Atomic Weights of the Elements 2013 (IUPAC Technical Report)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution and Understanding of the D-Block Elements in the Periodic Table Cite This: Dalton Trans., 2019, 48, 9408 Edwin C
Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Evolution and understanding of the d-block elements in the periodic table Cite this: Dalton Trans., 2019, 48, 9408 Edwin C. Constable Received 20th February 2019, The d-block elements have played an essential role in the development of our present understanding of Accepted 6th March 2019 chemistry and in the evolution of the periodic table. On the occasion of the sesquicentenniel of the dis- DOI: 10.1039/c9dt00765b covery of the periodic table by Mendeleev, it is appropriate to look at how these metals have influenced rsc.li/dalton our understanding of periodicity and the relationships between elements. Introduction and periodic tables concerning objects as diverse as fruit, veg- etables, beer, cartoon characters, and superheroes abound in In the year 2019 we celebrate the sesquicentennial of the publi- our connected world.7 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cation of the first modern form of the periodic table by In the commonly encountered medium or long forms of Mendeleev (alternatively transliterated as Mendelejew, the periodic table, the central portion is occupied by the Mendelejeff, Mendeléeff, and Mendeléyev from the Cyrillic d-block elements, commonly known as the transition elements ).1 The periodic table lies at the core of our under- or transition metals. These elements have played a critical rôle standing of the properties of, and the relationships between, in our understanding of modern chemistry and have proved to the 118 elements currently known (Fig. 1).2 A chemist can look be the touchstones for many theories of valence and bonding. -
The Development of the Periodic Table and Its Consequences Citation: J
Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1. -
Contents Contents
Contents CHEMISTRY International January-March 2019 Volume 41 No. 1 Introduction The International Year of the Periodic Table 2019 2 by Jan Reedijk and Natalia Tarasova Features IUPAC and the Periodic Table by G.J. Leigh 6 Criteria for New Element Discovery: Providing Assurance 10 in a Field of Allure and Romance by Sigurd Hofmann Looking Backwards and Forwards at the Development 16 of the Periodic Table by Eric Scerri Isotopic Abundances and Atomic Weights: History of IUPAC 21 Commission II.1 in the Service of Chemistry by John R. De Laeter IUPAC Commission II.1 Today by Juris Meija 24 Isotopes Matter by Norman E. Holden, Tyler B. Coplen, and Peter Mahaffy 27 The New SI: The International System of Units is Getting 32 a Makeover by Ian Mills and Roberto Marquardt IUPAC Wire Election of IUPAC Officers and Bureau Members 36 Juris Meija Made the Top 40 Under 40 37 C. Oliver Kappe is Awarded the 2018 IUPAC-ThalesNano Prize 37 for Flow Chemistry OPCW to Further Enhance Contributions to United Nations’ 38 Sustainable Development Goals 1001 Inventions: Journeys from Alchemy to Chemistry 38 Stamps International 39 Project Place Critical evaluation of homogeneous equilibrium and solubility 40 constants of gadolinium in environmental and biological- relevant conditions 23rd UNESCO/IUPAC Postgraduate Course in Polymer Science 40 Guidance for the Compilation, Critical Evaluation and 40 Dissemination of Chemical Data Making an imPACt On the Discovery of New Elements (IUPAC/IUPAP 42 Provisional Report) IUPAC Periodic Table of the Elements and Isotopes -
Diffusion of Carbon in Niobium and Molybdenum
