Processing, Microstructure, and Mechanical Properties of Zirconium Diboride-Molybdenum Disilicide Ceramics and Dual Composite Architectures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interface Engineering of Graphene Nanosheet Reinforced Zrb2
Interface engineering of graphene nanosheet reinforced ZrB2 composites by tuning surface contacts Yanhui Zhang∗„y and Stefano Sanvito∗„y E-mail: [email protected]; [email protected] Abstract The mechanical properties of heterophase interfaces are critically important for the behaviour of graphene-reinforced composites. In this work, the structure, adhe- sion, cleavage and sliding of heterophase interfaces, formed between a ZrB2 matrix and graphene nanosheets, are systematically investigated by density functional theory, and compared to available experimental data. We demonstrate that the surface chemistry of the ZrB2 matrix material largely shapes the interface structures (of either Zr-C-Zr or B-C-B type) and the nature of the interfacial interaction. The Zr-C-Zr interfaces present strong chemical bonding and their response to mechanical stress is significantly influenced by graphene corrugation. In contrast B-C-B interfaces, interacting through the relatively weak π-π stacking, show attributes similar to 2D materials heterostruc- tures. Our theoretical results provide insights into the interface bonding mechanisms in arXiv:1904.09008v1 [cond-mat.mtrl-sci] 18 Apr 2019 graphene/ceramic composites, and emphasize the prospect for their design via interface engineering enabled by surface contacts. 1 Keywords ZrB2, graphene, interface, mechanical properties, ultra-high temperature ceramics, density functional theory, ceramic matrix composites 1 Introduction Within the last ten years, the use of graphene as nanofiller in ceramic matrix composites (CMCs), -
Research Memorandum
RM E52B06 NACA RESEARCH MEMORANDUM SOME FACTORS AFFECTING FABRICATION AND HIGH-TEMPERATURE STRENGTH OF MOLYBDENUM DISILICIDE By W. A. Maxwell Lewis Flight Propulsion Labora tory Cleveland, Ohio NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON April 17 , 1952 1U NACA RM E58B06 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS RESEARCH MEMORANDUM SOME FACTORS AFFECTING FABRICATION AND HIGH-TEMPERATURE STRENGTH OF MOLYBDENUM DISILICIDE By W. A. Maxwell SUMMARY In an investigation of the properties of molybdenum disilicide, a fine-grain material having a moderately high oxygen content has been produced by cold-pressing and sintering, and a large-grain material having a lower oxygen content and a density of 99 percent of the theo retical density has been produced by hot-pressing. In a series of experiments with the fine-grain material in which the only variable was the amount of carbon added, marked increases in modulus-of-rupture strength were found at carbon contents between 0.15 and 0.3 percent. Improvements in the long-time deformation properties, as shown by the flexure-creep test, and decreased high-temperature plasticity accompanied the carbon additions. The Knoop hardness was 1160. The beneficial effects of carbon additions on strength are attri buted to partial deoxidation of the material, particularly the reduction of molybdenum oxides, and the formation of silicon carbide and other carbides. Exceptionally high short-time strengths, in comparison with other high-temperature materials, were obtained with sintered molybdenum disilicide containing from 1.0 to 1.4 percent oxygen. The effects of such oxygen contents on sintering and binding may be beneficial. The large-grain, hot-pressed molybdenum disilicide having a low oxygen content possessed superior high-temperature deformation resist ance, slightly inferior short-time strength, and decreased high temperature plasticity as compared with the fine-grain molybdenum disili cide to which carbon was added. -
Impact Testing of Zirconium Diboride Mark David Flores University of Texas at El Paso, [email protected]
