Dynamics of Ribosome Association with the Endoplasmic Reticulum Membrane

Total Page:16

File Type:pdf, Size:1020Kb

Dynamics of Ribosome Association with the Endoplasmic Reticulum Membrane Dynamics of Ribosome Association with the Endoplasmic Reticulum Membrane Dissertation zur Erlangung des Doktorgrades der Fakultaet fuer Biologie der Ludwig-Maximilians-Universitaet Muenchen vorgelegt von Dipl.-Biochem. Julia Schaletzky Mai 2006 Die vorliegende Arbeit wurde an der Harvard Medical School in Boston, MA (USA) unter der Anleitung von Prof. Tom Rapoport durchgefuehrt. Die dreidimensionale Struktur der von mir isolierten Komplexe wurde in Kollaboration mit Prof. Chris Akey (Boston University, USA) unter Anleitung von Dr. Jean-François Ménétret durch Cryo-Elektronenmikroskopie ermittelt. Die vorliegende Arbeit wurde zur Beurteilung eingereicht am 01.06.2006. Gutachter: Prof. Dr. J. Soll PD Dr. E. Schleiff Prof. Dr. M. Hayashi Prof. Dr. K. Jung Rigorosum: 20.09.2006 Ehrenwoertliche Versicherung Hiermit versichere ich, dass ich die vorliegende Arbeit selbstaendig verfasst und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet habe. Ferner erklaere ich, dass ich anderweitig nicht versucht habe, eine Dissertation einzureichen oder mich einer Doktorpruefung zu unterziehen. Die vorliegende Arbeit ist nicht als Ganzes oder in Teilen einer weiteren Pruefungskommission vorgelegt worden. Boston, 12.05.06 ........................................ (Julia Schaletzky) ACKNOWLEDGEMENTS I would like to thank Prof. Tom Rapoport for his continuing support and advice during the supervision of my project, and for being a great teacher and mentor. I would like to express my gratitude to Prof. Juergen Soll for generously agreeing to be my advisor and to lead my PhD committee. Prof. Stefan Jentsch deserves thanks for agreeing to examine my PhD thesis and for his constant support and help during the pursuit of my PhD. I am also grateful to Prof. Walter Neupert for advice and help. Parts of this thesis are the results of a fruitful collaboration with the laboratory of Prof. Chris Akey, especially with Dr. Jean-François Ménétret. I would like to thank both of them for their enthusiasm, effort and constant discussion and for giving me the opportunity to learn electron cryo-microscopy. I am grateful to Prof. Reid Gilmore, Dr. Andrea Neuhof, Dr. Sven Heinrich, Dr. William Clemons, Dr. Jochen Zimmer, Dr. Michael Rape and dog H3 for plasmids, purified ribosomes and proteins. Dr. Andrea Neuhof deserves thanks for starting the SRP-dependent targeting project. I would like to thank all former and present members of the Rapoport Lab for discussion, advice, encouragement, practical help and for keeping the spirits high. I thank Lorna Fargo and Carol Sawyer for being always helpful and making sure things are running smoothly in the lab. I would like to thank Sue Wood and Vivian Holmes for handling my visa issues so that I could work on my PhD without becoming an illegal alien. I would like to thank the Boehringer Ingelheim Fonds for continuous nonbureaucratic support, especially Dr. Hermann Froehlich, Claudia Walther and Monika Beutelspacher. I would like to thank my family and friends for support and encouragement. Great thanks go to Michael for never-ending discussions, advice, infectious enthusiasm and patience during late nights in the lab. TABLE OF CONTENTS 1 Abstract / Zusammenfassung 1 2 Introduction 5 2.1 Different ways of protein translocation 5 2.2 Protein translocation by Sec61 7 2.3 The oligomeric state of Sec61 9 2.4 Ribosome binding to the rough endoplasmic reticulum 10 2.5 SRP-dependent targeting 12 3 Aim 15 4 Results 16 4.1 Characterization of Ribosome binding to the rough ER membrane 16 4.2 Characterization of SRP-dependent targeting under competition conditions 19 4.3 Characterization of the new binding sites used by the SRP-system 25 4.4 A free channel population observed after membrane saturation 28 4.5 Importance of the free channel population for SRP-dependent targeting 31 4.6 Differences between free and