Late Pleistocene Raised Coral Reefs in the Eastern Red Sea – Rabigh, Saudi Arabia Ammar Manaa University of Wollongong

Total Page:16

File Type:pdf, Size:1020Kb

Late Pleistocene Raised Coral Reefs in the Eastern Red Sea – Rabigh, Saudi Arabia Ammar Manaa University of Wollongong University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2011 Late Pleistocene raised coral reefs in the eastern red sea – Rabigh, Saudi Arabia Ammar Manaa University of Wollongong Recommended Citation Manaa, Ammar, Late Pleistocene raised coral reefs in the eastern red sea – Rabigh, Saudi Arabia, Master of Science - Research thesis, School of Earth and Environmental Sciences, University of Wollongong, 2011. http://ro.uow.edu.au/theses/3501 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. Late Pleistocene raised coral reefs in the eastern Red Sea – Rabigh, Saudi Arabia *A thesis submitted in partial fulfilment of the requirements of the award of the degree MASTER OF SCIENCE (RESEARCH) From University of Wollongong By Ammar Manaa School of Earth and Environmental Sciences 2011 2 ABSTRACT The Rabigh coast (Saudi Arabia) in the study area stretches for about 12 km between Al Kharrar Lagoon in the north and Sharm Rabigh in the south. Seven prominent Pleistocene coral reef sites were investigated with terrace heights ranging from 1 to 5 m above present sea level. In addition to field descriptions, 86 samples were collected from these seven sites to provide the data for this research. Of these seven sites, 4 of the sites were front reef, and 3 were back reef. In each of the front reef sites, there was a beach rock, upper and lower reef. The elevation of the upper and lower reef in the front reef sites ranges from 0.5 m to 3.20 m above present sea level. The two layers of beach rock and a back reef were identified in the study area. In the upper and lower reefs, corals were observed in almost all of the samples, with higher proportions for the upper than lower reef. Silicate minerals were rare in both lower and upper reef. The back-reef features much less coral compared to the lower and upper reef and algae was the dominant element in the beach rock. The upper reef can be part of the reef crest or the algal ridge in the reef system, such that erosion can occur at the front reef. The lower reef indicates an outer reef flat where this zone is a combination of the fore reef and lagoon environment with wave-breaking algal structures. The coral framework in the upper reef indicates a low energy environment during the formation of this reef. Within the back-reef calcareous mud was dominant, which indicates a low energy environment behind the reef crest, or a lagoon environment. Such an interpretation for the upper and lower reefs connects with transgression phases of the sea and represents slightly higher sea levels. The XRD results for the upper and lower reefs, and beach rock revealed variable percentages of aragonite followed by high-Mg calcite, and calcite, with a small increase in calcite and high-Mg calcite comparative to the lower reef. Calcite was the dominant mineral in the back reef area, with variable percentages of high-Mg calcite. The dominant diagenetic process in the Rabigh reefs was cementation. Fibrous calcite occurred in many upper and lower reef samples, and blocky calcite spar was the most common cement type in the back-reef area. Lower and upper reef were exposed to freshwater dissolution and cementation. There was also more cementation and diagenesis in the lower reef compared to the upper reef, and an equal distribution of calcite cement around most of the grains, with an average porosity of 14.8%, consistent with fresh water phreatic environment. The beach rock was suggestive of marine phreatic diagenesis. Amino Acid Racemisation (AAR) and 14C dating of bivalve shells from upper and lower reef were unsuccessful for deducing the age of these reefs. U/Th dating produced the most reliable results for the age of the reefs. The reefs were probably formed during the major highstand of isotope stage 5 where the age of the upper reef is more likely to be 122.8 ka (MIS 5e) whereas the lower reef could be MIS 7 with no evidence of major tectonics in Rabigh area during the last 125 ka. The contribution of this study is that it has produced a new coral reef model relevant to a low energy system in a dry and hot environment. i ACKNOWLEDGEMENTS I would like to thank the support of my supervisor Associate Professor Brian Jones for his continued guidance, expertise and knowledge in this area of research. His support has encouraged me throughout the process of research, especially at difficult moments. I would also like to acknowledge the ongoing professional support of Professor Colin Woodroffe for his particular insights into the world of coral. Also, I would like to thank Professor Colin Murray-Wallace for his efforts in the area of quaternary dating methods. I would like to extend my thanks to Professor Amin Ghaith for his guidance and expertise in the field work. Many thanks to my colleague AbdulGhani who provided specific support and assistance at various steps of the research process. A final word of thanks goes to my family for their support and patience during this extended research period. ii TABLE OF CONTENTS ABSTRACT .................................................................................................................. i ACKNOWLEDGEMENTS ......................................................................................... ii TABLE OF CONTENTS ............................................................................................ iii LIST OF FIGURES/PLATES ..................................................................................... vi LIST OF TABLES .................................................................................................... viii Chapter 1- Introduction ................................................................................................ 1 1.1 Coral Reef ....................................................................................................... 1 1.2 The Red Sea .................................................................................................... 2 1.3 Coral Reefs of the Red Sea ............................................................................. 5 1.4 Carbonate rocks...............................................................................................7 1.4.1 Classification of carbonates.......................................................................8 1.4.2 Diagenesis of carbonate rock.....................................................................9 1.4.3 Skeletal mineralogy of calcareous organisms and algae..........................11 1.5 Study area ...................................................................................................... 12 1.5.1 Overview .................................................................................................... 12 1.5.2 Climate ....................................................................................................... 14 1.5.3 Wind ........................................................................................................... 15 1.5.4 Tidal currents ............................................................................................. 18 1.5.5 Tidal range ................................................................................................. 18 1.6 Regional geology .......................................................................................... 19 1.6.1 Tectonic history.......................................................................................23 1.7 Sediments in Rabigh area .............................................................................. 23 1.8 Previous work ............................................................................................... 25 1.9 Aims of the study .......................................................................................... 28 Chapter 2- Review of the Quaternary history of reefs in the Red Sea with reference to past sea-level changes ............................................................................. 29 2.1 Introduction ................................................................................................... 29 2.1.1 Reef growth and development ................................................................... 29 2.1.2 Coral reef zones and structures .................................................................. 30 2.1.2.1 Reef Front (fore-reef) ........................................................................ 30 iii 2.1.2.2 Reef crest (algal ridge) ....................................................................... 33 2.1.2.3 Back-Reef (reef flat) ........................................................................... 34 2.1.3 Reef platform.........................................................................................36 2.2 Quaternary Reef Terraces of the Red Sea Coast ........................................... 37 2.2.1 Eastern Coast of the Red Sea ..................................................................... 39 2.2.2 Western Coast of the Red Sea .................................................................... 40 Chapter 3- Methodology ............................................................................................ 44 3.1. Sampling ...................................................................................................... 44 3.2. Particle size analysis .................................................................................... 48 3.3.
Recommended publications
  • L'.3350 Deposmon and DISSOLUTION of the MIDDLE DEVONIAN PRAIRIE FORMATION, Williston BASIN, NORTH DAKOTA and MONTANA By
    l'.3350 DEPOsmON AND DISSOLUTION OF THE MIDDLE DEVONIAN PRAIRIE FORMATION, WilLISTON BASIN, NORTH DAKOTA AND MONTANA by: Chris A. Oglesby T-3350 A thesis submined to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date f:" /2 7 /C''i::-- i ; Signed: Approved: Lee C. Gerhard Thesis Advisor Golden, Colorado - 7 Date' .' Samuel S. Adams, Head Department of Geology and Geological Engineering II T-3350 ABSTRACf Within the Williston basin, thickness variations of the Prairie Formation are common and are interpreted to originate by two processes, differential accumulation of salt during deposition, and differential removal of salt by dissolution. Unambiguous evidence for each process is rare because the Prairie/Winnipegosis interval is seldom cored within the U.S. portion of the basin. Therefore indirect methods, utilizing well logs, provide the principal method for identifying characteristics of the two processes. The results of this study indicate that the two processes can be distinguished using correlations within the Prairie Formation. Several regionally correlative upward-brining, and probably shoaling-upward sequences occur within the Prairie Formation .. Near the basin center, the lowermost sequence is transitional with the underlying Winnipegosis Formation. This transition is characterized by thinly laminated carbonates that become increasingly interbedded with anhydrites of the basin-centered Ratner Member, the remainder of the sequence progresses up through halite and culminates in the halite-dominated Esterhazy potash beds. Two overlying sequences also brine upwards, however, these sequences lack the basal anhydrite and instead begin with halite and culminate in the Belle Plaine and Mountrail potash Members, respectively.
