingen beperken Hilde Maris Referenties 1. Hoe ontstaat kanker? Alzoubi K, Khabour O, Hussain N, et al. Evaluation of vita- cine. 6th edition. Hamilton (ON): BC Decker; 2003. min B12 effects on DNA damage induced by pioglitazone. Liu HK, Wang Q, Li Y, et al. Inhibitory effects of gamma- Mutat Res. 2012 Oct 9;748(1-2):48-51. tocotrienol on invasion and metastasis of human gastric Azqueta A, Collins AR. Carotenoids and DNA damage. adenocarcinoma SGC-7901 cells. J Nutr Biochem. 2010 Mutat Res. 2012 May 1;733(1-2):4-13. Mar;21(3):206-13. Barrett JC. Mechanisms of multistep carcinogenesis and Liu R, Fu A, Hoffman AE, et al. Melatonin enhances DNA carcinogen risk assessment. Environ Health Perspect. repair capacity possibly by affecting genes involved in 1993 Apr;100:9-20. DNA damage responsive pathways. BMC Cell Biol. 2013 Bhat FA, Sharmila G, Balakrishnan S, et al. Querce- Jan 7;14:1. tin reverses EGF-induced epithelial to mesenchymal Lotan R1. Retinoids as modulators of tumor cells invasion transition and invasiveness in prostate cancer (PC-3) cell and metastasis. Semin Cancer Biol. 1991 Jun;2(3):197- line via EGFR/PI3K/Akt pathway. J Nutr Biochem. 2014 208. Nov;25(11):1132-9. Lyons NM, O’Brien NM. Modulatory effects of an algal Cash SW, Beresford SA, Vaughan TL, et al. Recent physi- extract containing astaxanthin on UVA-irradiated cells in cal activity in relation to DNA damage and repair using the culture. -
Organometallic Compounds Suitable for Use in Vapor Deposition Processes
Europäisches Patentamt *EP001464724A2* (19) European Patent Office Office européen des brevets (11) EP 1 464 724 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C23C 16/22, C07F 7/30, 06.10.2004 Bulletin 2004/41 C07F 7/02 (21) Application number: 04251948.8 (22) Date of filing: 01.04.2004 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Shenai-Khatkhate, Deodatta Vinayak HU IE IT LI LU MC NL PL PT RO SE SI SK TR Danvers Massachusetts 01923 (US) Designated Extension States: • Power, Michael Brendan AL HR LT LV MK Newburyport Massachusetts 01950 (US) (30) Priority: 05.04.2003 US 460791 P (74) Representative: Kent, Venetia Katherine 22.10.2003 US 513476 P Rohm and Haas (UK) Ltd European Patent Department (71) Applicant: Rohm and Haas Electronic Materials, 28th. Floor, City Point L.L.C. One Ropemaker Street Marlborough, Massachusetts 01752 (US) London EC2Y 9HS (GB) (54) Organometallic compounds suitable for use in vapor deposition processes (57) Organometallic compounds suitable for use as metallic precursors are also provided. Such Group IV vapor phase deposition precursors for Group IV metal- metal-containing films are particularly useful in the man- containing films are provided. Methods of depositing ufacture of electronic devices. Group IV metal-containing films using certain organo- EP 1 464 724 A2 Printed by Jouve, 75001 PARIS (FR) EP 1 464 724 A2 Description Background of the Invention 5 [0001] The present invention relates generally to the field of organometallic compounds. -
Germane 99.99+%
GEG5001 - GERMANE 99.99+% GERMANE 99.99+% Safety Data Sheet GEG5001 Date of issue: 01/05/2015 Version: 1.0 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Substance Physical state : Gas Substance name : GERMANE 99.99+% Product code : GEG5001 Formula : GeH4 Synonyms : MONOGERMANE; GERMANIUM HYDRIDE; GERMANIUM TETRAHYDRIDE Chemical family : GERMANE 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (GHS-US) Flam. Gas 1 H220 Liquefied gas H280 Acute Tox. 2 (Inhalation:gas) H330 Eye Irrit. 2A H319 STOT SE 3 H335 Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS02 GHS04 GHS06 GHS07 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H220 - Extremely flammable gas H280 - Contains gas under pressure; may explode if heated H319 - Causes serious eye irritation H330 - Fatal if inhaled H335 - May cause respiratory irritation Precautionary statements (GHS-US) : P284 - [In case of inadequate ventilation] wear respiratory protection P280 - Wear protective gloves/protective clothing/eye protection/face protection P260 - Do not breathe gas P264 - Wash hands thoroughly after handling P310 - Immediately call a doctor P210 - Keep away from heat, open flames, sparks. -
