The Evolutionary Story Ahead of Biochemistry

Total Page:16

File Type:pdf, Size:1020Kb

The Evolutionary Story Ahead of Biochemistry Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry Sandra Pizzarello1 and Everett Shock1,2 1Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 2School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404 Correspondence: [email protected] Carbon-containing meteorites provide a natural sample of the extraterrestrial organic chemistry that occurred in the solar system ahead of life’s origin on the Earth. Analyses of 40 years have shown the organic content of these meteorites to be materials as diverse as kerogen-like macromolecules and simpler soluble compounds such as amino acids and polyols. Many meteoritic molecules have identical counterpart in the biosphere and, in a primitive group of meteorites, represent the majority of their carbon. Most of the compounds in meteorites have isotopic compositions that date their formation to presolar environments and reveal a long and active cosmochemical evolution of the biogenic elements. Whether this evolution resumed on the Earth to foster biogenesis after exogenous deliveryof meteoritic and cometary materials is not known, yet, the selective abundance of biomolecule precur- sors evident in some cosmic environments and the unique L-asymmetry of some meteoritic amino acids are suggestive of their possible contribution to terrestrial molecular evolution. INTRODUCTION that fostered biogenesis. These conditions are entirely unknown because geological and Why Meteorites are Part of the Discourse biological processes of over four billion years about the Origin of Life have long eradicated any traces of early Earth’s he studies of meteorites have long been part chemistry. On the other hand, we know that Tof investigations and discussions about the life has embarked in a long evolutionary path origin of life for the reason that some of these all through its recorded history and it seems rea- extraterrestrial bodies have reached the Earth sonable to extend to its unknown beginning the containing abundant carbon since its accretion, same evolutionary nature. Albeit a posteriori provide a natural sample of abiotic organic and without knowledge of the actual chemical chemistry, and may offer insights on the possible steps that carried this evolution, therefore, the environments and physico-chemical processes single assessment one can safely make about Editors: David Deamer and Jack W. Szostak Additional Perspectives on The Origins of Life available at www.cshperspectives.org Copyright # 2010 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a002105 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a002105 1 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press S. Pizzarello and E. Shock life’s origin on the Earth is that it must have been how we still find them today, joined by icy an emergent process, through which biogenic objects from more distant locations of the solar atoms and molecules gained the complex asso- system that were brought in by further dynam- ciative and interactive states we observe in even ical evolution of giant planets’ orbits (Levison the simplest forms of extant life. It is then easy to et al. 2009). With their crowding, hazardous see why the discourse about the origins of life orbits, and constant collisions, all of these bodies has been multidisciplinary, broad based, and put fragments on route to the Earth and have fostered many theories, all of which, with the done so through the ages. The importance of notable exception of the panspermia hypothesis meteorites for the study of prebiotic chemistry (e.g., Crick and Orgel 1973), accept the funda- is a result of this failed planet formation and not mental emergent nature of life from simple just for their obvious delivery but also because molecules. many of the asteroid belt objects never had their In exobiological (as well as astrobiological) composition drastically transformed by gravita- terms, it hasbeen proposed that life’sfundamen- tional high temperatures and pressures as larger tal evolutionary nature might have extended bodies did. Their meteoritic fragments, there- beyond its origin and might be rooted in the fore, may carry unaltered a pristine record of abioticcosmochemicalevolutionofthebiogenic early solar system chemistry as well as allow elements. C, H, N, O, P, and S are known to be the deciphering of its cosmic history. present as diverse and often complex organic The meteorites that best fit this description molecules in avarietyof extraterrestrial environ- are the carbonaceous chondrites (CCs), a prim- ments (Lazcano 2010) and their long cosmic itive subgroup of stony meteorites having an history has supported the idea of a possible exo- elemental composition that is very similar to biology.However,itsanalyticalbasiscomesfrom that of the Sun and the universe overall. As their the study of carbon-containing meteorites that name indicates, CCs have the distinction of con- have provided the only natural sample of chem- taining several percent amounts (1.5%–4%) ical evolution large enough for direct laboratory of carbon, which is for the most part present analyses. Uniquely, therefore, carbon containing as organic materials. These meteorites are aggre- meteorites record for us the abiotic organic gate rocks, i.e., consist mainly of a matrix made chemistry that preceded life’s origin and may as of packed together hydrous and anhydrous sili- yet reveal whether it is realistic to assume that cates that do not show signs of