bound Sec61 34 4.7 Biochemical analysis of the ribosome-channel junction 39 4.8 Working model of SRP-dependent targeting 44 4.9 Conditions for dissociation of prebound ribosomes 47 4.10 Structural characterization of ribosome-channel complexes by 49 electron cryo-microscopy 4.10.1 Structure of a eukaryotic ribosome-channel complex 49 4.10.2 Structure of a eukaryotic ribosome-channel complex 52 engaged in translocation 4.10.3 Structure of a bacterial ribosome-channel complex 57 4.10.4 Structure of a bacterial ribosome-channel complex 60 engaged in translocation I 4.10.5 Binding of bacterial ribosomes to bacterial and eukaryotic 66 membranes 5 Discussion 69 5.1 Why is SRP needed for targeting? 69 5.2 The mechanism of SRP-dependent targeting 70 5.3 Evolutional conservation in prokaryotes 72 5.4 Differences in structures determined from membranes and in detergent 74 5.5 The nature of the pore 75 5.6 Ribosome dissociation from the ER membrane 76 5.7 Different oligomeric states of Sec61 in the ER membrane 77 6 Materials and Methods 79 6.1 Molecular Biology 79 6.1.1 Bacterial strains 6.1.2 Bacterial growth 6.1.3 Preparation of CaCl2-competent E.coli cells 6.1.4 Transformation of CaCl2-competent cells 6.1.5 Plasmid purification 6.1.6 DNA/RNA precipitation 6.1.7 Cloning 6.1.7.1 Polymerase chain reaction (PCR) 6.1.7.2 TA-overhang cloning 6.1.7.3 Restriction digest 6.1.7.4 Ligation 6.1.7.5 Agarose gelelectrophoresis 6.2 Purification of microsomes, proteins and reconstitution 81 6.2.1 Preparation of microsomes 6.2.2 Purification of c.f. Sec61, SRP and SRP-receptor 6.2.3 Overexpression and purification of E.c. SecYEG 6.2.4 Reconstitution of proteoliposomes II 6.3 Analytical Methods 84 6.3.1 Polyacrylamide-Gelelectrophoresis and staining 6.3.2 Autoradiography 6.3.3 Immunoblotting and Antibodies 6.3.4 Scintillation counting 6.3.5 Concentration determination 6.4 In vitro transcription / translation 86 6.4.1 In vitro transcription 6.4.2 In vitro translation 6.4.2.1 Reticulocyte lysate system 6.4.2.2 Wheat germ extract system 6.4.2.3 E.coli S30 extract system 6.4.2.4 Isolation of RNCs 6.4.2.5 Labeling of endogenous RNCs in RMs 6.5 Targeting reactions and ribosome binding experiments 88 6.6 Radiolabeling of ribosomes and dissociation experiments 88 6.7 Solubilization of membranes and sucrose gradient centrifugation 89 6.8 Crosslinking and antibody-binding experiments 89 6.9 Co-immunoprecipitation 90 6.10 Electron Cryo-Microscopy of Ribosome-Channel Complexes 91 6.10.1 Preparation of 70S-SecYEG and 80S-Sec61 complexes 6.10.2 Preparation of eukaryotic RNC-Sec61 complexes 6.10.3 Preparation of prokaryotic RNC-SecYEG complexes 6.10.4 Electron Cryo-Microscopy 6.10.5 Three-Dimensional Image Processing and Analysis 7 References 95 8 Abbreviations 106 9 Curriculum Vitae 109 III 1 ABSTRACT Protein translocation across the endoplasmic reticulum (ER) membrane is fundamental for protein sorting and secretion in all kingdoms. Translocation occurs through a protein-conducting channel in the ER membrane, which is formed by Sec61. Targeting of ribosome-nascent chain complexes (RNCs) to Sec61 is mediated by the signal recognition particle (SRP) and its cognate receptor (SR). However, Sec61 has a high affinity for nontranslating ribosomes and it is largely occupied in vivo. We addressed how RNC-SRP complexes can efficiently associate with the rER membrane, although most Sec61 seems to be occupied. We found that the spontaneous dissociation of ribosomes from the ER membrane is extremely slow. Surprisingly, membrane binding of RNC-SRP complexes does not require or cause the dissociation of prebound ribosomes. Instead, RNC-SRP complexes use a Sec61 population for translocation that cannot be bound by nontranslating ribosomes or RNCs alone. Complex formation between RNC-SRP and SR at the ER membrane facilitates the interaction between the RNC and the free Sec61. We have used biochemical and structural approaches to investigate why the free Sec61 fails to be bound by nontranslating ribosomes. Our data suggests that Sec61 is present