University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2012-01-01 Impact Testing of Zirconium Diboride Mark David Flores University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Mechanical Engineering Commons Recommended Citation Flores, Mark David, "Impact Testing of Zirconium Diboride" (2012). Open Access Theses & Dissertations. 2283. https://digitalcommons.utep.edu/open_etd/2283 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. IMPACT TESTING OF ZIRCONIUM DIBORIDE MARK D. FLORES Department of Mechanical Engineering APPROVED: Jack F. Chessa Ph.D., Chair Chintalapalle V. Ramana, Ph.D. Cesar Carrasco, Ph.D. Benjamin C. Flores, Ph.D. Interim Dean of the Graduate School Copyright © by Mark D. Flores 2012 IMPACT TESTING OF ZIRCONIUM DIBORIDE by MARK D. FLORES THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Mechanical Engineering THE UNIVERSITY OF TEXAS AT EL PASO May 2012 Abstract Materials research is one of the driving forces that stimulate new ideas and concepts in a wide range of engineering applications. Material research allows engineers and scientists the ability to find new ways to use high performance materials to advance technology in the aerospace industry. In this study, Zirconium Diboride (ZrB2) will be the subject of impact testing at various speeds. -
Improved Performances of Sibcn Powders Modified Phenolic Resins-Carbon Fiber Composites
processes Article Improved Performances of SiBCN Powders Modified Phenolic Resins-Carbon Fiber Composites Wenjie Yuan 1,2, Yang Wang 1,2, Zhenhua Luo 1,2, Fenghua Chen 1,2,*, Hao Li 1,2,* and Tong Zhao 1,2,* 1 Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; [email protected] (W.Y.); [email protected] (Y.W.); [email protected] (Z.L.) 2 School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] (F.C.); [email protected] (H.L.); [email protected] (T.Z.) Abstract: The effect of SiBCN powder on properties of phenolic resins and composites was analyzed. Compared with phenolic resins, the thermal stability of SiBCN powder modified phenolic resins (the SiBCN phenolic resins) by characterization of thermogravimetric analysis (TGA) improved clearly. It was found by X-ray photoelectron spectroscopy (XPS) that reactions between SiBCN powder and the pyrolysis product of phenolic resins were the main factor of the increased residual weight. TGA and static ablation of a muffle furnace were used to illustrate the roles of SiBCN powder on increasing oxidation resistance of SiBCN powder-modified phenolic resin–carbon fiber composites (SiBCN–phenolic/C composites), and the oxidative product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). For SiBCN–phenolic/C composites, the occurrence of oxidation reaction and the formation of protective crust contributed to improving oxidative resistance. The result of the oxygen-acetylene test showed that the linear ablation rate (LAR) and mass ablation rate (MAR) of phenolic resin–carbon fiber Citation: Yuan, W.; Wang, Y.; Luo, Z.; composites reduced from 0.052 ± 0.005 mm/s to 0.038 ± 0.004 mm/s and from 0.050 ± 0.004 g/s to Chen, F.; Li, H.; Zhao, T. -
The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: a Survey of Their Thermodynamic Properties
The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: A Survey of Their Thermodynamic Properties Cite as: Journal of Physical and Chemical Reference Data 22, 1459 (1993); https:// doi.org/10.1063/1.555922 Submitted: 21 December 1992 . Published Online: 15 October 2009 M. S. Chandrasekharaiah, J. L. Margrave, and P. A. G. O’Hare ARTICLES YOU MAY BE INTERESTED IN Thermodynamic considerations in refractory metal-silicon-oxygen systems Journal of Applied Physics 56, 147 (1984); https://doi.org/10.1063/1.333738 Thermal and Electrical Conductivity of Graphite and Carbon at Low Temperatures Journal of Applied Physics 15, 452 (1944); https://doi.org/10.1063/1.1707454 Formation of thin films of NiSi: Metastable structure, diffusion mechanisms in intermetallic compounds Journal of Applied Physics 55, 4208 (1984); https://doi.org/10.1063/1.333021 Journal of Physical and Chemical Reference Data 22, 1459 (1993); https://doi.org/10.1063/1.555922 22, 1459 © 1993 American Institute