metamorphism these or similar materials, i.e., either by direct or alteration by high heat. However, as part of delivery or analogy of formation, might have their small planet parent bodies, CC mineralogy fostered or even inducted molecular evolution also shows that these rocks had experienced a toward biogenesis. liquid water phase as well as the effects of impact shocks. For example, a recent measurement of the optical activity of three CC surfaces (Arteaga The Early Solar System, Meteorites, and the et al. 2010) showed a circular birefringence bias Possible Survival of Cosmochemical Evolution to negative values that the authors attribute The meteorites that reach the Earth are for the to chiral fractures and distortions in the clays most part fragments of asteroids, i.e., of those following mechanical forces. The meteorites’ small planetesimals that orbit the Sun in great aggregation also captured various inclusions; number between Mars and Jupiter. By the the chondrules, to whose name CCs owe their Titius-Bode law of a regular spacing of planets classification, are round beads of glassy appear- from the Sun, their orbit should be occupied ance that have re-crystallized from a melt, i.e., by a planet; it is believed, however, that the small high heat, and bring witnesses to the variety of chunks of early solar materials reaching this area materials and processes that must have contrib- fell under the strong gravity of the already uted to CC parent bodies’ formation (Fig. 1). formed giant planets and were either scattered Overall, these meteorites do not seem to throughout or left unable to coalesce. That is differ much from terrestrial rocks, a similarity 2 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a002105 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press The Organic Composition of Carbonaceous Meteorites obtained by X-ray microscopy of the meteorite surfaces after their exposure to selective staining with OsO4 vapors (Pearson et al. 2007). From these analyses, they appear to be broadly distributed within the matrix, intermixed with hydrous silicate components. As in other CCs, Figure 1. A CR2 meteorite stone found in the Antarctica Graves mountains (GRA 95229). The open Murchison organic materials can be broadly faces show the large chondrules that characterize this described in terms of their solubility in aqueous family of meteorites. Chondrule and other inclusion and organic solvent systems, a practical charac- abundance reduce the amount of matrix where terization that nevertheless leaves room for organics are found to about 30% of the geology. missed analytical targets and the possibility of unknowns (e.g., Deamer 1985). Insoluble and that has not helped their collection or preserva- soluble components represent respectively 70% tion because, if not seen to fall and promptly and 30% of total carbon and, within their mole- collected, they easily disappear in the environ- cular range, are both very complex and funda- ment. The Murchison meteorite was excep- mentally heterogeneous. tional in this respect because it fell at the very eve of lunar samples’ return in 1969 and was analyzed directly by NASA laboratories as a pos- Murchison Insoluble Organic Material (IOM) sible analog of those samples. One hundred The larger portion of Murchison organic carbon kilograms of this meteorite were recovered and is often referred to as kerogen-like because, like have been used in 40 years of analyses for prob- terrestrial kerogens, it is an insoluble macromo- ably the most comprehensive study of any extra- lecular material of complex composition that is terrestrial organic material to date. As a result of not known in much molecular detail; its average this focus,
Recommended publications
  • From: "MESSENGER, SCOTT R
    The Starting Materials In: Meteorites and the Early Solar System II S. Messenger Johnson Space Center S. Sandford Ames Research Center D. Brownlee University of Washington Combined information from observations of interstellar clouds and star forming regions and studies of primitive solar system materials give a first order picture of the starting materials for the solar system’s construction. At the earliest stages, the presolar dust cloud was comprised of stardust, refractory organic matter, ices, and simple gas phase molecules. The nature of the starting materials changed dramatically together with the evolving solar system. Increasing temperatures and densities in the disk drove molecular evolution to increasingly complex organic matter. High temperature processes in the inner nebula erased most traces of presolar materials, and some fraction of this material is likely to have been transported to the outermost, quiescent portions of the disk. Interplanetary dust particles thought to be samples of Kuiper Belt objects probably contain the least altered materials, but also contain significant amounts of solar system materials processed at high temperatures. These processed materials may have been transported from the inner, warmer portions of the disk early in the active accretion phase. 1. Introduction A principal constraint on the formation of the Solar System was the population of starting materials available for its construction. Information on what these starting materials may have been is largely derived from two approaches, namely (i) the examination of other nascent stellar systems and the dense cloud environments in which they form, and (ii) the study of minimally altered examples of these starting materials that have survived in ancient Solar System materials.