in two interconvertible forms in the membrane, that are in an equilibrium with each other and provide high-affinity and low-affinity binding sites for ribosomes. The former are quickly occupied, while the latter remain free. The high-affinity binding sites are formed by tetrameric rings of Sec61, which provide several connections that each can break and reform, but together prevent the ribosome from detachment. In contrast, the low-affinity binding sites may correspond to lower oligomeric states of Sec61. Consistent with that, we could capture monomers or dimers of Sec61 bound to eukaryotic ribosomes by electron cryo-microscopy. A ribosome-bound Sec61 dimer was only observed in presence of a nascent chain, which could indicate that Sec61 oligomerization is induced by translocation of a nascent chain. We obtained similar results for bacterial ribosome-channel complexes. However, the low-affinity binding site seems to be more abundant in bacterial membranes, which indicates that the prokaryotic equilibrium between low- and high-affinity binding sites is adjusted differently from eukaryotes. 1 We propose a model, in which Sec61 exists in different oligomeric states in the ER membrane. Tetrameric Sec61 provides a high-affinity binding site for ribosomes and is readily occupied in vivo. Monomeric or dimeric Sec61 is accessible for targeting by the SRP pathway, which facilitates the interaction between RNC and free Sec61. After transfer of the nascent chain into the channel and dissociation of SR and SRP, more Sec61 molecules could be recruited to stabilize the interaction with the translating ribosome. A dynamic oligomerization equilibrium of Sec61 is thus the core of a mechanism that would guarantee efficient protein translocation in vivo. 2 ZUSAMMENFASSUNG Die Translokation sekretorischer Proteine in das Lumen des endoplasmatischen Retikulums (ER) ist evolutionaer konserviert und ueberlebenswichtig in Eukaryoten und Prokaryoten.
Recommended publications
  • Common Features of All Cells Bacterial
    www.denniskunkel.com Tour of the Cell part 1 Today’s Topics • Finish Nucleic Acids Cells • Properties of all cells – Prokaryotes and Eukaryotes • Functions of Major Cellular Organelles – Information – Synthesis&Transport – Energy Conversion – Recycling – Structure and Movement Bacterial cell Animal Cell 9/12/12 (Prokaryote) (Eukaryote) 2 www.denniskunkel.com Common features of all cells • Plasma Membrane – defines inside from outside • Cytosol – Semifluid “inside” of the cell • DNA “chromosomes” - Genetic material – hereditary instructions • Ribosomes – “factories” to synthesize proteins 4 Plasma membrane Bacterial (Prokaryotic) Cell Ribosomes! Plasma membrane! Bacterial Cell wall! chromosome ! Phospholipid bilayer Proteins 0.5 !m! Flagella! No internal membranes 5 6 1 Figure 6.2b 1 cm Eukaryotic Cell Frog egg 1 mm Human egg 100 µm Most plant and animal cells 10 m µ Nucleus Most bacteria Light microscopy Mitochondrion 1 µm Super- 100 nm Smallest bacteria Viruses resolution microscopy Ribosomes 10 nm Electron microscopy Proteins Lipids 1 nm Small molecules Contains internal organelles 7 0.1 nm Atoms endoplasmicENDOPLASMIC RETICULUM reticulum (ER) ENDOPLASMIC RETICULUM (ER) NUCLEUS NUCLEUS Rough ER Smooth ER nucleus Rough ER Smooth ER Nucleus Plasma membrane Plasma membrane Centrosome Centrosome cytoskeletonCYTOSKELETON CYTOSKELETON Microfilaments You should Microfilaments Intermediate filaments know everything Intermediate filaments Microtubules in Fig 6.9 ribosomesRibosomes Microtubules Ribosomes cytosol GolgiGolgi apparatus apparatus Golgi apparatus Peroxisome Peroxisome In animal cells but not plant cells: In animal cells but not plant cells: Lysosome Lysosomes Lysosome Lysosomes Figure 6.9 Centrioles Figure 6.9 Centrioles Mitochondrion lysosome Flagella (in some plant 9sperm) Mitochondrion Flagella (in some plant10 sperm) mitochondrion Nuclear envelope Nucleus Nucleus 1 !m Nucleolus Chromatin Nuclear envelope: Inner membrane Outer membrane Pores Pore complex Rough ER Surface of nuclear envelope.