    [Show full text]
  • Chapter 2 Paleozoic Stratigraphy of the Grand Canyon
    CHAPTER 2 PALEOZOIC STRATIGRAPHY OF THE GRAND CANYON PAIGE KERCHER INTRODUCTION The Paleozoic Era of the Phanerozoic Eon is defined as the time between 542 and 251 million years before the present (ICS 2010). The Paleozoic Era began with the evolution of most major animal phyla present today, sparked by the novel adaptation of skeletal hard parts. Organisms continued to diversify throughout the Paleozoic into increasingly adaptive and complex life forms, including the first vertebrates, terrestrial plants and animals, forests and seed plants, reptiles, and flying insects. Vast coal swamps covered much of mid- to low-latitude continental environments in the late Paleozoic as the supercontinent Pangaea began to amalgamate. The hardiest taxa survived the multiple global glaciations and mass extinctions that have come to define major time boundaries of this era. Paleozoic North America existed primarily at mid to low latitudes and experienced multiple major orogenies and continental collisions. For much of the Paleozoic, North America’s southwestern margin ran through Nevada and Arizona – California did not yet exist (Appendix B). The flat-lying Paleozoic rocks of the Grand Canyon, though incomplete, form a record of a continental margin repeatedly inundated and vacated by shallow seas (Appendix A). IMPORTANT STRATIGRAPHIC PRINCIPLES AND CONCEPTS • Principle of Original Horizontality – In most cases, depositional processes produce flat-lying sedimentary layers. Notable exceptions include blanketing ash sheets, and cross-stratification developed on sloped surfaces. • Principle of Superposition – In an undisturbed sequence, older strata lie below younger strata; a package of sedimentary layers youngs upward. • Principle of Lateral Continuity – A layer of sediment extends laterally in all directions until it naturally pinches out or abuts the walls of its confining basin.
    [Show full text]
  • The Arabian Gulf
    Chapter 1 The Arabian Gulf Grace O. Vaughan, Noura Al-Mansoori, John A. Burt New York University Abu Dhabi, Abu Dhabi, United Arab Emirates 1.1 THE REGION Bound by deserts and located between the north-eastern Arabian Peninsula and Iran, the Arabian Gulf (also known as the Persian Gulf, and hereafter known as “the Gulf”) is bordered by eight rapidly developing nations. The Gulf is located in the subtropics between 24°N and 30°N latitude and 48°E and 57°E longitude (Fig. 1.1), and is considered as a biogeographic subprovince of the northwestern Indian Ocean (Spalding et al., 2007). During summers, the Gulf is the hottest sea on the planet, particularly in the shallow southern basin where sea surface temperatures (SSTs) regu- larly exceed 35°C in August. Sea temperatures are also highly variable among seasons, ranging over 20°C between summer and winter. Geologically, the Gulf is relatively young with coastlines that formed only in the past 3000–6000 years when polar ice sheets receded (Riegl & Purkis, 2012a). Today, the Gulf is bordered to the northeast by the Zagros mountains in Iran and the Hajar mountains in the Musandam peninsula and in the southwest by the sedimentary Arabian coast (Purser & Seibold, 1973). Presently, it covers an area of 250,000 km2 (Riegl & Purkis, 2012a). Generally, terrestrial systems sur- rounding the Gulf are arid to hyperarid (Riegl & Purkis, 2012a), limiting the input of freshwater to this semienclosed sea. The main freshwater input enters at the northern Gulf at the Shatt Al Arab waterway through the Tigris, Euphrates, and the Karun rivers (Sheppard, Price, & Roberts, 1992), although recent damming efforts have resulted in substantial reductions in freshwater discharge from these rivers (Sheppard et al., 2010).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
    US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S.