    [Show full text]
  • The Anatomy of the Orion Jedi Revealed by Radio-Astronomy
    Beyond the appearances: The anatomy of the Orion Jedi revealed by radio-astronomy Using the IRAM 30 meter radio-telescope in the Sierra Nevada of Spain, an international team of astronomers led by Jérôme Pety (IRAM & Observatoire de Paris) obtained the most complete radio- observations of the Orion B cloud, famous for hosting the Horsehead and Flame nebulae. Taking advantage of the fact that cold molecules shine at radio wavelengths and using machine learning methods adapted to this wealth of data, the team revealed the hidden anatomy of the Orion B cloud. Through a careful dissection of the cloud into regions of different molecular composition, they shed new light on how the darkest and coldest inner parts give birth to new stars. Following mankind's tradition of associating characters with features on the sky, the radio-astronomy view of Orion seems to show the skeleton of a fighting Star Wars Jedi! Using the IRAM 30 meter radio-telescope in Sierra Nevada (Spain), the ORION-B (Outstanding Radio-Imaging of OrionN B) project, an international scientific program led by Jérôme Pety (IRAM & Observatoire de Paris), has achieved the most complete observations in the radio domain of the Orion B giant molecular cloud (GMC), a huge reservoir of interstellar matter in the Orion nebula, containing about 70,000 times the mass of the Sun in gas and dust. Pety, astronomer at IRAM, explains: "Focused on a field around the well-known Horsehead and Flame nebulae, the ORION-B observations deliver a data set that amounts to about 160,000 images of 325 x 435 pixels, enough to make a movie of 1h50m at 24 frames per second.
    [Show full text]
  • Volatile Organic Compounds, Polycyclic Aromatic Hydrocarbons and Elements in the Air of Ten Urban Homes
    AIVC #13,657 J11<loor Air 2001; 11: 49-64 Copyrigfil © Mi111ksg11nl'd 2001 /itlp;//jo11mnls.1111111ksgnard.dlr/i11doornir L'IDOOR AIR Pd1lied in De1111111rk. All rights reserved ISSN 0905-6947 Volatile Organic Compounds, Polycyclic Aromatic Hydrocarbons and Elements in the Air of Ten Urban Homes MICHAEL R. VAN WINKLE1 AND PETER A. SCHEFF2* istics or occupant activities. The data indicate that several pre­ Abstract Ten homes were monitored at regular intervals from dietor variables, including mothball storage, air freshener use, June 1994 through April 1995 as part of a Public Health Assess­ and cooking activities, are reasonable predictors for emission ment in Southeast Chicago for exposure to volatile organic com­ rates of specific pollutants in the homes. pounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and elements. Simultaneous 24-h indoor and outdoor samples were Received for review 24 March 1999. Accepted for publication 11 March 2000. collected. VOCs were and analyzed using USEPA Method T0-14 © Indoor Air (2001) with Selected Ion Monitoring Mass Spectrometry (GC/MS). PAHs were analyzed using USEPA Method T0-13 with GC/MS. Elements were collected on quartz fiber filters and analyzed by Inductively Coupled Argon Plasma (ICP) spectroscopy or Graph­ ite Furnace Atomic Absorption (GFA A). Continuous measure­ Introduction ments of C02 and temperature were recorded for each indoor Exposure to indoor airborne pollutants is a function of sample. Twenty-four h total C02 emissions were determined from occupancy and estimated gas stove usage and were moder­ many variables, including pollutant infiltration, exfil­ 2 ately correlated (R =0.19) with 24 h average indoor C02 concen­ tration, deposition, resuspension, filtration, and gener­ trations.