    [Show full text]
  • Phosphatases and Differentiation of the Golgi Apparatus
    J. Cell Sci. 4, 455-497 (1969) 455 Printed in Great Britain PHOSPHATASES AND DIFFERENTIATION OF THE GOLGI APPARATUS MARIANNE DAUWALDER, W. G. WHALEY AND JOYCE E. KEPHART The Cell Research Institute, Tlie University of Texas at Austin, Texas, U.S.A. SUMMARY Cytochemical techniques for the electron microscopic localization of inosine diphosphatase, thiamine pyrophosphatase, and acid phosphatase have been applied to the developing root tip of Zea mays. Following formaldehyde fixation the Golgi apparatus of most of the cells showed reaction specificity for IDPase and TPPase. Following glutaraldehyde fixation marked localiza- tion of IDPase reactivity in the Golgi apparatus was limited to the root cap, the epidermis, and the phloem. A parallelism was apparent between the sequential morphological development of the apparatus for the secretion of a polysaccharide product, the fairly direct incorporation of tritiated glucose into the apparatus to become a component of this product and the develop- ment of the enzyme reactivity. Acid phosphatase, generally accepted as a lysosomal marker, was found in association with the Golgi apparatus in only a few cell types near the apex of the root. The localization was usually in a single cisterna at the face of the apparatus toward which the production of secretory vesicles builds up and associated regions of what may be smooth endoplasmic reticulum. Since the cell types involved were limited regions of the cap and epidermis and some initial cells, no functional correlates of the reactivity were apparent. Despite the presence of this lysosomal marker, no structures clearly identifiable as ' lysosomes' were found and the lack of reaction specificity in the vacuoles did not allow them to be so defined.
    [Show full text]
  • Written Response #5
    Written Response #5 • Draw and fill in the chart below about three different types of cells: Written Response #6-18 • In this true/false activity: • You and your partner will discuss the question, each of you will record your response and share your answer with the class. Be prepared to justify your answer. • You are allow to search answers. • You will be limited to 20 seconds per question. Written Response #6-18 6. The water-hating hydrophobic tails of the phospholipid bilayer face the outside of the cell membrane. 7. The cytoplasm essentially acts as a “skeleton” inside the cell. 8. Plant cells have special structures that are not found in animal cells, including a cell wall, a large central vacuole, and plastids. 9. Centrioles help organize chromosomes before cell division. 10. Ribosomes can be found attached to the endoplasmic reticulum. Written Response #6-18 11. ATP is made in the mitochondria. 12. Many of the biochemical reactions of the cell occur in the cytoplasm. 13. Animal cells have chloroplasts, organelles that capture light energy from the sun and use it to make food. 14. Small hydrophobic molecules can easily pass through the plasma membrane. 15. In cell-level organization, cells are not specialized for different functions. Written Response #6-18 16. Mitochondria contains its own DNA. 17. The plasma membrane is a single phospholipid layer that supports and protects a cell and controls what enters and leaves it. 18. The cytoskeleton is made from thread-like filaments and tubules. 3.2 HW 1. Describe the composition of the plasma membrane.