of Physics for the National Institute of Standards and Technology. The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: A Survey of Their Thermodynamic Properties M. s. Chandrasekharaiah and J. L. Margrave HARC, Materials Science Research Center, 4802 Research Forest Drive, The Woodlands, TX 77381 and P. A. G. O'Hare Chemical Kinetics and Thennodynamics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-0001 Received December 21, 1992; revised manuscript received February 19, 1993 A critical evaluation is presented of the thermodynamic properties of six disiIi cides and one monosilicide that are important in the manutacture ot very large scale integrated circuits. -
Combined Dilatometry and Mass Spectrometry of Sintering And
COMBINED DILATOMETRY AND MASS SPECTROMETRY OF SINTERING AND EVOLVED GASES OF BARIUM TITANATE AND ZIRCONIUM DIBORIDE WITH SINTERING ADDITIVES _______________________________________ A Thesis presented to the Faculty of the Graduate School University of Missouri _______________________________________ In Partial Fulfillment Of the Requirements for the Degree Master of Science _______________________________________ by MURRAY MOSS Dr. Stephen J. Lombardo, Thesis Supervisor DECEMBER 2012 The undersigned, Appointed by the Dean of the Graduate School, have examined the thesis entitled COMBINED DILATOMETRY AND MASS SPECTROMETRY OF SINTERING AND EVOLVED GASES OF BARIUM TITANATE AND ZIRCONIUM DIBORIDE WITH SINTERING ADDITIVES Presented by Murray Moss A candidate for the degree of Master of Science And hereby certify that in their opinion it is worth of acceptance. Dr. Stephen J. Lombardo _____________________________________________ Dr. David Retzloff _____________________________________________ Dr. Alan Whittington _____________________________________________ ACKNOWLEDGEMENTS I would like to first thank Dr. Stephen J. Lombardo for giving me the opportunity to work in his lab and for all the time he has spent with me on this project. Dr. Lombardo has been all that a teacher and mentor should be: an invaluable source of knowledge, one which motivates and challenges you to grow, all the while showing enormous patience. I really appreciate all you have done for me and wish you success in the future. Secondly, I would like to thank the GAANN (Graduate Assistantship in Areas of National Need) Fellowship for financial support for both myself and the lab, and for the opportunity to meet other professionals by attending conferences. I would also like to thank my Thesis Committee members Dr. Retzloff and Dr. -
Research Memorandum
RESEARCH MEMORANDUM PROPERTIES OF CERTAIN INTER&UXTALLICS AS RELATtiD . TO ELEVATED-TEMPERATURE APPLICATIONS I - MOLYBDENUM DISILKXDE Ld By W. A. MaxweJ.l. Lewis l&&t Propulsion Laboratory Cleveland, Ohio .: _i. I_ -.ClASSIFICATfON CANC NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON October 6,1949 NACA RM E9GOl NA!KCONALADVISORYCOMKETEEFORAXRONAUTICS I -MOL~DISILIC~ By W. A. Maxwell A method for the preparation and purification of the inter- metallic, molybdenum disilicide, was developed and the following properties were determined for the sintered material: Tanperature Room 2000°F 2400°F Modulus of rupture, lb/sq in. 50,700 35,700 20,700 Total elongation calculated f4 fletietests, percent . 0.09 0.72 3.2 Plastic elongation calculated from flexure tests, percent . none 0.39 1.4 DeIlBity: Theoretioal (X-ray data), grams/cm1 . 6.24 Potiered,gramsbl........, . 6.2 Sintered,msj%l... ..5.66 Rockwell hardness (superpioial) . , . C-57 Crystal structure tetragonal body-centered Oxidation resistax.d,'s~a;le'&Z ;n'aL 200ooF' 2400°F (gnmgaFnlBqcm)fhr. -0.000ooo4 0.000005 Chemical mpertles of molybdenum disilicide were found to be: highly inert, unattadsed by boilin@; hydroohloric acid, sulfuric acid, or aqueous sodium hydroxide; elightly attacked by nitrio acid; dis- solved by molten sodium h-de. The sintered material is silvery white in co&, possesses high eleutria oonductivity, and is resistant to thermal shock. Molybdenum disilicide melts at 3500° &IL@ F with decomposition. 2 NACA FM lBGO1 Plastic deformation of the intermetallic at temperatures well below the melting point was observed although only brittle behavior wasapparentatroomtemperature. From the Investigation c&Tpropertiee of molybdenum dieilioide, it appear0 that: 1. -