    [Show full text]
  • Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life
    Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life Item Type text; Electronic Dissertation Authors Pasek, Matthew Adam Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 06:16:37 Link to Item http://hdl.handle.net/10150/194288 PHOSPHORUS AND SULFUR COSMOCHEMISTRY: IMPLICATIONS FOR THE ORIGINS OF LIFE by Matthew Adam Pasek ________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College UNIVERSITY OF ARIZONA 2 0 0 6 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Matthew Adam Pasek entitled Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 04/11/2006 Dante Lauretta _______________________________________________________________________ Date: 04/11/2006 Timothy Swindle _______________________________________________________________________ Date: 04/11/2006
    [Show full text]
  • PATENT OFFICE 2,632,026 OXDATION OFAROMATIC HYDROCARBONS Joshua C
    Patented Mar. 17, 1953 2,632,026 UNITED STATES PATENT OFFICE 2,632,026 OXDATION OFAROMATIC HYDROCARBONS Joshua C. Conner, Jr., Wilmington, Dei, assignor to Hercules Powder Company, Wilmington, Dei, a corporation of Delaware No Drawing. Application February 18, 1950, Serial No. 145,091 9 Cairms. (C. 260-610) 1. 2 This invention relates to a process for oxidizing of cumene at a temperature in excess of 20° C. an alkyl-substituted aromatic organic compound while simultaneously passing a stream of an having the structural formula, Oxygen-containing gas containing gaseous am Rt H monia, in catalytic amounts through the reac N / tion mixture. The reaction is continued until standard analytical data, such as refractive in R / Air dex, indicate the conversion of from about 10% to about 70% of the original cumene to oxygen in which R1 and R2 represent alkyl groups and ated products. The reaction mixture may then Ar represents either an aryl group or an alkaryl 0. be treated in accordance with known techniques group. More particularly, the invention relates to obtain a product containing preponderant to a process for the oxidation of compounds Such amounts of a,c-dimethylbenzyl hydroperoxide. as cumene in the liquid phase by naeans of no Having thus described the invention, the foll lecular. Oxygen. lowing examples are specific embodiments there It is known that cunene, for example, may be 5 of. All parts are parts by weight unless otherwise oxidized in the liquid phase by means of molec indicated. ular oxygen, but none of the processes hereto EXAMPLE 1. fore disclosed for the oxidation of cumene have resulted in substantial yields of a,c-dimethyl A glass reaction vessel equipped with a reflux benzyl hydroperoxide.
    [Show full text]
  • Ammonia Snow-Lines and Ammonium Salts Desorption ? F
    Astronomy & Astrophysics manuscript no. aanda_ammonium-salts ©ESO 2021 April 22, 2021 Ammonia snow-lines and ammonium salts desorption ? F. Kruczkiewicz1; 2; 3, J. Vitorino2, E. Congiu2, P. Theulé1, and F. Dulieu2 1 Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France e-mail: [email protected] 2 CY Cergy Paris Université, Observatoire de Paris, PSL University, Sorbonne Université, CNRS, LERMA, F-95000, Cergy, France 3 Max-Planck-Institut für extraterrestrische Physik, Gießenbachstraße 1, Garching, 85748, Germany Received –; accepted – ABSTRACT Context. The nitrogen reservoir in planetary systems is a long standing problem. Part of the N-bearing molecules is probably incor- porated into the ice bulk during the cold phases of the stellar evolution, and may be gradually released into the gas phase when the ice is heated, such as in active comets. The chemical nature of the N-reservoir should greatly influence how, when and in what form N returns to the gas phase, or is incorporated into the refractory material forming planetary bodies. Aims. We present the study the thermal desorption of two ammonium salts: ammonium formate and ammonium acetate from a gold surface and from a water ice substrate. Methods. Temperature-programmed desorption experiments and Fourier transform infrared reflection spectroscopy were conducted to investigate the desorption behavior of ammonium salts. Results. Ammonium salts are semi-volatile species releasing neutral species as major components upon desorption, that is ammonia and the corresponding organic acid (HCOOH and CH3COOH), at temperatures higher than the temperature of thermal desorption of water ice. Their desorption follows a first-order Wigner-Polanyi law. We find the first order kinetic parameters A = 7.7 ± 0.6 × 1015 s−1 −1 20 −1 −1 and Ebind = 68.9 ± 0.1 kJ mol for ammonium formate and A = 3.0 ± 0.4 × 10 s and Ebind = 83.0 ± 0.2 kJ mol for ammonium acetate.