    [Show full text]
  • Studies on the Mechanisms of Autophagy: Formation of the Autophagic Vacuole W
    Studies on the Mechanisms of Autophagy: Formation of the Autophagic Vacuole W. A. Dunn, Jr. Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610 Abstract. Autophagic vacuoles form within 15 min of tophagic vacuoles. All these results suggested that au- perfusing a liver with amino acid-depleted medium. tophagic vacuoles were not formed from plasma mem- These vacuoles are bound by a "smooth" double mem- brane, Golgi apparatus, or endosome constituents. An- brane and do not contain acid phosphatase activity. In tisera prepared against integral membrane proteins (14, Downloaded from http://rupress.org/jcb/article-pdf/110/6/1923/1059547/1923.pdf by guest on 26 September 2021 an attempt to identify the membrane source of these 25, and 40 kD) of the RER was found to label the in- vacuoles, I have used morphological techniques com- ner and outer limiting membranes of almost all na- bined with immunological probes to localize specific scent autophagic vacuoles. In addition, ribophorin II membrane antigens to the limiting membranes of was identified at the limiting membranes of many na- newly formed or nascent autophagic vacuoles. Anti- scent autophagic vacuoles. Finally, secretory proteins, bodies to three integral membrane proteins of the rat serum albumin and alpha2o-globulin, were localized plasma membrane (CE9, HA4, and epidermal growth to the lumen of the RER and to the intramembrane factor receptor) and one of the Golgi apparatus space between the inner and outer membranes of some (sialyltransferase) did not label these vacuoles. Inter- of these vacuoles. The results were consistent with the nalized epidermal growth factor and its membrane formation of autophagic vacuoles from ribosome-free receptor were not found in nascent autophagic vacu- regions of the RER.
    [Show full text]
  • Golgi-Apparatus.Pdf
    GOLGI APPARATUS Cell Biology/B. Sc. Part III By: Dr. Bibha Kumari Dept. of Zoology Magadh Mahila College, Patna Email: [email protected] Golgi Apparatus • The Golgi apparatus (GA), also called Golgi body or Golgi complex and • found universally in both plant and animal cells, • is typically comprised of a series of five to eight cup- shaped, membrane-covered sacs called cisternae that look something like a stack of deflated balloons. • It is another packaging organelle like the endoplasmic reticulum (ER). It was named after Camillo Golgi (1897), an Italian biologist. • While layers of membranes may look like the rough ER, they have a very different function. Golgi….. • In some unicellular flagellates, however, as many as 60 cisternae may combine to make up the Golgi apparatus. • Similarly, the number of Golgi bodies in a cell varies according to its function. • Animal cells generally contain between ten and twenty Golgi stacks per cell, which are linked into a single complex by tubular connections between cisternae. • This complex is usually located close to the cell nucleus. Position in the cell Structure of Golgi Apparatus • A Golgi apparatus is composed of flat sacs known as cisternae. • The sacs are stacked in a bent, semicircular shape. • Each stacked grouping has a membrane that separates its insides from the cell's cytoplasm. • Golgi membrane protein interactions are responsible for their unique shape. • These interactions generate the force that shapes this organelle. Structure…. Structure…. Structure…… • The Golgi apparatus is very polar. • Membranes at one end of the stack differ in both composition and in thickness from those at the other end.
    [Show full text]
  • Membrane Structure and Function
    Chapter 7 Membrane Structure and Function Lecture Outline Overview: Life at the Edge • The plasma membrane separates the living cell from its surroundings. • This thin barrier, 8 nm thick, controls traffic into and out of the cell. • Like all biological membranes, the plasma membrane is selectively permeable, allowing some substances to cross more easily than others. • The formation of a membrane that encloses a solution different from the surrounding solution while still permitting the uptake of nutrients and the elimination of waste products was a key event in the evolution of life. • The ability of the cell to discriminate in its chemical exchanges with its environment is fundamental to life. • It is the plasma membrane and its component molecules that make this selectivity possible. Concept 7.1 Cellular membranes are fluid mosaics of lipids and proteins. • The main macromolecules in membranes are lipids and proteins, but carbohydrates are also important. • The most abundant lipids are phospholipids. • Phospholipids and most other membrane constituents are amphipathic molecules, which have both hydrophobic and hydrophilic regions. Membrane models have evolved to fit new data. • The arrangement of phospholipids and proteins in biological membranes is described by the fluid mosaic model. • In this model, the membrane is a fluid structure with a “mosaic” of various proteins embedded in or attached to a double layer (bilayer) of phospholipids. • Models of membranes were developed long before membranes were first seen with electron microscopes in the 1950s. • In 1915, membranes isolated from red blood cells were chemically analyzed and found to be composed of lipids and proteins. • In 1925, E.
    [Show full text]
  • The Role of the Cytoskeleton in the Structure and Function of the Golgi Apparatus Gustavo Egea and Rosa M
    The role of the cytoskeleton in the structure and function of GA * 1 The role of the cytoskeleton in the structure and function of the Golgi apparatus Gustavo Egea and Rosa M. Ríos Introduction Cellular organelles in mammalian cells are individualized membrane entities that often become spherical. The endoplasmic reticulum (ER) and the Golgi apparatus (GA) are exceptions to this rule, as they are respectively made up of a continuous tubular network and a pile of flat disks. Their unique shapes are regulated by molecular elements (Kepes et al. 2005; Levine and Rabouille 2005), including the cytoskeleton. All cytoskeletal elements, together with cytoskeleton-associated motors and non-motor proteins, have a role in the subcellular positioning, biogenesis and function of most organelles, being particularly relevant in the GA. The GA is the central organelle of the eukaryotic secretory pathway. While its basic function is highly conserved, the GA varies greatly in shape and number from one organism to another. In the simplest organisms like budding yeast Saccharomyces cerevisiae, the organelle takes the form of dispersed cisternae or isolated tubular networks (Preuss et al. 1992; Ram- bourg et al. 2001). Unicellular green alga (Henderson et al. 2007) and many protozoa like Toxoplasma gondii (Pelletier et al. 2002) and Trypanosoma brucei (He 2007; He et al. 2004) contain a single pile of flattened cisternae aligned in parallel. The organization of the GA in this manner is referred to as a Golgi stack, which usually contains two regions: one central and poorly fenestrated (compact) and other lateral and highly fenestrated (non-com- pact) (Kepes et al.
    [Show full text]
  • Role of Microtubules in the Distribution of the Golgi Apparatus
    Proc. Nati Acad. Sci. USA Vol. 80, pp. 4286-4290, July 1983 Biochemistry Role of microtubules in the distribution of the Golgi apparatus: Effect of taxol and microinjected anti-a-tubulin antibodies (organelle organization/cytoskeleton) JURGEN WEHLAND*, MARYANNA HENKARTt, RICHARD KLAUSNERt, AND IGNACIO V. SANDOVALt§ *Laboratory of Molecular Biology and tImmunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205; and *Laboratory of Biochemistry and Metabolism, National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20205 Communicated by Gilbert Ashwell, April 21, 1983 ABSTRACT Immunofluorescence microscopy reveals that both organization and distribution of both microtubules and the Gol- microtubule organizing center (MTOC) and Golgi apparatus are gi apparatus were studied by dual indirect immunofluores- contained in the same perinuclear area of A549 cells in inter- cence microscopy as described (6). Cells were permeabilized by phase. The cells display long microtubules stretching radially from immersion in cold methanol (-20°C) for 2 min. The Golgi ap- the MTOC to the plasma membrane. Treatment of cells with taxol paratus was studied by using a rabbit monospecific antibody results in polymerization of microtubules without relation to the was MTOC and formation of microtubule bundles predominantly lo- raised against the Golgi enzyme ,B-galactosyltransferase and calized in the cell periphery. After incubation with taxol, the
    [Show full text]
  • Lysosomal Biology and Function: Modern View of Cellular Debris Bin
    cells Review Lysosomal Biology and Function: Modern View of Cellular Debris Bin Purvi C. Trivedi 1,2, Jordan J. Bartlett 1,2 and Thomas Pulinilkunnil 1,2,* 1 Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; [email protected] (P.C.T.); jjeff[email protected] (J.J.B.) 2 Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada * Correspondence: [email protected]; Tel.: +1-(506)-636-6973 Received: 21 January 2020; Accepted: 29 April 2020; Published: 4 May 2020 Abstract: Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
    [Show full text]
  • Is a Continuous Membrane System That Forms a Series of Flattened Sacs
    CLASS IX Subject: BIOLOGY Topic :FUNDAMENTAL UNIT OF LIFE Prepared by: NIDHI SHARMA KINDLY NOTE DOWN THE POINTS RELATED TO ORGANELLES IN YOUR BIOLOGY COPY : 1.ENDOPLASMIC RETICULUM Endoplasmic reticulum (ER),is a continuous membrane system that forms a series of flattened sacs . It is a network-like structure which consists of membrane-bound tubes and sheets. Two types of ER – Rough ER Smooth ER Rough ER contains ribosomes that are responsible for the manufacturing of proteins in the cells. The smooth ER manufactures fats or lipids in the cell which allow the functioning of the cell. What are the functions of lipids and proteins? Proteins and lipids synthesized on ER are used for making cell membrane. The process is known as Membrane Biogenesis. 2.Golgi Apparatus Camillo Golgi discovered the Golgi Apparatus. It contains vesicles that are arranged parallel in stacks. These stacks are called Cisterns. vesicles have their own membranes. These membranes are sometimes connected to those of the ER. Functions of Golgi Apparatus Golgi apparatus carries materials synthesized by the ER to different parts of the cell. The material is stored and packaged in vesicles. Formation of complex sugar Formation of lysosomes. Golgi Apparatus is also called the post office of the cell. They help in package and transport of the proteins across the cytoplasm. 3. Lysosomes They are single membrane vesicles which are responsible for cleaning the cell. They can digest any foreign material such as food or bacteria and even the worn out cell organelles. How lysosomes can digest any foreign material that enters the cell? Lysosomes are capable of doing so because they have digestive enzymes in them.
    [Show full text]
  • Cell and Cell Division
    Cell and Cell Division Chapter 2 Lecture Outline Cell Cell membrane Nucleus: Nuclear Envelope, Nucleoplasm and Chromatin (DNA + Histones) Cytoplasm: Cytosol and Cell Organelles Cell Division Cell Cycle Mitosis: division of nucleus Cytokinesis: division of cytoplasm Cell Theory 4 basic concepts of cell theory are: Cells are the units of structure (building blocks) of all organisms Cells are the smallest unit of function in all organisms Cells originate only from pre-existing cells by cell division. All cells maintain homeostasis (internal conditions within limits) Cell Membrane All cells are covered with a thin covering of a double layer of Phospholipids and associated Proteins present here and there. Each phospholipid has a polar (hydrophilic) head and non-polar (hydrophobic) tails. In the double layer the tails face each other forming a hydrophobic barrier which keeps water dissolved contents inside. Proteins may be Intrinsic – embedded in the lipid double layer and Extrinsic associated outside the lipid double layer. Cytoplasm Cytoplasm is the living fluid part between cell membrane and nucleus. It has special structures called Cell Organelles in it. Cytosol is the liquid part of cytoplasm formed of water having dissolved or suspended substances in it. Cell Organelles are organ like each performing specific function/s but formed of molecules and membranes only (sub-cellular). Double Membrane bound Organelles: Mitochondria, Chloroplasts, Endoplasmic Reticulum, Golgi Body, and Nucleus. Single Membrane bound Organelles: Lysosomes, Peroxisomes, Vacuoles Organelles lacking any membrane: Ribosomes, Centrioles, Nucleolus Nucleus and Ribosomes 1 Genetic Control of the Cell Nucleus: is the most distinct structure inside cell visible with light microscope.
    [Show full text]
  • The Role of the Golgi Apparatus in Disease (Review)
    INTERNATIONAL JOURNAL OF MOleCular meDICine 47: 38, 2021 The role of the Golgi apparatus in disease (Review) JIANYANG LIU, YAN HUANG, TING LI, ZHENG JIANG, LIUWANG ZENG and ZHIPING HU Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China Received August 12, 2020; Accepted January 15, 2021 DOI: 10.3892/ijmm.2021.4871 Abstract. The Golgi apparatus is known to underpin many 1. Introduction important cellular homeostatic functions, including trafficking, sorting and modifications of proteins or lipids. These functions The Golgi apparatus is a processing and sorting hub in the are dysregulated in neurodegenerative diseases, cancer, infec‑ transport and targeting of soluble cargo proteins and lipids to tious diseases and cardiovascular diseases, and the number of different destinations in the cell (1). Considering its central disease‑related genes associated with Golgi apparatus is on the role in the secretory pathway, alterations in the structure increase. Recently, many studies have suggested that the muta‑ and function of the Golgi apparatus are expected to affect tions in the genes encoding Golgi resident proteins can trigger the homeostasis of cellular proteins and lipids. Increasing the occurrence of diseases. By summarizing the pathogenesis of evidence suggests that structural changes and functional these genetic diseases, it was found that most of these diseases disorder of the Golgi apparatus are involved in many human have defects in membrane trafficking. Such defects typically diseases such as neurodegenerative diseases (2‑4), ischemic result in mislocalization of proteins, impaired glycosylation of stroke (5,6), cardiovascular diseases (7,8), pulmonary arterial proteins, and the accumulation of undegraded proteins.
    [Show full text]