Materials Transactions, Vol. 55, No. 12 (2014) pp. 1786 to 1791 ©2014 The Japan Institute of Metals and Materials Diffusion of Carbon in Niobium and Molybdenum Jun-ichi Imai1, Osamu Taguchi2,+, Gyanendra Prasad Tiwari3 and Yoshiaki Iijima1 1Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan 2Department of Materials Science and Engineering, Miyagi National College of Technology, Natori 981-1239, Japan 3Department of Information Technology, Ramrao Adik Institute of Technology, Vidya Nagri, Nerul, Navi Mumbai 400709, India Diffusion coefficients of carbon in niobium and molybdenum have been determined by the residual activity method with radioactive tracer 14C in the temperature ranges between 1168 and 1567 K for niobium and between 1271 and 1669 K for molybdenum. The temperature dependences of the diffusion coefficient of carbon in niobium and molybdenum are expressed by D/m2 s¹1 = 2.2 © 10¹6 exp(¹152 kJ mol¹1/ RT) and D/m2 s¹1 = 5.2 © 10¹6 exp(¹163 kJ mol¹1/RT), respectively. Since the solubility of carbon in molybdenum is very small, the diffusion of carbon in molybdenum is strongly influenced by carbide precipitation at lower temperatures. [doi:10.2320/matertrans.M2014277] (Received July 31, 2014; Accepted September 30, 2014; Published November 8, 2014) Keywords: carbon diffusion, niobium, molybdenum, carbon solubility, precipitate effect 1. Introduction 2. Experimental Procedure Iron, nickel and cobalt based superalloys appear to have 2.1 Material achieved full potential in relation to their use as structural Niobium metal rod arc-melted and machined to 12.5 mm in materials for corrosive environments as well as high diameter was supplied by Materials Research Corporation, temperatures.1) The strength of these alloys comes partly USA. -
Concurrent Reduction and Distillation; an Improved Technique for the Recovery and Chemical Refinement of the Isotopes of Cadmium and Zinc*
If I CONCURRENT REDUCTION AND DISTILLATION; AN IMPROVED TECHNIQUE FOR THE RECOVERY AND CHEMICAL REFINEMENT OF THE ISOTOPES OF CADMIUM AND ZINC* H. H. Cardill L. E. McBride LOHF-821046—2 E. W. McDaniel DE83 001931 Operations Division Oak Ridge National Laboratory Oak Ridge, Tennessee 3 7830 .DISCLAIMER • s prepared es an accouni oi WOTk sconsQ'ed by an agency of itie United Slates Cover r "iiit?3 Stilt 65 Gov(?fnft»gn ^ ri(jt ^nv aQcncy Tllf GO* ^or rlny O^ tt^^ir ^rnployut^. TigV MASTER lostifl. ion, apod'aiuj pioiJut;. <y vned nghtv Reference hcein xc any v>t^-'T*t. ^ Dv ^.r^de narno, tf^Oernafk^ mir'ij'iJClureT. or otrierw «d <Jo*^ •nenaalion. or liivONng bv 'Vhe United _^_ . vs and opinions of authors enp'«i«] herein do noi IOM t' irip UnitK* Stales Govefnrneni c a^v agency For presentation at the 11th World Conference of the International Nuclear Target Development Society, October 6-8, 1982, Seattle, Washington. By acceptance of this article, the publisher or recipient acknowledge* the U.S. Govarnment's right to retain a nonaxclusiva, royalty-frtta license in and to any copyright covering tha article. NOTICE P0T09_0£-Jfns,J^SPQRT_JfgE_Il,LESIBLE. I has been reproauce.1 from the best available aopy to pensit the broadest possible avail- ability* *Research sponsored by the Office of Basic Energy Science, U.S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Co rpcration,, DISTRIBUTION OF THIS DOCUMEHT 18 UNLIMITED ' CONCURRENT REDUCTION AND DISTILLATION - AY. IMPROVED TECHNIQUE FOR THE RECOVERY AND CHEMICAL REFINEMENT OF THE ISOTOPES OF CADMIUM AND ZINC H. -
KULAGE-DISSERTATION-2013.Pdf
ENCRYPTED NANOPARTICLES FOR SECURITY, COUNTER-INDUSTRIAL ESPIONAGE, AND COUNTERFEITING A Dissertation by ZACHARY ANDREW KULAGE Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, William S. Charlton Committee Members, Sean M. McDeavitt John W. Poston, Sr. Charles M. Folden III Head of Department, Yassin A. Hassan December 2013 Major Subject: Nuclear Engineering Copyright 2013 Zachary Andrew Kulage ABSTRACT Acts of terrorism and the use of explosives raise concerns about what can be done to prevent such acts. From stopping such a threat to preventing the illicit counterfeiting and smuggling of sensitive and proprietary goods, identification tag- gant technology can be applied to identify and interdict materials of a dubious na- ture. This cost effective approach to tag and track materials will find application in both the government and private sectors, particularly in the prevention of corporate espionage. A taggant