    [Show full text]
  • Experimental Analysis and Modeling Aspects of the Removal of Polycyclic Aromatic Hydrocarbons in Soil Slurry Bioreactors Douglas Pino Herrera
    Experimental analysis and modeling aspects of the removal of polycyclic aromatic hydrocarbons in soil slurry bioreactors Douglas Pino Herrera To cite this version: Douglas Pino Herrera. Experimental analysis and modeling aspects of the removal of polycyclic aromatic hydrocarbons in soil slurry bioreactors. Earth Sciences. Université Paris-Est, 2018. English. NNT : 2018PESC2190. tel-03012451 HAL Id: tel-03012451 https://tel.archives-ouvertes.fr/tel-03012451 Submitted on 18 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Experimental analysis and modeling aspects of the removal of PAHs in soil slurry bioreactor Douglas Oswaldo Pino Herrera Thesis committee Thesis Promotor Reviewers Prof. Mehmet A. Oturan Prof. Marie-Odile Simonnot Université Paris-Est Université de Lorraine Marne-la-Vallée, France Nancy, France Thesis Co-Promotors Prof. Francesca Beolchini Dr. Hab. Eric D. van Hullebusch, Università Politecnica delle Marche Université Paris-Est Ancona, Italy Marne-la-Vallée, France Examiners Dr. Giovanni Esposito, Prof. Piet Lens University of Cassino and Southern Lazio UNESCO-IHE Delft Cassino, Italy Delft, The Netherlands Thesis Supervisor Dr. Yannick Fayolle Dr. Yoan Pechaud Irstea Université Paris-Est Antony, France Marne-la-Vallée, France Dr.
    [Show full text]
  • Ortho–H2 and the Age of Prestellar Cores L
    Astronomy & Astrophysics manuscript no. collapse˙l183˙v6 c ESO 2012 November 27, 2012 Ortho–H2 and the age of prestellar cores L. Pagani1, P. Lesaffre2, M. Jorfi3, P. Honvault4,5, T. Gonz´alez-Lezana6 , and A. Faure7 1 LERMA, UMR8112 du CNRS, Observatoire de Paris, 61, Av. de l′Observatoire, 75014 Paris, France. e-mail: [email protected] 2 LERMA, UMR8112 du CNRS, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris Cedex 05, France 3 Institut de Chimie des Milieux et des Mat´eriaux de Poitiers, UMR CNRS 6503, Universit´ede Poitiers, 86022 Poitiers Cedex, France 4 Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 du CNRS, Universit´ede Bourgogne, 21078 Dijon Cedex, France 5 UFR Sciences et Techniques, Universit´ede Franche-Comt´e, 25030 Besanc¸on cedex 6 Instituto de F´ısica Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain 7 Institut de Plan´etologie et d’Astrophysique de Grenoble, UMR 5274 du CNRS, Universit´eJoseph Fourier, B.P. 53, 38041 Grenoble Cedex 09, France Received 29/04/2011; accepted ... ABSTRACT Prestellar cores form from the contraction of cold gas and dust material in dark clouds before they collapse to form protostars. Several concurrent theories exist to describe this contraction which are currently difficult to discriminate. One major difference is the time scale involved to form the prestellar cores: some theories advocate nearly free-fall speed via e.g. rapid turbulence decay while others can accommodate much longer periods to let the gas accumulate via e.g. ambipolar diffusion. To discriminate between these theories, measuring the age of prestellar cores could greatly help.
    [Show full text]
  • Study of the Magnetic Water Treatment Mechanism
    Journal of Ecological Engineering Received: 2019.12.03 Revised: 2019.12.23 Volume 21, Issue 2, February 2020, pages 251–260 Accepted: 2020.01.10 Available online: 2020.01.25 https://doi.org/10.12911/22998993/116341 Study of the Magnetic Water Treatment Mechanism Iryna Vaskina1*, Ihor Roi1, Leonid Plyatsuk1, Roman Vaskin1, Olena Yakhnenko1 1 Sumy State University, Sumy, Ukraine * Corresponding author’s e-mail: [email protected] ABSTRACT The main problem of widespread introduction of magnetic water treatment (MWT) in the processes of water and wastewater treatment is the lack of modern research aimed at studying the mechanisms of MWT effects, in particular the influence on the physicochemical properties of aqueous solutions. This study explains the effect of MWT taking into account the physical and chemical properties of aqueous solutions due to the presence of the quantum differences in water molecules. All of the MWT effects are related to the change in the physicochemical properties of aqueous solutions. It is due to the presence of two types of water molecule isomers and their libra- tional oscillations. The result of MWT is a violation of the synchronism of para-isomers vibrations, with the sub- sequent destruction of ice-like structures due to the receiving of energy from collisions with other water molecules (ortho-isomers). One of the most important MWT effects includes the change in the nature and speed of the physi- cochemical processes in aqueous solutions by increasing the number of more physically and chemically active ortho-isomers. The MWT parameters specified in the work allow explaining the nature of most MWT effects and require developing the scientific and methodological principles for the implementation of the MWT process and mathematical modeling of the MWT process in the water and wastewater treatment.
