Gao-20-257T, Navy Maintenance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Navy Columbia-Class Ballistic Missile Submarine Program
Navy Columbia (SSBN-826) Class Ballistic Missile Submarine Program: Background and Issues for Congress Updated September 14, 2021 Congressional Research Service https://crsreports.congress.gov R41129 Navy Columbia (SSBN-826) Class Ballistic Missile Submarine Program Summary The Navy’s Columbia (SSBN-826) class ballistic missile submarine (SSBN) program is a program to design and build a class of 12 new SSBNs to replace the Navy’s current force of 14 aging Ohio-class SSBNs. Since 2013, the Navy has consistently identified the Columbia-class program as the Navy’s top priority program. The Navy procured the first Columbia-class boat in FY2021 and wants to procure the second boat in the class in FY2024. The Navy’s proposed FY2022 budget requests $3,003.0 (i.e., $3.0 billion) in procurement funding for the first Columbia-class boat and $1,644.0 million (i.e., about $1.6 billion) in advance procurement (AP) funding for the second boat, for a combined FY2022 procurement and AP funding request of $4,647.0 million (i.e., about $4.6 billion). The Navy’s FY2022 budget submission estimates the procurement cost of the first Columbia- class boat at $15,030.5 million (i.e., about $15.0 billion) in then-year dollars, including $6,557.6 million (i.e., about $6.60 billion) in costs for plans, meaning (essentially) the detail design/nonrecurring engineering (DD/NRE) costs for the Columbia class. (It is a long-standing Navy budgetary practice to incorporate the DD/NRE costs for a new class of ship into the total procurement cost of the first ship in the class.) Excluding costs for plans, the estimated hands-on construction cost of the first ship is $8,473.0 million (i.e., about $8.5 billion). -
Fourth Class: English: Let's Go
Fourth Class: English: Let’s Go Story: Ship Shape B: What have you learned? 1. Dugout canoes are still used today in the Indian and Pacific Oceans as they are a simple yet functional design and cost effective to make. 2. The trireme had a sharp front bow that was used to ram enemy ships. 3. The sleek and graceful design of the Viking longship allowed the Vikings to travel great distances. They were the fastest boats of their time. 4. I think Lord Nelson’s ship has been preserved in dry dock as a memorial to him as he died on board this ship during the Battle of Trafalgar in 1805. 5. Air travel is much faster than sea travel and aircrafts can travel over both sea and land whereas water vessels can just travel over water. 6. The main ferry ports in Ireland are Rosslare Europort, Dublin Port, Port of Belfast, Port of Larne, Dun Laoghaire Harbour, and Port of Cork. 7. Container ships carry and deliver a vast array of goods and products to many countries around the world. 8. Aircraft carriers are so expensive to build because of their enormity – they require a huge amount of expensive materials and manpower to construct. 9. Not all modern ships use oil for fuel because oil is expensive and not environmentally friendly, so new ways of powering ships have been devised. 10. Luxury liners are so-called due to their luxurious amenities and facilities, often including restaurants, gymnasia, games rooms, libraries, and large ballrooms. C: True or False 1. -
Tradepoint Atlantic Welcomes BAE Systems “Titan” Dry Dock to Baltimore Ushers in New Era of Ship Maintenance and Repair at Sparrows Point
Tradepoint Atlantic Welcomes BAE Systems “Titan” Dry Dock to Baltimore Ushers in New Era of Ship Maintenance and Repair at Sparrows Point BALTIMORE, MD (June 3, 2020) – Tradepoint Atlantic, a 3,300-acre multimodal global logistics center in Baltimore, Maryland, featuring an unmatched combination of access to deep-water berths, rail and highway, today announced that BAE Systems’ “Titan” dry dock will be arriving and docking at the onsite dry dock to undergo a five-month-long repair and maintenance program starting on June 4. This announcement and project ushers in a new era of ship maintenance and repair at Tradepoint Atlantic, and represents a year of work and planning to reopen this legacy industry in Baltimore. The Titan docking process is expected to take nearly 20 hours. BAE Systems' massive Titan dry dock has a 52,534-ton lifting capacity and is one of the world’s largest and most modern floating steel dry docks. It measures 950-feet long, 192-feet wide, and 82-feet tall at the highest point. The Titan is used to service ships as long as 1,000 feet. “The shipyard at Sparrows Point has a rich and important history and it is amazing to see industry returning to it after too many dormant years,” said Governor Larry Hogan. “The growth at Tradepoint Atlantic and the opportunities being provided to the local communities is nothing short of incredible and our administration looks forward to partnering with them for years to come. The dry dock is open for business and that is great news.” The dry dock at Sparrows Point began construction in 1969, and was completed in 1971. -
Appendix A. Navy Activity Descriptions
Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 APPENDIX A Navy Activity Descriptions Appendix A Navy Activity Descriptions Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 This page intentionally left blank. Appendix A Navy Activity Descriptions Atlantic Fleet Training and Testing Draft EIS/OEIS June 2017 Draft Environmental Impact Statement/Overseas Environmental Impact Statement Atlantic Fleet Training and Testing TABLE OF CONTENTS A. NAVY ACTIVITY DESCRIPTIONS ................................................................................................ A-1 A.1 Description of Sonar, Munitions, Targets, and Other Systems Employed in Atlantic Fleet Training and Testing Events .................................................................. A-1 A.1.1 Sonar Systems and Other Acoustic Sources ......................................................... A-1 A.1.2 Munitions .............................................................................................................. A-7 A.1.3 Targets ................................................................................................................ A-11 A.1.4 Defensive Countermeasures ............................................................................... A-13 A.1.5 Mine Warfare Systems ........................................................................................ A-13 A.1.6 Military Expended Materials ............................................................................... A-16 A.2 Training Activities .................................................................................................. -
A. Booth Packing Company
MARINE SUBJECT FILE GREAT LAKES MARINE COLLECTION Milwaukee Public Library/Wisconsin Marine Historical Society page 1 Current as of January 7, 2019 A. Booth Packing Company -- see Booth Fleets Abandoned Shipwreck Act of 1987 (includes Antiquities Act of 1906) Abitibi Fleet -- see Abitibi Power and Paper Company Abitibi Power and Paper Company Acme Steamship Company Admiralty Law African Americans Aids to Navigation (Buoys) Aircraft, Sunken Alger Underwater Preserve -- see Underwater parks and preserves Algoma Central Railway Marine Algoma Steamship Co. -- see Algoma Central Railway (Marine Division) Algoma Steel Corporation Allan Line (Royal Mail Steamers) Allen & McClelland (shipbuilders) Allen Boat Shop American Barge Line American Merchant Marine Library Assn. American Shipbuilding Co. American Steamship Company American Steel Barge Company American Transport Lines American Transportation Company -- see Great Lakes Steamship Company, 1911-1957 Anchor Line Anchors Andrews & Sons (Shipbuilders) Andrie Inc. Ann Arbor (Railroad & Carferry Co.) Ann Arbor Railway System -- see Michigan Interstate Railway Company Antique Boat Museum Antiquities Act of 1906 see Abandoned Shipwreck Act of 1987 Apostle Islands -- see Islands -- Great Lakes Aquamarine Armada Lines Arnold Transit Company Arrivals & Departures Association for Great Lakes Maritime History Association of Lake Lines (ALL) Babcock & Wilcox Baltic Shipping Co. George Barber (Shipbuilder) Barges Barry Transportation Company Barry Tug Line -- see Barry Transportation Company Bassett Steamship Company MARINE SUBJECT FILE GREAT LAKES MARINE COLLECTION Milwaukee Public Library/Wisconsin Marine Historical Society page 2 Bay City Boats Inc. Bay Line -- see Tree Line Navigation Company Bay Shipbuilding Corp. Bayfield Maritime Museum Beaupre, Dennis & Peter (Shipbuilders) Beaver Island Boat Company Beaver Steamship Company -- see Oakes Fleets Becker Fleet Becker, Frank, Towing Company Bedore’s, Joe, Hotel Ben Line Bessemer Steamship Co. -
Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress
Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress September 16, 2021 Congressional Research Service https://crsreports.congress.gov RL32665 Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress Summary The current and planned size and composition of the Navy, the annual rate of Navy ship procurement, the prospective affordability of the Navy’s shipbuilding plans, and the capacity of the U.S. shipbuilding industry to execute the Navy’s shipbuilding plans have been oversight matters for the congressional defense committees for many years. In December 2016, the Navy released a force-structure goal that calls for achieving and maintaining a fleet of 355 ships of certain types and numbers. The 355-ship goal was made U.S. policy by Section 1025 of the FY2018 National Defense Authorization Act (H.R. 2810/P.L. 115- 91 of December 12, 2017). The Navy and the Department of Defense (DOD) have been working since 2019 to develop a successor for the 355-ship force-level goal. The new goal is expected to introduce a new, more distributed fleet architecture featuring a smaller proportion of larger ships, a larger proportion of smaller ships, and a new third tier of large unmanned vehicles (UVs). On June 17, 2021, the Navy released a long-range Navy shipbuilding document that presents the Biden Administration’s emerging successor to the 355-ship force-level goal. The document calls for a Navy with a more distributed fleet architecture, including 321 to 372 manned ships and 77 to 140 large UVs. A September 2021 Congressional Budget Office (CBO) report estimates that the fleet envisioned in the document would cost an average of between $25.3 billion and $32.7 billion per year in constant FY2021 dollars to procure. -