Mosi2 and Other Silicides As High Temperature Structural Materials
MoSi2 AND OTHER SILICIDES AS HIGH TEMPERATURE STRUCTURAL MATERIALS DILIP M. SHAH Pratt & Whitney 400 Main St. E. Hartford, CT. 06108 Abstract There has been a revival of interest in MoSi;? and other refractory silicides, hitherto used for heating elements and coatings, as high temperature structural materials. With their high melting point and excellent high temperature oxidation resistance, silicides as a class of intermetallics, have potential for developing temperature capability beyond nickel base superalloys. Though metal like in their physical properties, silicides are in general brittle at room temperature. This drawback is being addressed through a variety of in-situ and artificial composite approaches. This paper attempts to provide a perspective on these approaches with a review of current activities. To provide a background, the development strategies for high temperature structural materials are discussed, followed by an overview on formation of silicides. The relevant mechanical and physical properties and environmental resistance of silicides are compared using superalloys as the benchmark, to help assess the risks versus benefits. Finally, the paper concludes with a brief summary of primarily fiber reinforced MoSi2 composites and ductile phase reinforced in-situ composites based on other silicides. The unavailability of suitable fibers and interface coating for conventional composites and containerless solidification for in-situ composites are identified as the principal problems. Superalloys 1992 Edited by S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstmm The Minerals, Metals & Materials Society, 1992 409 Introduction Since as early as 1956, molybdenum disilicide (MoSi2) based material has been commercially available as Super Kanthal [l], along with nickel-chromium based heating elements. -
University of Birmingham Synthesis of Ultra-Refractory Transition Metal
University of Birmingham Synthesis of ultra-refractory transition metal diboride compounds Fahrenholtz, William G.; Binner, Jon; Zou, Ji DOI: 10.1557/jmr.2016.210 Document Version Peer reviewed version Citation for published version (Harvard): Fahrenholtz, WG, Binner, J & Zou, J 2016, 'Synthesis of ultra-refractory transition metal diboride compounds', Journal of Materials Research, vol. 31, no. 18, pp. 2757-2772. https://doi.org/10.1557/jmr.2016.210 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 04/10/2016. COPYRIGHT: © Materials Research Society 2016 Fahrenholtz, W.G., Binner, J. and Zou, J. (2016) ‘Synthesis of ultra-refractory transition metal diboride compounds’, Journal of Materials Research, 31(18), pp. 2757–2772. doi: 10.1557/jmr.2016.210. https://www.cambridge.org/core/journals/journal-of-materials-research/article/synthesis-of-ultra-refractory-transition-metal-diboride- compounds/439AC30524D1F1E2970F306B038DD857 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. -
Sintering of Zirconium Diboride-Silicon Carbide (Zrb2-SIC
UNIVERSITÉ DE LIMOGES UNIVERSITI MALAYSIA SARAWAK ÉCOLE DOCTORALE DOCTORAL PROGRAM Science et Ingénierie en Matériaux, Advanced Material Mécanique, Energétique et Aéronautique FACULTY OF ENGINEERING FACULTÉ DES SCIENCES ET TECHNIQUES Department of Mechanical and Laboratoire Sciences des Procédés Céramiques et Manufacturing Engineering Traitements de Surfaces (UMR CNRS – 7315) THÈSE DOCTEUR DE L’UNIVERSITÉ DE LIMOGES Spécialité: Matériaux Céramiques et Traitements de Surface et DOCTOR OF PHILOSOPHY UNIVERSITI MALAYSIA SARAWAK Speciality: Advanced Material Présentée et soutenue par Dayang Salyani Binti ABANG MAHMOD Octobre, 2017 Sintering of Zirconium Diboride-Silicon Carbide (ZrB2-SiC) and Titanium Diboride-Silicon Carbide (TiB2-SiC) Ceramic Composites