system was created based on the modification of the natural isotopic vector of cadmium and tellurium to create artificial, unique, and robust identification capabilities. A proof of concept trial was undertaken to ascertain the effectiveness, reliability, and integrity of a system. Stable isotopes were mixed in various combi- nations to alter the isotopic vector and then neutron activation analysis techniques were used to evaluate the quality of the taggants. Two different neutron activation analysis facilities of differing capabilities were employed to test the limitations of the method in detection of trace amounts of taggant material. Testing of the taggant system found that solid phase taggants were capable of producing around 14,000 unique taggants for under $250 each while liquid phase taggants were capable of producing around 2,000 unique taggants for under $50 each. -
Neutron Capture Cross Sections of Cadmium Isotopes
Neutron Capture Cross Sections of Cadmium Isotopes By Allison Gicking A thesis submitted to Oregon State University In partial fulfillment of the requirements for the degree of Bachelor of Science Presented June 8, 2011 Commencement June 17, 2012 Abstract The neutron capture cross sections of 106Cd, 108Cd, 110Cd, 112Cd, 114Cd and 116Cd were determined in the present project. Four different OSU TRIGA reactor facilities were used to produce redundancy in the results and to measure the thermal cross section and resonance integral separately. When the present values were compared with previously measured values, the differences were mostly due to the kind of detector used or whether or not the samples were natural cadmium. Some of the isotopes did not have any previously measured values, and in that case, new information about the cross sections of those cadmium isotopes has been provided. Table of Contents I. Introduction………………………………………………………………….…….…1 II. Theory………………………………………………………………………...…...…3 1. Neutron Capture…………………………………………………….….……3 2. Resonance Integral vs. Effective Thermal Cross Section…………...………5 3. Derivation of the Activity Equations…………………………………....…..8 III. Methods………………………………………………………….................…...…...12 1. Irradiation of the Samples………………………………………….….....…12 2. Sample Preparation and Parameters………………..………...………..……16 3. Efficiency Calibration of Detectors…………………………..………....…..18 4. Data Analysis…………………………………...…….………………...…..19 5. Absorption by 113Cd……………………………………...……...….………20 IV. Results………………………………………………….……………..……….…….22 -
Periodic Table 1 Periodic Table
Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table. -
The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: a Survey of Their Thermodynamic Properties
The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: A Survey of Their Thermodynamic Properties Cite as: Journal of Physical and Chemical Reference Data 22, 1459 (1993); https:// doi.org/10.1063/1.555922 Submitted: 21 December 1992 . Published Online: 15 October 2009 M. S. Chandrasekharaiah, J. L. Margrave, and P. A. G. O’Hare ARTICLES YOU MAY BE INTERESTED IN Thermodynamic considerations in refractory metal-silicon-oxygen systems Journal of Applied Physics 56, 147 (1984); https://doi.org/10.1063/1.333738 Thermal and Electrical Conductivity of Graphite and Carbon at Low Temperatures Journal of Applied Physics 15, 452 (1944); https://doi.org/10.1063/1.1707454 Formation of thin films of NiSi: Metastable structure, diffusion mechanisms in intermetallic compounds Journal of Applied Physics 55, 4208 (1984); https://doi.org/10.1063/1.333021 Journal of Physical and Chemical Reference Data 22, 1459 (1993); https://doi.org/10.1063/1.555922 22, 1459 © 1993 American Institute of Physics for the National Institute of Standards and Technology. The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: A Survey of Their Thermodynamic Properties M. s. Chandrasekharaiah and J. L. Margrave HARC, Materials Science Research Center, 4802 Research Forest Drive, The Woodlands, TX 77381 and P. A. G. O'Hare Chemical Kinetics and Thennodynamics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-0001 Received December 21, 1992; revised manuscript received February 19, 1993 A critical evaluation is presented of the thermodynamic properties of six disiIi cides and one monosilicide that are important in the manutacture ot very large scale integrated circuits. -