Calculations
A University of Sussex DPhil thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details I. Group 14 Metal Alkoxides: Synthesis and Reactivity Studies II. Synthesis of Novel Planar Chiral Complexes Based on [2.2]Paracyclophane Lorenzo Ferro DPhil Chemistry University of Sussex May 2011 I hereby declare that this thesis has not been and will not be, submitted in whole or in part to another University for the award of any other degree. Signature________________________________________ UNIVERSITY OF SUSSEX LORENZO FERRO, DPHIL CHEMISTRY I. GROUP 14 METAL ALKOXIDES: SYNTHESIS AND REACTIVITY STUDIES II. SYNTHESIS OF NOVEL PLANAR CHIRAL COMPLEXES BASED ON [2.2]PARACYCLOPHANE ABSTRACT I. A series of group 14 β-diketiminate alkoxides (BDI)EOR (BDI = i i s t [CH{(CH3)CN-2,6- Pr2C6H3}2; E = Ge, Sn, Pb; R = Pr, Bu, Bu) was synthesised and characterised. The reactivity towards aliphatic and unsaturated electrophiles was investigated. For the tin and lead systems, an unexpected trend was observed. For instance, they do not or very sluggishly react with aliphatic electrophiles, but readily activate carbon dioxide. -
Germane Interim AEGL Document
1 2 3 4 ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) 5 FOR 6 GERMANE 7 (CAS Reg. No. 7782-65-2) 8 9 GeH4 10 11 12 13 14 15 16 17 INTERIM 18 19 GERMANE Interim: 09-2009/ Page 2 of 31 1 2 ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) 3 FOR 4 GERMANE 5 (CAS Reg. No. 7782-65-2) 6 7 8 9 10 INTERIM 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 GERMANE Interim: 09-2009/ Page 3 of 31 1 PREFACE 2 3 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 4 1972, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous 5 Substances (NAC/AEGL Committee) has been established to identify, review and interpret 6 relevant toxicologic and other scientific data and develop AEGLs for high priority, acutely toxic 7 chemicals. 8 9 AEGLs represent threshold exposure limits for the general public and are applicable to 10 emergency exposure periods ranging from 10 minutes to 8 hours. Three levels C AEGL-1, 11 AEGL-2 and AEGL-3 C are developed for each of five exposure periods (10 and 30 minutes, 1 12 hour, 4 hours, and 8 hours) and are distinguished by varying degrees of severity of toxic effects. 13 The three AEGLs are defined as follows: 14 15 AEGL-1 is the airborne concentration (expressed as parts per million or milligrams per 16 cubic meter [ppm or mg/m3]) of a substance above which it is predicted that the general 17 population, including susceptible individuals, could experience notable discomfort, irritation, or 18 certain asymptomatic, non-sensory effects. -
Digermane SDS 1
SAFETY DATA SHEET Prepared to U.S. OSHA, CMA, ANSI, Canadian WHMIS Standards, European Union CLP EC 1272/2008, REACH, and the Global Harmonization Standard 1. SECTION 1 – IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING CHEMICAL NAME; CLASS: DIGERMANE SYNONYMS: Digerman; λ2-germanylidenegermanium; Germanium Hexahydride; Germanium Hydride, Germanium (III) Hydride, Germanium Trihydride CHEMICAL FAMILY: Hydride FORMULA: Ge 2H6 Docu ment Numbe r: 80 019 PR ODUCT USE: Various MANU FA CTUR ED/SU PPL IED FOR: SUPPLIER/MANUFACTURER'S NAME: AIR LIQUIDE AMERICA ADDRESS : 2700 Post Oak Drive Hous ton , TX 7705 6-822 9 EM AIL ADD RES S FOR PRODUC T INF ORM ATION: webmas ter.us @airliqu ide.co m EMERGENCY PHONE: CHEMTREC: (U.S., Canada) 1-800-424-9300 (24 hrs) (International) +703-527-3887 (collec t-24 hrs) BUSINESS PHONE: General MSDS Information: 1-713/896-2896 (8 am to 5 pm U.S. Central Time) Fax on Demand: 1-800/231-1366 ALL WHMIS required information is included in appropriate sections based on the ANSI Z400.1-2004 format. This product has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR. The product is also classified per all applicable European Union CLP EC 1272/2008 and the Global Harmonization Standard. TSCA Status: This material is not included in the TSCA Inventory. In accordance with the conditions listed in 40 CFR 720.36 and 721.47, this product must be used only for research and development, pharmaceutical manufacture, or export. -