    [Show full text]
  • INVESTIGATION of POLYCYCLIC AROMATIC HYDROCARBONS (Pahs) on DRY FLUE GAS DESULFURIZATION (FGD) BY-PRODUCTS
    INVESTIGATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) ON DRY FLUE GAS DESULFURIZATION (FGD) BY-PRODUCTS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ping Sun, M.S. ***** The Ohio State University 2004 Dissertation Committee: Approved by Professor Linda Weavers, Adviser Professor Harold Walker Professor Patrick Hatcher Adviser Professor Yu-Ping Chin Civil Engineering Graduate Program ABSTRACT The primary goal of this research was to examine polycyclic aromatic hydrocarbons (PAHs) on dry FGD by-products to determine environmentally safe reuse options of this material. Due to the lack of information on the analytical procedures for measuring PAHs on FGD by-products, our initial work focused on analytical method development. Comparison of the traditional Soxhlet extraction, automatic Soxhlet extraction, and ultrasonic extraction was conducted to optimize the extraction of PAHs from lime spray dryer (LSD) ash (a common dry FGD by-product). Due to the short extraction time, ultrasonic extraction was further optimized by testing different organic solvents. Ultrasonic extraction with toluene as the solvent turned out to be a fast and efficient method to extract PAHs from LSD ash. The possible reactions of PAHs under standard ultrasonic extraction conditions were then studied to address concern over the possible degradation of PAHs by ultrasound. By sonicating model PAHs including naphthalene, phenanthrene and pyrene in organic solutions, extraction parameters including solvent type, solute concentration, and sonication time on reactions of PAHs were examined. A hexane: acetone (1:1 V/V) ii mixture resulted in less PAH degradation than a dichloromethane (DCM): acetone (1:1 V/V) mixture.
    [Show full text]
  • Arxiv:1809.02083V1 [Astro-Ph.GA]
    Draft version September 7, 2018 Typeset using LATEX twocolumn style in AASTeX61 ACCURATE ROTATIONAL REST FREQUENCIES FOR AMMONIUM ION ISOTOPOLOGUES Jose´ L. Domenech´ ,1 Stephan Schlemmer,2 and Oskar Asvany2 1Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E28006 Madrid, Spain 2I. Physikalisches Institut, Universit¨at zu K¨oln, Z¨ulpicher Str. 77, 50937 K¨oln, Germany (Accepted September 4, 2018) Submitted to The Astrophysical Journal ABSTRACT + + We report rest frequencies for rotational transitions of the deuterated ammonium isotopologues NH3D , NH2D2 + + + and NHD3 , measured in a cryogenic ion trap machine. For the symmetric tops NH3D and NHD3 one and three + transitions are detected, respectively, and five transitions are detected for the asymmetric top NH2D2 . While the + lowest frequency transition of NH3D was already known in the laboratory and space, this work enables the future radio astronomical detection of the two other isotopologues. Keywords: ISM: molecules — methods: laboratory: molecular — molecular data — techniques: spec- troscopic arXiv:1809.02083v1 [astro-ph.GA] 6 Sep 2018 Corresponding author: Oskar Asvany [email protected] 2 Domenech,´ Schlemmer and Asvany 1. INTRODUCTION wards the D atoms), thus making their detection feasi- Nitrogen is one of the most abundant elements in ble. Indeed, the detection of ammonium in space was the local universe, and has a notably rich chemistry, claimed through the assignment of an emission line cen- with more than seventy nitrogen-containing molecules tered at 262817 GHz (observed both in Orion IRc2 and − + identified in space to date (CDMS 2018). Two of the in Barnard B1-bS) to the 10 00 transition of NH3D most abundant nitrogen-bearing molecules in the inter- (Cernicharo et al.
    [Show full text]
  • The Emergence of Nucleic Acids in an Iron-Sulphur World
    Cardiff University School of Earth, Ocean and Planetary Sciences THE EMERGENCE OF NUCLEIC ACIDS IN AN IRON-SULPHUR WORLD By Bryan Hatton Thesis submitted for the Degree of Philosophiae Doctor September 2007 UMI Number: U585139 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U585139 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree. Signed . { 3 3 ...................(candidate) Date STATEMENT 1 This U ^j^s^being submitted in partial fulfillment of the requirements for the degree of Signed (3. r. 3 3 3 ^ 3 ^ ..............(candidate) STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. Signed 33. (candidate) D a te <3? STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.
    [Show full text]