Arxiv:1305.1738V1 [Nucl-Ex] 8 May 2013 Ae Pcrsoystpa SLECR.High-Energy ISOLDE-CERN
Spins, Electromagnetic Moments, and Isomers of 107-129Cd D. T. Yordanov,1,2, ∗ D. L. Balabanski,3 J. Biero´n,4 M. L. Bissell,5 K. Blaum,1 I. Budinˇcevi´c,5 S. Fritzsche,6 N. Fr¨ommgen,7 G. Georgiev,8 Ch. Geppert,6, 7 M. Hammen,7 M. Kowalska,2 K. Kreim,1 A. Krieger,7 R. Neugart,7 W. N¨ortersh¨auser,6, 7 J. Papuga,5 and S. Schmidt6 1Max-Planck-Institut f¨ur Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany 2CERN European Organization for Nuclear Research, Physics Department, CH-1211 Geneva 23, Switzerland 3INRNE, Bulgarian Academy of Science, BG-1784 Sofia, Bulgaria 4Instytut Fizyki imienia Mariana Smoluchowskiego, Uniwersytet Jagiello´nski, Reymonta 4, 30-059 Krak´ow, Poland 5Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium 6GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH, D-64291 Darmstadt, Germany 7Institut f¨ur Kernchemie, Johannes Gutenberg-Universit¨at Mainz, D-55128 Mainz, Germany 8CSNSM-IN2P3-CNRS, Universit´ede Paris Sud, F-91405 Orsay, France (Dated: October 7, 2018) The neutron-rich isotopes of cadmium up to the N = 82 shell closure have been investigated by high-resolution laser spectroscopy. Deep-UV excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in 127Cd and 129Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by − a linear increase of the 11/2 quadrupole moments. Remarkably, this mechanism is found to act well beyond the h11/2 shell. PACS numbers: 21.10.Ky, 21.60.Cs, 32.10.Fn, 31.15.aj When first proposed the nuclear shell model was protons impinging on a tungsten rod produced low- to largely justified on the basis of magnetic-dipole proper- medium-energy neutrons inducing fission in a uranium ties of nuclei [1]. -
The Radiochemistry of Molybdenum COMMITTEE on NUCLEAR SCIENCE
National Academy of Sciences National Research council s NUCLEAR SCIENCE SERIES The Radiochemistry of Molybdenum COMMITTEE ON NUCLEAR SCIENCE L. F. CURTISS, Chairman ROBLEY D. EVANS, ViceCkainna?I NationalBureau ofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation H. J. CURTIS G. G. MANOV BrookhavenNationalLaboratory Tracerlah,Inc. SAMUEL EPSTEIN W. WAYNE MEINKE CaliforniaInstituteofTechnology Universityof Michigan HERBERT GOLDSTEIN A. H. SNELL NuclearDevelopmentCorporationof Oak Ridge NationalLaboratory America E. A. UEHLING H. J. GOMBERG UniversityofWashington UniversityofMichigan D. M. VAN PATTER E. D. KLEMA BartolResearch Foundation NorthwesternUniversity ROBERT L. PLATZMAN Argonne NationalLaboratory LIA SON MEMBERS PAUL C. AEBERSOLD W. D. URRY Atomic EnerW Commission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINICE, Chai?man EARL HYDE Universityof Mlchlgan UniversityofCalifornia(Berkeley) NATHAN BALLOU HAROLD KIRBY Navy RadiologicalDefenseLaboratory Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniver~ity Oak Ridge NationalLaboratory GEORGE A. COWAN ELLIS P. STEINBERG Los Alsmos ScientificLshoratory Argonne NationalLaboratory ARTHUR W. FAIRHALL PETER C. STEVENSON UniversityofWashington UniversityofCalifornia(Llvermore) HARMON FINSTON LEO YAFFE Brookhaven,NationalLaboratory McGillUniversity .. The Radiochernistry d Molybdenum By E. hf.SCADDEN and N. E. BALLOU U. S. -
Molybdenum in Drinking-Water
WHO/SDE/WSH/03.04/11/Rev/1 Molybdenum in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality Rev/1: Revisions indicated with a vertical line in the left margin. Molybdenum in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality © World Health Organization 2011 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for non-commercial distribution—should be addressed to WHO Press at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication.