The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: a Survey of Their Thermodynamic Properties

Total Page:16

File Type:pdf, Size:1020Kb

The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: a Survey of Their Thermodynamic Properties The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: A Survey of Their Thermodynamic Properties Cite as: Journal of Physical and Chemical Reference Data 22, 1459 (1993); https:// doi.org/10.1063/1.555922 Submitted: 21 December 1992 . Published Online: 15 October 2009 M. S. Chandrasekharaiah, J. L. Margrave, and P. A. G. O’Hare ARTICLES YOU MAY BE INTERESTED IN Thermodynamic considerations in refractory metal-silicon-oxygen systems Journal of Applied Physics 56, 147 (1984); https://doi.org/10.1063/1.333738 Thermal and Electrical Conductivity of Graphite and Carbon at Low Temperatures Journal of Applied Physics 15, 452 (1944); https://doi.org/10.1063/1.1707454 Formation of thin films of NiSi: Metastable structure, diffusion mechanisms in intermetallic compounds Journal of Applied Physics 55, 4208 (1984); https://doi.org/10.1063/1.333021 Journal of Physical and Chemical Reference Data 22, 1459 (1993); https://doi.org/10.1063/1.555922 22, 1459 © 1993 American Institute of Physics for the National Institute of Standards and Technology. The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: A Survey of Their Thermodynamic Properties M. s. Chandrasekharaiah and J. L. Margrave HARC, Materials Science Research Center, 4802 Research Forest Drive, The Woodlands, TX 77381 and P. A. G. O'Hare Chemical Kinetics and Thennodynamics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-0001 Received December 21, 1992; revised manuscript received February 19, 1993 A critical evaluation is presented of the thermodynamic properties of six disiIi­ cides and one monosilicide that are important in the manutacture ot very large scale integrated circuits. Values of the standard molar enthalpies of formation 8fH~ at T = 298.15 K and po = 0.1 MPa are recommended as follows: WSh, - (79 ± 5) 1 1 kJ'mo]-l; MoSh, - (137 ± 4) kJ'mol- ; TiSiz, - (171 ± 11) kJ'mol- ; CoSh, - (103 1 1 1 ± 15) kJ'mol- ; NiSh, - (88 ± 12) kJ'mol- ; TaSh, - (120 ± 20) kJ'mol- ; and l PtSi, - (119 ± 7) kJ·mol- . Equations are given for the molar enthalpy increments of some of the silicides along with a few evaluated standard Gibbs free energies of formation. Brief descriptions of methods of synthesis and limited structural informa­ tion have also been included. Key words: chemical thermodynamics; cobalt' disilicide; enthalpy increments; evaluated properties; molybdenum disilicide; nickel disilicide; platinum monosiIicide; standard enthalpies of formation; stan­ dard Gibbs free energies of formation; tantalum disilicide; titanium disiHcide; tungsten disilicide. Contents 1. Introduction ................................ 1459 List of Tables 2. Tungsten Disilicide .......................... 1460 2.1. Preparative Methods .................... 1460 1. The standard molar enthalpy of formation of 2.2. Thermodynamic Properties .............. 1460 WSh(cr, 298.15 K) ........................... 1460 3. Molybdenum Disilicide ...................... 1461 2. The standard molar enthalpy of formation of 3.1. Preparative Methods .................... 1461 MoSh(cr, 298.15 K) .......................... 1462 3.2. Thermodynamic Properties .............. 1461 3. Enthalpy increments for MoSb(cr) ........... 1463 4. Titanium Disilicide .......................... 1463 4. The standard molar enthalpy of formation of 4.1. Preparative Methods .................... 1464 TiSh(cr, a, 298.15 K) ......................... 1464 4.2. Thermodynamic Properties .............. 1464 5. Enthalpy increments for TiSb(cr) ............ 1465 5. Cobalt and Nickel Disilicides ................ 1465 6. The standard molar enthalpies of formation of 5.1. Preparative Methods .................... 1465 CoSh(cr) and NiSh(cr) at 298.15 K ........... 1465 5.2. Thermodynamic Properties .............. 1465 7. Enthalpy increments for CoSh(cr) and NiSi1.857 6. Tantalum Disilicide ......................... 1466 (cr, a) ..................................... 1466 6.1. Preparative Methods .................... 1466 8. The standard molar enthalpy of formation of 6.2. Thermodynamic Properties .............. 1466 TaSiz(cr, 298.15 K) .......................... 1467 7. Platinum Monosilicide ....................... 1466 9. The standard molar enthalpy of formation of 7.1. Preparative Methods .................... 1466 PtSi(cr, 298.15 K) ........................... 1467 7.2. Thermodynamic Properties .............. 1467 8. References ............... _. _. _.. ______ . __ . __ 1467 1. Introduction There is a revival of interest in the chemistry of transi­ ©1993 by the U.S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics tion-metal disilicides as a result of their use as intercon­ and the American Chemical Society. nects and gate materials in very-large-scale integrated Reprints available from ACS; see Reprints List at back of issue. (VLSI) circuits.1 Considerable R&D efforts have been 0047-2689/93/22(6)/1459/10/$10.00 1459 J. Phys. Chem. Ref. Data, Vol. 22, No.6, 1993 1460 CHANDRASEKHARAIAH, MARGRAVE, AND O'HARE expended in the preparation and measurement of the and Harshbarger7 calculated the equilibrium composi­ electrical properties of thin films of these disilicides, but tions under CVD conditions for deposition of WSh from much less attention has been paid to their thermody­ two different feed gases: (WF6 + Si~ + H2) and (WF6 namic properties. Without reliable thermodynamic infor­ + SiH2Ch + H2) at temperatures between 473 K and mation for these materials, any long-term compatibility 1073 K at p = 67 Pa. They showed that WSh film was the evaluation is of little value. only silicide phase formed in both cases. Blanquet et al. 8 Schlesinger recently surveyed in a general way the examined the optimum thermodynamic conditions for thermodynamic properties of metal silicides. His review CVD deposition of WSh at p = 0.1 MPa by means of in covered literature references exhaustively, but critical cs­ situ chlorination of W-films followed by reaction with timates of the uncertainties in the selected values are (Si~ + H2)' Dobkin et al.9 obtained high-quality films of lacking. The only other comprehensive review of the ther­ WSh by CVD from (WF6 + ShH6) or (SiH4 + H2 + N2) mochemical properties of metal silicides was published at p = 0.1 MPa and temperatures of the substrate be­ 3 about 20 years ago by Chart. ,4 tween 563 K and 583 K. Zhang et al.1O obtained WSix by In the present assessment, a thorough search was made low-pressure CVD from (WF6 +SiH4 + Ar), and WSh of the literature of the thermodynamic properties of the by annealing on Si substrates W films formed from WF6. 11 crystalline disilicides of tungsten, molybdenum, tantalum, Tungsten disilicide and similar films prepared by CVD titanium, cobalt, and nickel, and of the monosilicide of are usually characterized by standard surface techniques platinum, because those substances appear to predomi­ including Rutherford back-scattering. nate in modern VLSI designs. The thermochemical prop­ erties: standard molar enthalpy of formation at T = 2.2. Thermodynamic Properties 298.15 K, molar enthalpy increments relative to T = 298.15 K. and standard molar Gihhs free energies of for­ A recent ~ssesssment of the (W + Si) phase diagram mation are tabulated and appraised, and selected values by Nagender Naidu et al.12 showed WSh to be a con­ are recommended. That is the main thrust of the effort. gruently-melting intermediate phase that crystallized in In addition, for each disilicide, we have included short, by tetragonal form (tI6, space group I4/mmm, a = 0.3211 no means exhaustive, sections that list methods of synthe­ nm, C = 0.7868 nm; melting temperature 2433 ± 4 K). sis, structural information, and some details of the phase The only other solid phase observed in this system was diagram. the congruently melting (at T = 2593 ± 10 K) tetragonal WsSh, which has a small compositional homogeneity.Ap­ 2. Tungstel) Disilicide parently, W3Si does not exist. The direct-reaction calorimetric determination of the 2.1. Preparative Methods standard molar enthalpy of formation dfH~(WSh, 298.15 K) by Robins and Jenkins13 was, for many years, Tungsten disilicide, in common with the other disili­ the only experimental result for this quantity. O'Harel4 cides discussed in this survey, is generally prepared by di­ has recently determined AfH~ by fluorine-combustion 15 U recUy heating mixtures of stoichiometric amounts of pure calorimetry. Several estimates - ! of dfH~(WSh) have specimens of Si and the appropriate second element in a been published . Chart19 deduced the molar Gibbs free vacuum or inert atmosphere to about 1500 K, followed by energy of formation from Knudsen-effusion measure­ s s quenching to room temperature. Bondarenko et al. pre­ ments. Bondarenko et al. ,20 obtained the high-tempera­ pared single-phase WSh by the diffusion impregnation in ture enthalpy increments (1200 K to 2200 K) from vacuum of a tablet or thin sheet of tungsten with silicon. measurements with a drop calorimeter. A number of workers6- 11 used CVD techniques to All the values of the enthalpies of formation are col­ deposit thin (~50 J,Lm) films of WSh on silicon sub­ lected in Table 1. 6 strates. Hammar et al. laid tungsten films on prede­ Robins and Jenkins13 deduced AfH~(WSh) from the posited polycrystaHine Si in a CVD system at p = 47 Pa measured total enthalpy changes when compacted sam­ and T = 623 K, followed by annealing at 1073 K. Rode
Recommended publications
  • Evolution and Understanding of the D-Block Elements in the Periodic Table Cite This: Dalton Trans., 2019, 48, 9408 Edwin C
    Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Evolution and understanding of the d-block elements in the periodic table Cite this: Dalton Trans., 2019, 48, 9408 Edwin C. Constable Received 20th February 2019, The d-block elements have played an essential role in the development of our present understanding of Accepted 6th March 2019 chemistry and in the evolution of the periodic table. On the occasion of the sesquicentenniel of the dis- DOI: 10.1039/c9dt00765b covery of the periodic table by Mendeleev, it is appropriate to look at how these metals have influenced rsc.li/dalton our understanding of periodicity and the relationships between elements. Introduction and periodic tables concerning objects as diverse as fruit, veg- etables, beer, cartoon characters, and superheroes abound in In the year 2019 we celebrate the sesquicentennial of the publi- our connected world.7 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cation of the first modern form of the periodic table by In the commonly encountered medium or long forms of Mendeleev (alternatively transliterated as Mendelejew, the periodic table, the central portion is occupied by the Mendelejeff, Mendeléeff, and Mendeléyev from the Cyrillic d-block elements, commonly known as the transition elements ).1 The periodic table lies at the core of our under- or transition metals. These elements have played a critical rôle standing of the properties of, and the relationships between, in our understanding of modern chemistry and have proved to the 118 elements currently known (Fig. 1).2 A chemist can look be the touchstones for many theories of valence and bonding.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Processing, Microstructure, and Mechanical Properties of Zirconium Diboride-Molybdenum Disilicide Ceramics and Dual Composite Architectures
    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Spring 2017 Processing, microstructure, and mechanical properties of zirconium diboride-molybdenum disilicide ceramics and dual composite architectures Ryan Joseph Grohsmeyer Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Energy Systems Commons, and the Materials Science and Engineering Commons Department: Materials Science and Engineering Recommended Citation Grohsmeyer, Ryan Joseph, "Processing, microstructure, and mechanical properties of zirconium diboride- molybdenum disilicide ceramics and dual composite architectures" (2017). Doctoral Dissertations. 2561. https://scholarsmine.mst.edu/doctoral_dissertations/2561 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. PROCESSING, MICROSTRUCTURE, AND MECHANICAL PROPERTIES OF ZIRCONIUM DIBORIDE-MOLYBDENUM DISILICIDE CERAMICS AND DUAL COMPOSITE ARCHITECTURES by RYAN JOSEPH GROHSMEYER A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in MATERIALS SCIENCE AND ENGINEERING 2017 Submitted to: Gregory Hilmas, Advisor William Fahrenholtz Jeffrey Smith David Van Aken Lokeswarappa Dharani iii PUBLICATION DISSERTATION OPTION This dissertation consists of the following five articles that will be submitted for publication as follows and have been formatted in the style of the journal Ceramics International. The manuscripts entitled, “ZrB2-MoSi2 Ceramics with Varying MoSi2 Content: Part 1. Processing and Microstructure with Varying ZrB2 Particle Size:” (Paper I, Pages 50–80), and the manuscript entitled “ZrB2-MoSi2 Ceramics with Varying MoSi2 Content: Part 2.
    [Show full text]
  • Research Memorandum
    RM E52B06 NACA RESEARCH MEMORANDUM SOME FACTORS AFFECTING FABRICATION AND HIGH-TEMPERATURE STRENGTH OF MOLYBDENUM DISILICIDE By W. A. Maxwell Lewis Flight Propulsion Labora tory Cleveland, Ohio NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON April 17 , 1952 1U NACA RM E58B06 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS RESEARCH MEMORANDUM SOME FACTORS AFFECTING FABRICATION AND HIGH-TEMPERATURE STRENGTH OF MOLYBDENUM DISILICIDE By W. A. Maxwell SUMMARY In an investigation of the properties of molybdenum disilicide, a fine-grain material having a moderately high oxygen content has been produced by cold-pressing and sintering, and a large-grain material having a lower oxygen content and a density of 99 percent of the theo­ retical density has been produced by hot-pressing. In a series of experiments with the fine-grain material in which the only variable was the amount of carbon added, marked increases in modulus-of-rupture strength were found at carbon contents between 0.15 and 0.3 percent. Improvements in the long-time deformation properties, as shown by the flexure-creep test, and decreased high-temperature plasticity accompanied the carbon additions. The Knoop hardness was 1160. The beneficial effects of carbon additions on strength are attri­ buted to partial deoxidation of the material, particularly the reduction of molybdenum oxides, and the formation of silicon carbide and other carbides. Exceptionally high short-time strengths, in comparison with other high-temperature materials, were obtained with sintered molybdenum disilicide containing from 1.0 to 1.4 percent oxygen. The effects of such oxygen contents on sintering and binding may be beneficial. The large-grain, hot-pressed molybdenum disilicide having a low oxygen content possessed superior high-temperature deformation resist­ ance, slightly inferior short-time strength, and decreased high­ temperature plasticity as compared with the fine-grain molybdenum disili­ cide to which carbon was added.
    [Show full text]
  • Diffusion of Carbon in Niobium and Molybdenum
    Materials Transactions, Vol. 55, No. 12 (2014) pp. 1786 to 1791 ©2014 The Japan Institute of Metals and Materials Diffusion of Carbon in Niobium and Molybdenum Jun-ichi Imai1, Osamu Taguchi2,+, Gyanendra Prasad Tiwari3 and Yoshiaki Iijima1 1Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan 2Department of Materials Science and Engineering, Miyagi National College of Technology, Natori 981-1239, Japan 3Department of Information Technology, Ramrao Adik Institute of Technology, Vidya Nagri, Nerul, Navi Mumbai 400709, India Diffusion coefficients of carbon in niobium and molybdenum have been determined by the residual activity method with radioactive tracer 14C in the temperature ranges between 1168 and 1567 K for niobium and between 1271 and 1669 K for molybdenum. The temperature dependences of the diffusion coefficient of carbon in niobium and molybdenum are expressed by D/m2 s¹1 = 2.2 © 10¹6 exp(¹152 kJ mol¹1/ RT) and D/m2 s¹1 = 5.2 © 10¹6 exp(¹163 kJ mol¹1/RT), respectively. Since the solubility of carbon in molybdenum is very small, the diffusion of carbon in molybdenum is strongly influenced by carbide precipitation at lower temperatures. [doi:10.2320/matertrans.M2014277] (Received July 31, 2014; Accepted September 30, 2014; Published November 8, 2014) Keywords: carbon diffusion, niobium, molybdenum, carbon solubility, precipitate effect 1. Introduction 2. Experimental Procedure Iron, nickel and cobalt based superalloys appear to have 2.1 Material achieved full potential in relation to their use as structural Niobium metal rod arc-melted and machined to 12.5 mm in materials for corrosive environments as well as high diameter was supplied by Materials Research Corporation, temperatures.1) The strength of these alloys comes partly USA.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Research Memorandum
    RESEARCH MEMORANDUM PROPERTIES OF CERTAIN INTER&UXTALLICS AS RELATtiD . TO ELEVATED-TEMPERATURE APPLICATIONS I - MOLYBDENUM DISILKXDE Ld By W. A. MaxweJ.l. Lewis l&&t Propulsion Laboratory Cleveland, Ohio .: _i. I_ -.ClASSIFICATfON CANC NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON October 6,1949 NACA RM E9GOl NA!KCONALADVISORYCOMKETEEFORAXRONAUTICS I -MOL~DISILIC~ By W. A. Maxwell A method for the preparation and purification of the inter- metallic, molybdenum disilicide, was developed and the following properties were determined for the sintered material: Tanperature Room 2000°F 2400°F Modulus of rupture, lb/sq in. 50,700 35,700 20,700 Total elongation calculated f4 fletietests, percent . 0.09 0.72 3.2 Plastic elongation calculated from flexure tests, percent . none 0.39 1.4 DeIlBity: Theoretioal (X-ray data), grams/cm1 . 6.24 Potiered,gramsbl........, . 6.2 Sintered,msj%l... ..5.66 Rockwell hardness (superpioial) . , . C-57 Crystal structure tetragonal body-centered Oxidation resistax.d,'s~a;le'&Z ;n'aL 200ooF' 2400°F (gnmgaFnlBqcm)fhr. -0.000ooo4 0.000005 Chemical mpertles of molybdenum disilicide were found to be: highly inert, unattadsed by boilin@; hydroohloric acid, sulfuric acid, or aqueous sodium hydroxide; elightly attacked by nitrio acid; dis- solved by molten sodium h-de. The sintered material is silvery white in co&, possesses high eleutria oonductivity, and is resistant to thermal shock. Molybdenum disilicide melts at 3500° &IL@ F with decomposition. 2 NACA FM lBGO1 Plastic deformation of the intermetallic at temperatures well below the melting point was observed although only brittle behavior wasapparentatroomtemperature. From the Investigation c&Tpropertiee of molybdenum dieilioide, it appear0 that: 1.
    [Show full text]
  • The Radiochemistry of Molybdenum COMMITTEE on NUCLEAR SCIENCE
    National Academy of Sciences National Research council s NUCLEAR SCIENCE SERIES The Radiochemistry of Molybdenum COMMITTEE ON NUCLEAR SCIENCE L. F. CURTISS, Chairman ROBLEY D. EVANS, ViceCkainna?I NationalBureau ofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation H. J. CURTIS G. G. MANOV BrookhavenNationalLaboratory Tracerlah,Inc. SAMUEL EPSTEIN W. WAYNE MEINKE CaliforniaInstituteofTechnology Universityof Michigan HERBERT GOLDSTEIN A. H. SNELL NuclearDevelopmentCorporationof Oak Ridge NationalLaboratory America E. A. UEHLING H. J. GOMBERG UniversityofWashington UniversityofMichigan D. M. VAN PATTER E. D. KLEMA BartolResearch Foundation NorthwesternUniversity ROBERT L. PLATZMAN Argonne NationalLaboratory LIA SON MEMBERS PAUL C. AEBERSOLD W. D. URRY Atomic EnerW Commission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINICE, Chai?man EARL HYDE Universityof Mlchlgan UniversityofCalifornia(Berkeley) NATHAN BALLOU HAROLD KIRBY Navy RadiologicalDefenseLaboratory Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniver~ity Oak Ridge NationalLaboratory GEORGE A. COWAN ELLIS P. STEINBERG Los Alsmos ScientificLshoratory Argonne NationalLaboratory ARTHUR W. FAIRHALL PETER C. STEVENSON UniversityofWashington UniversityofCalifornia(Llvermore) HARMON FINSTON LEO YAFFE Brookhaven,NationalLaboratory McGillUniversity .. The Radiochernistry d Molybdenum By E. hf.SCADDEN and N. E. BALLOU U. S.
    [Show full text]
  • Mosi2 and Other Silicides As High Temperature Structural Materials
    MoSi2 AND OTHER SILICIDES AS HIGH TEMPERATURE STRUCTURAL MATERIALS DILIP M. SHAH Pratt & Whitney 400 Main St. E. Hartford, CT. 06108 Abstract There has been a revival of interest in MoSi;? and other refractory silicides, hitherto used for heating elements and coatings, as high temperature structural materials. With their high melting point and excellent high temperature oxidation resistance, silicides as a class of intermetallics, have potential for developing temperature capability beyond nickel base superalloys. Though metal like in their physical properties, silicides are in general brittle at room temperature. This drawback is being addressed through a variety of in-situ and artificial composite approaches. This paper attempts to provide a perspective on these approaches with a review of current activities. To provide a background, the development strategies for high temperature structural materials are discussed, followed by an overview on formation of silicides. The relevant mechanical and physical properties and environmental resistance of silicides are compared using superalloys as the benchmark, to help assess the risks versus benefits. Finally, the paper concludes with a brief summary of primarily fiber reinforced MoSi2 composites and ductile phase reinforced in-situ composites based on other silicides. The unavailability of suitable fibers and interface coating for conventional composites and containerless solidification for in-situ composites are identified as the principal problems. Superalloys 1992 Edited by S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstmm The Minerals, Metals & Materials Society, 1992 409 Introduction Since as early as 1956, molybdenum disilicide (MoSi2) based material has been commercially available as Super Kanthal [l], along with nickel-chromium based heating elements.
    [Show full text]
  • Molybdenum in Drinking-Water
    WHO/SDE/WSH/03.04/11/Rev/1 Molybdenum in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality Rev/1: Revisions indicated with a vertical line in the left margin. Molybdenum in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality © World Health Organization 2011 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for non-commercial distribution—should be addressed to WHO Press at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication.
    [Show full text]
  • Atomic Weights of the Elements 2013 (IUPAC Technical Report)
    Pure Appl. Chem. 2016; 88(3): 265–291 IUPAC Technical Report Juris Meija*, Tyler B. Coplen, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Norman E. Holden, Johanna Irrgeher, Robert D. Loss, Thomas Walczyk and Thomas Prohaska Atomic weights of the elements 2013 (IUPAC Technical Report) DOI 10.1515/pac-2015-0305 Received March 26, 2015; accepted December 8, 2015 Abstract: The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of 19 elements. The standard atomic weights of four elements have been revised based on recent determinations of isotopic abundances in natural terrestrial materials: cadmium to 112.414(4) from 112.411(8), molybdenum to 95.95(1) from 95.96(2), selenium to 78.971(8) from 78.96(3), and thorium to 232.0377(4) from 232.038 06(2). The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) also revised the standard atomic weights of fifteen elements based on the 2012 Atomic Mass Evaluation: aluminium (aluminum) to 26.981 5385(7) from 26.981 5386(8), arsenic to 74.921 595(6) from 74.921 60(2), beryllium to 9.012 1831(5) from 9.012 182(3), caesium (cesium) to 132.905 451 96(6) from 132.905 4519(2), cobalt to 58.933 194(4) from 58.933 195(5), fluorine to 18.998 403 163(6) from 18.998 4032(5), gold to 196.966 569(5) from 196.966 569(4), holmium to 164.930 33(2) from 164.930 32(2), manganese to 54.938 044(3) from 54.938 045(5), niobium to 92.906 37(2) from 92.906 38(2), phosphorus to 30.973 761 998(5) from 30.973 762(2), praseodymium to 140.907 66(2) from 140.907 65(2), Article note: Sponsoring body: IUPAC Inorganic Chemistry Division Committee: see more details on page 289.
    [Show full text]
  • Research Memorandum
    RM E52A04 NACA RESEARCH MEMORANDU M OXIDATION-RESISTANCE MECHANISM AND OTHER PROPERTIES OF MOLYBDENUM DISILICIDE By W. A. Maxwell Lewis Flight Propulsion Laboratory Cleveland, Ohio NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON March 14, 1952 lW NACA RM E52A04 NATIONAL ADVISORY COMMITTEE FOR AERONAUTIeS RESEARCH MEMORANDUM OXIDATION-RESISTANCE MECHANISM AND OTHER PROPERTIES OF MOLYBDENUM DISILICIDE By W. A. Maxwell SUMMARY An experimental investigation was conducted to determine the oxidation-resistance mechanism, the melting characteristics, the electric resistiVity, and the modulus of elasticity of molybdenum disilicide. Molybdenum disilicide MoSi2 bodies are protected from oxidation at high temperatures by the formation of a protective siliceous coating in which ~cristobalite has been identified as the sole or principa~ constituent. In powdered form, MoSi2 is not inherently resistant to oxidation and burns in air at comparatively low temperatures. Molybdenum disilicide decomposed at the melting point with the loss of appreciable silicon. This phenomenon has so far prevented casting of satisfactory ingots. Decomposition below the melting point was indicated. The electric resistivity of MoSi2 at room temperature varies from 23 to 27 microhm-centimeters depending on the method of fabrication. The conductivity was found to be metallic in nature and to decrease with increasing temperatures to 20000 F. The room-temperature modulus of elasticity as determined by a dynamic method was 59 Xl06 pounds per square inch. Poor damping character­ istics are indicated for the material at room temperature. INTRODUCTION The outstanding oxidation resistance of molybdenum disilicide MoSi2 at high temperatures, as previously reported (references 1 and 2) and as summarized in table I, places it among the most resistant of materials in the temperature range from 20000 to 28500 F.
    [Show full text]