Summaries of FY 1977 Research in the Chemical Sciences
DOE/ER-0002 Summaries of FY 1977 Research in the Chemical Sciences February 1978 U.S. Department of Energy Office of Energy Research Division of Chemical Sciences DOE/ER-0002 UC -4 Summaries of FY 1977 Research in the Chemical Sciences February 1978 U.S. Department of Energy Office of Energy Research Division of Chemical Sciences Washington, D. C. 20545 FOREWORD In the Chemical Sciences basic energy research program, scientists at government, university and corporate laboratories conduct research on fundamental interactions, processes and techniques important to the production, use and conservation of energy. The goal is to provide, within the scientific disciplines encompassed by Chemical Sciences, the necessary base of scientific knowledge required to advance the nation's energy technology programs. The research covers a spectrum of scientific and engineering areas and is conducted generally by personnel trained in the disciplines of chemistry, analytical chemistry, chemical engineering, chemical physics, physical chemistry and physics. The research projects documented in this report were conducted under the aegis of the U.S. Energy Research and Development Administration (ERDA). They constituted the program of the Office of Chemical Sciences in the Division of Basic Energy Sciences. During FY 1977 a Department of Energy was proposed by the President and enacted by Congress. The new Department of Energy (DOE) came into existence on October 1, 1977. ERDA was incorporated into DOE along with other agencies and elements of the Federal Government. The Chemical Sciences basic energy research program now constitutes the program of the Division of Chemical Sciences in the Office of Basic Energy Sciences (BES) under the Director of the DOE Office of Energy Research. -
HIGH HAZARD GAS Review Date: 09/23/2019
University of Pittsburgh EH&S Guideline Number: 04-021 Safety Manual Subject: Effective Date: 04/19/2017 Page 1 of 9 HIGH HAZARD GAS Review Date: 09/23/2019 STORAGE AND USE OF HIGH HAZARD GAS 1. Definition of High Hazard (HH) Gases For these guidelines, any gas meeting one or more of the following definitions based on International Fire Code (IFC) and National Fire Protection Association (NFPA) standards: 1.1. Flammable gas – a material that is a gas at 68ºF (20ºC) or less at an absolute pressure of 14.7 psi (101.325 kPa) when in a mixture of 13% or less by volume with air, or that has a flammable range at an absolute pressure of 14.7 psi (101.325 kPa) with air of at least 12%, regardless of the lower limit 1.2. Pyrophoric gas – a gas with an autoignition temperature in air at or below 130ºF (54.4ºC) 1.3. Health Hazard 3 (HH3) gas – material that, under emergency conditions and according to the standards, can cause serious or permanent injury 1.4. Health Hazard 4 (HH4) gas – material that, under emergency conditions and according to the standards, can be lethal The storage and usage of a gas or gases meeting any of the above definitions must follow all applicable IFC and NFPA guidelines and the requirements outlined in this document. Consult EH&S for specific guidance on gas mixtures containing corrosive, flammable or poisonous gas components (ex. 1% carbon monoxide/nitrogen, 5% hydrogen sulfide/helium). 2. Notification Requirements Prior to Obtaining High Hazard Gases 2.1. -
Group Transfer Polymerization Catalyzed by Mercury Compounds
turopaiscnes Patentamt 1� European Patent Office © Publication number: 0 266 062 Office europeen des brevets A1 © EUROPEAN PATENT APPLICATION Q) number: 87308549.2 C08F Application © Int. CI.4: 4/42 , C08F 4/72 © Date of filing: 2&09.87 © Priority: 29.09.86 US 912118 © Applicant: E.I. DU PONT DE NEMOURS AND COMPANY ® Date of publication of application: 1007 Market Street 04.05.88 Bulletin 88/18 Wilmington Delaware 19898(US) © Designated Contracting States: © Inventor: Dicker, Ira Bernard AT BE CH DE ES FR GB GR IT LI LU NL SE 1016 Jeffrey Road Wilmington Delaware 19810(US) © Representative: Jones, Alan John et al CARPMAELS & RANSFORD 43 Bloomsbury Square London, WC1A 2RA(GB) & Group transfer polymerization catalyzed by mercury compounds. Mercury compounds which are useful as co-catalysts in Group Transfer Polymerization are disclosed. IN D a D a. JJ .erox Copy Centre 0 266 062 Group Transfer Polymerization Catalyzed by Mercury Compounds BACKGROUND OF THE INVENTION Field of the Invention 5 This invention relates to Group Transfer Polymerization of acrylates catalyzed by selected mercury compounds. 