and Laser Surface Treatment: Potential Application in Low Temperature Protonic Ceramic Fuel Cells (LTPCFCs) JURY: Président Andrew Ragai Henry Rigit Professor Ir. Dr., Universiti Malaysia Sarawak Kota Samarahan, Sarawak, Malaysia. Rapporteurs Laurence Latu-Romain Associate Professor, Université de Grenoble Alpes, France. Ramesh Singh A/L Kuldip Singh Professor Ir. Dr., University of Malaya, Kuala Lumpur, Malaysia. Pang Suh Cem Professor Dr., Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia. Examinateurs Jean-Claude LABBE Professor Emeritus, Université de Limoges, France. Nicolas GLANDUT Associate Professor, Université de Limoges, France. Amir Azam KHAN Professor Dr., Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia. ii | P a g e To the Parents Who Nurtured Me To Brothers and Sister Who Never Doubt on Me To the Teachers Who Inspired, Engaged, Passionate and Amazing Human Beings To All Who Continue to Fight And To the Readers iii | P a g e “Never give up on anybody, Miracles do happen” “It’s supposed to be hard. If it wasn’t hard, everyone would do it. -
Federal Register/Vol. 82, No. 129/Friday, July 7, 2017/Rules And
31442 Federal Register / Vol. 82, No. 129 / Friday, July 7, 2017 / Rules and Regulations Paragraph 6002 Class E Airspace DEPARTMENT OF COMMERCE a contribution to delivery systems (other Designated as Surface Areas. than manned aircraft) for such weapons. * * * * * Bureau of Industry and Security In 1993, the MTCR’s original focus on missiles for nuclear weapons delivery AWP CA E2 Arcata, CA [Modified] 15 CFR Parts 742, 744, 772, and 774 was expanded to include the Arcata Airport, CA proliferation of missiles for the delivery ° ′ ″ ° ′ ″ (Lat. 40 58 40 N., long. 124 06 31 W.) [Docket No. 170202139–7139–01] of all types of weapons of mass That airspace within a 4.1-mile radius of RIN 0694–AH33 destruction (WMD), i.e., nuclear, Arcata Airport. chemical and biological weapons. Such Paragraph 6004 Class E Airspace Revisions to the Export Administration proliferation has been identified as a Designated as an Extension to a Class D or Regulations Based on the 2016 Missile threat to international peace and Class E Surface Area. Technology Control Regime Plenary security. One way to address this threat * * * * * Agreements is to maintain vigilance over the transfer of missile equipment, material, and AGENCY: AWP CA E4 Arcata, CA [New] Bureau of Industry and related technologies usable for systems Arcata Airport, CA Security, Commerce. capable of delivering WMD. MTCR (Lat. 40°58′40″ N., long. 124°06′31″ W.) ACTION: Final rule. members voluntarily pledge to adopt the That airspace extending upward from the Regime’s export Guidelines and to SUMMARY: surface within 2.9 miles each side of the 153° The Bureau of Industry and restrict the export of items contained in bearing from Arcata Airport extending from Security (BIS) is amending the Export the Regime’s Annex. -
Assessment of the State of the Art of Ultra High Temperature Ceramics
Assessment of the State of the Art of Ultra High Temperature Ceramics Sylvia Johnson, Matt Gasch, NASA Ames Research Center, Moffett Field CA 94035 Mairead Stackpoole, ELORET Corp, Moffett Field CA 94035 1.0 Introduction Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions. 2.0 Background UHTCs originated in the early 1960s. Some of the earliest and most thorough work to date was performed then by the company ManLabs, under a research program funded by the Air Force Materials Laboratory (AFML) 1-2. Work on UHTCs was initiated to meet the need for high temperature materials that would allow the development of maneuverable hypersonic flight vehicles. Since then, intermittent research has made some progress, but several significant challenges remain in the use of UHTCs, and these materials have yet to be widely implemented. Strong covalent bonding is responsible for the high melting points, moduli, and hardness of the UHTC family of materials3-4. High negative free energies of formation also give UHTCs excellent chemical and thermal stability under many conditions.