The Cost of the Navy's New Frigate
OCTOBER 2020 The Cost of the Navy’s New Frigate On April 30, 2020, the Navy awarded Fincantieri Several factors support the Navy’s estimate: Marinette Marine a contract to build the Navy’s new sur- face combatant, a guided missile frigate long designated • The FFG(X) is based on a design that has been in as FFG(X).1 The contract guarantees that Fincantieri will production for many years. build the lead ship (the first ship designed for a class) and gives the Navy options to build as many as nine addi- • Little if any new technology is being developed for it. tional ships. In this report, the Congressional Budget Office examines the potential costs if the Navy exercises • The contractor is an experienced builder of small all of those options. surface combatants. • CBO estimates the cost of the 10 FFG(X) ships • An independent estimate within the Department of would be $12.3 billion in 2020 (inflation-adjusted) Defense (DoD) was lower than the Navy’s estimate. dollars, about $1.2 billion per ship, on the basis of its own weight-based cost model. That amount is Other factors suggest the Navy’s estimate is too low: 40 percent more than the Navy’s estimate. • The costs of all surface combatants since 1970, as • The Navy estimates that the 10 ships would measured per thousand tons, were higher. cost $8.7 billion in 2020 dollars, an average of $870 million per ship. • Historically the Navy has almost always underestimated the cost of the lead ship, and a more • If the Navy’s estimate turns out to be accurate, expensive lead ship generally results in higher costs the FFG(X) would be the least expensive surface for the follow-on ships. -
The Submarine and the Washington Conference Of
477 THE SUBMARINE AND THE WASHINGTON CONFERENCE OF 1921 Lawrence H. Douglas Following the First World War, the tation of this group, simply stated, was tide of public opinion was overwhelm that second best in naval strength meant ingly against the submarine as a weapon last. A policy of naval superiority was of war. The excesses of the German necessary, they felt, for "history consis U-boat had stunned the sensibilities of tently shows that war between no two the world but had, nonetheless, pre peoples or nations can be unthink sented new ideas and possibilities of this able.,,1 A second group, the Naval weapon to the various naval powers of Advisory Committee (Admirals Pratt the time. The momentum of these new and Coontz and Assistant Secretary of ideas proved so strong that by the the Navy Theodore Roosevelt, Jr.) also opening of the first major international submitted recommendations concerning disarmament conference of the 20th the limitation of naval armaments. century, practical uses of the submarine From the outset their deliberations were had all but smothered the moral indig guided by a concern that had become nation of 1918. more and more apparent-the threat Several months prior to the opening posed to the security and interests of of the conference, the General Board of this country by Japan. This concern was the American Navy was given the task evidenced in an attempt to gain basic of developing guidelines and recommen understandings with Britain. dations to be used by the State Depart The submarine received its share of ment in determining the American attention in the deliberations of these proposals to be presented. -
The Law of Submarine Warfare Today
Jacobson 205 Chapter VIII The Law of Submarine Warfare Today by Jon L. Jacobson* Introduction he roles of military submarines have evolved throughout the twentieth T century. In wartime, these roles have included coastal defense, harassment of enemy fleets, and, especially in World War II, hunting and destroying the seaborne commerce that supported the enemy's war efforts. Today, two principal roles for u.s. submarines, at least in any future war with the Soviet Union, are probably as anti-submarine weapons (attack submarines) and as strategic weapons platforms (ballistic missile submarines). Other missions, however, could include coastal defense, attacks on the enemy's surface fleet, projection of force ashore, and commerce warfare.1 The laws of war have never been comfortable with the submarine's unique combination of stealth and vulnerability. As will be explained below, it is this peculiar mix of strength and weakness that can be blamed as the root cause of the legal dilemma, particularly as it relates to the submarine's role as a commerce raider. The legal responses to this twentieth-century weapons platform have ranged from early proposals for its abolition to justification of its use under the rules of reprisal to tolerance of it as an effective war machine with characteristics that regrettably require some adjustments in the traditional laws of war. The U.s. Navy's new Commander's Handbook on the Law of Naval Operations (NWP 9) includes references to the laws of naval warfare that specifically address the submarine weapons system and also rules that apply, or can apply, to submarines and their roles in wartime. -
The Port of Portland's Marine Operations
The Port of Portland’s Marine Operations The Local Economic Benefits of Worldwide Trade Prepared for: August 2013 Contact Information Ed MacMullan, John Tapogna, Sarah Reich, and Tessa Krebs of ECONorthwest prepared this report. ECONorthwest is solely responsible for its content. ECONorthwest specializes in economics, planning, and finance. Established in 1974, ECONorthwest has over three decades of experience helping clients make sound decisions based on rigorous economic, planning and financial analysis. For more information about ECONorthwest, visit our website at www.econw.com. For more information about this report, please contact: Ed MacMullan Senior Economist 99 W. 10th Ave., Suite 400 Eugene, OR 97401 541-687-0051 [email protected] Table of Contents Executive Summary ...................................................................................................... ES-1 1 Introduction ................................................................................................................... 1 2 Global Trade, Local Benefits ...................................................................................... 3 3 Intermodal Transportation Efficiencies .................................................................... 9 4 The Auto-Transport Story .......................................................................................... 10 5 The Potash Story ........................................................................................................ 12 6 The Portland Shipyard Story .................................................................................... -
NATIONAL REGISTER ELIGIBILITY ASSESSMENT VESSEL: Ex- USS Pigeon (ASR-21)
NATIONAL REGISTER ELIGIBILITY ASSESSMENT VESSEL: ex- USS Pigeon (ASR-21) USS Pigeon (ASR-21) underway. Pigeon was the first of two catamaran-hulled SRVs. Location and date are unknown. http://www.navsource.org/archives/09/32/3221.htm Vessel History The USS Pigeon (ASR-21) was the first of two catamaran-hulled submarine rescue vessels commissioned by the U.S. Navy in 1973. Alabama Drydock and Shipbuilding Company in Mobile, Alabama won the construction contract on November 15, 1967. Its keel was laid on July 17, 1968 and it was launched on August 13, 1969. Pigeon was commissioned on April 28, 1973. It was the navy’s third vessel that carried the name. Pigeon was assigned to the U.S. Navy’s Pacific Fleet, spending most of its career homeported at Naval Base San Diego. Its sistership, the USS Ortolan (ASR-22) was assigned to the U.S. Navy’s Atlantic Fleet in Norfolk, Virginia. The Pigeon spent the next two decades in readiness for the submarine disaster that fortunately never occurred. It spent frequent periods at sea conducting drills and training, including general training in saturation diving. The Pigeon successfully performed the navy’s first open ocean working saturation dive when it recovered the engine and ejection seat of an F-14 jet fighter that had crashed in 730 feet of water. The construction and design of the ships were a result of the loss of the nuclear-submarine USS Thresher (SSN-593) in the deep waters of the North Atlantic in April 1963, and the subsequent loss of a hydrogen bomb in the western Mediterranean off of Spain’s coast in January 1966. -
Report on Survey of U.S. Shipbuilding and Repair Facilities 2001
Report on Survey of U.S. Department of Transportation Maritime U.S. Shipbuilding and Administration Repair Facilities 2001 REPORT ON SURVEY OF U.S. SHIPBUILDING AND REPAIR FACILITIES 2001 Prepared By: Office of Shipbuilding and Marine Technology December 2001 INTENTIONALLY LEFT BLANK TABLE OF CONTENTS PAGE Introduction .......................................................................................................... 1 Overview of Major Shipbuilding and Repair Base ................................................ 5 Major U.S. Private Shipyards Summary Classification Definitions ....................... 6 Number of Shipyards by Type (Exhibit 1) ........................................................... 7 Number of Shipyards by Region (Exhibit 2) ........................................................ 8 Number of Shipyards by Type and Region (Exhibit 3) ........................................ 9 Number of Building Positions by Maximum Length Capability (Exhibit 4) ........... 10 Number of Build and Repair Positions (Exhibit 5) ............................................... 11 Number of Build and Repair Positions by Region (Exhibit 6) .............................. 12 Number of Floating Drydocks by Maximum Length Capability (Exhibit 7) .......... 13 Number of Production Workers by Shipyard Type (Exhibit 8) ............................. 14 Number of Production Workers by Region (Exhibit 9) ........................................ 15 Number of Production Workers: 1982 – 2001 (Exhibit 10) ................................. 16 Listing