70 Background United States Patents 4,414,372; 4,417,034; 4,508,880; 4,524,196; 4,581,428; 4,588,795; 4,605,716; 4,656,233; and 4,681,918, and EP-A-0 145 263, EP-A-0 188 539, and EP-A-87305069.4, referred to hereinafter as "the aforesaid patents and patent applications", disclose processes for polymerizing an 75 acrylic or maleimide monomer to a "living" polymer in the presence of an initiator, which is a tetracoor- dinate organosilicon, organotin or organogermanium compound having at least one initiating site, and a co- catalyst which is a source of fluoride, bifluoride, cyanide or azide ions or a suitable Lewis acid, Lewis base or selection oxyanion. -
Catalyst for Group Transfer Polymerization
Europaisches Patentamt 19 European Patent Office Office europeen des brevets © Publication number: 0 407 414 B1 EUROPEAN PATENT SPECIFICATION @ Date of publication of patent specification © int. ci.5 : C08F 4/42, C08F 20/00, 27.01.93 Bulletin 93/04 C08F 22/40 (2j) Application number : 89903556.2 (22) Date of filing : 15.03.89 (86) International application number : PCT/US89/00972 @ International publication number : WO 89/09236 05.10.89 Gazette 89/24 (54) CATALYST FOR GROUP TRANSFER POLYMERIZATION. (30) Priority: 01.04.88 US 176808 (73) Proprietor : E.I. DU PONT DE NEMOURS AND COMPANY 1007 Market Street (43) Date of publication of application Wilmington Delaware 19898 (US) 16.01.91 Bulletin 91/03 (72) Inventor : DICKER, Ira, Bernard (45) Publication of the grant of the patent : 1016 Jeffrey Road 27.01.93 Bulletin 93/04 Wilmington, DE 19810 (US) @ Designated Contracting States : (74) Representative : Jones, Alan John et al BE DE FR GB IT NL CARPMAELS & RANSFORD 43 Bloomsbury Square London, WC1A 2RA (GB) © References cited : EP-A- 0 083 018 EP-A- 0 145 263 EP-A- 0 190 631 US-A- 4 581 428 US-A- 4 588 795 CO o Note : Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been LU filed until the opposition fee has been paid (Art. 99(1) European patent convention). -
Me2sno + 2Ho2cchr3chr2ger
Metal Based Drugs Vol. 8, No. 5, 2002 SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITY OF DIMETHYLTIN DICARBOXYLATES CONTAINING GERMANIUM M. A. Choudhary l, M. Mazhar.2, S. Ali2, X. Song3 and G. Eng3 Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad-13100 <[email protected]> Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan <Mazhar [email protected]> Department of Chemistry and Physics, University of the District of Columbia, WashingtoD.C., USA <[email protected]> Abstract A series of diorganotin dicarboxylates of the general formula (CH3)2Sn(OCOCHR3CHR2GeR1)2 where R (C6H5)3, (Jg-CH3C6H4)3, N(CHzCH20)3, R2 C6H5, H, CH3, p-CH3OC6H4, p-ClC6H4, p-CH3C6H4, R CH3 and H, have been synthesized by the reaction of dimethyltin oxide with germanium substituted propionic acid in 1:2 molar ratio in toluene. The H20 formed was removed azeotropically using a Dean and Stark apparatus. All the compounds have been characterized by IR, multinuclear (H, 3C, l9Sn) NMR, mass and MSssbauer spectroscopies. All compounds were found to have potential activity against bacteria. Introduction Organotin chemistry has been the subject of much interest in recent years. The importance of this area of main group organometallic chemistry is in part a result of their various industrial and agricultural applications. In addition, they have been reported as having potential antitumor activities. These are well cited in the literature [1-]. For example, organotin carboxylates have been reported by Gielen et. al to have promising activity against various antitumour cells [5]. Furthermore, Crowe et. al stated that the R2Sn2+ moiety is the active portion of the diorganotin, RSnXY, molecules.