    [Show full text]
  • Saudi Aramco Rabigh Refinery Control System
    SUCCESS STORY Saudi Aramco Rabigh Refi nery Control System Replacement (Hot Cutover) Location: Rabigh, Kingdom of Saudi Arabia Order Date: October 2003 Completion Date: May 2006 Industry: Refi ning About Saudi Aramco and the Rabigh Refi nery Saudi Aramco’s operations span the globe and the energy industry. The world leader in crude oil production, Saudi Aramco also owns and operates an extensive network of refi ning and distribution facilities, and is responsible for gas processing and transportation installations that fuel Saudi Arabia’s industrial sector. An array of international subsidiaries and joint ventures deliver crude oil and refi ned products to customers worldwide. World-class refi neries located across the country, from the Arabian Gulf to the Red Sea, reliably supply more than a million barrels of products each day to meet the needs of the Saudi Arabian and international markets. The Rabigh Refi nery, located 160 kilometers north of Jeddah on the Rea Sea coast, is one such refi nery operated by Saudi Aramco. The Rabigh refi nery has a 400,000 BPD crude topping facility. Crude is delivered by tankers through the Saudi Aramco Rabigh port. The main products are fuel oil, naphtha, and jet fuel. LPG and oil are used as fuel for the refi nery while recovered sulphur is bagged and shipped. Background of This Project As part of an upgrade project to reap the benefi ts of the latest technology, Saudi Aramco Rabigh Refi nery awarded Yokogawa this project to replace the existing control system with a state-of-the-art distributed control system (DCS).
    [Show full text]
  • Download Download
    — Studies on Lithium Acetylide Kenneth N. Campbell and Barbara K. Campbell, The University of Notre Dame In contrast to the large amount of work done on the acetylene derivatives of sodium, potassium and calcium, little attention has been paid to the analogous compounds of lithium. In 1898 Moissani prepared lithium acetylide on a small scale, by the action of acetylene on a liquid ammonia solution of lithium. He reported that lithium acetylide was less soluble in liquid ammonia than sodium acetylide, and that when isolated from the solvent, it was less stable, undergoing decomposition with evolu- tion of acetylene. On the basis of the weight of lithium acetylide obtained from a given weight of lithium, and from the amount of acetylene liberated on hydrolysis, he assigned to lithium acetylide the formula C2Li2.C2H2.2NH3. Since that time no references to lithium acetylide or lithium alkylacetylides have appeared in the literature. It was the pur- pose of the present work, therefore, to prepare and analyze lithium acetylide and a lithium alkylacetylide, and to compare their reactions with those of the better known sodium derivatives. Experimental Procedure Preparation of Lithium and Sodium Acetylides.—Acetylene gas, washed by bubbling through concentrated sulfuric acid, was passed into two liters of liquid ammonia, while 7 g. (1 mole) of metallic lithium, cut in small pieces, was added gradually, with stirring, at a rate such that the solution did not develop a permanent deep blue color. When the solution became colorless after the addition of the last piece of lithium, the flow of acetylene was stopped.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Preparation Date: 7/21/2017 Revision Date: 7/21/2017 Revision Number: G1 1. IDENTIFICATION Product identifier Product code: S1725 Product Name: SULFUR, LUMP Other means of identification Synonyms: No information available CAS #: 7704-34-9 RTECS # WS4250000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: In manufacturing sulfuric acid, carbon disulfide, sulfites, insecticides, plastics, enamels, metal-glass, cements; in vulcanizing rubber; in syntheses of dyes; in making gunpowder, matches; for bleaching wood pulp, straw, wool, silk, felt, linen; in making phosphatic fertilizers; bleaching of dried fruits; fungicide and acaricide; rodent repellent; soil conditioner; nucleating reagent for photographic film; used in cosmetics, such as acne ointments and lotions, and in antidandruff shampoos. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000. Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous according to the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Considered a dangerous substance or mixture according to the Globally Harmonized System (GHS) Flammable solids Category 2 Label elements Warning Flammable solids Product code: S1725 Product name: SULFUR, LUMP 1 / 14 Hazards not otherwise classified (HNOC) Not Applicable Other hazards Not available Precautionary Statements - Prevention Keep away from heat/sparks/open flames/hot surfaces. — No smoking Ground/bond container and receiving equipment Use explosion-proof electrical/ventilating/lighting/.../equipment Wear protective gloves Wear eye/face protection Prevent dust accumulations to minimize explosion hazard In case of fire: Use CO2, dry chemical, or foam to extinguish.
    [Show full text]
  • Chemical Matrix
    Chemical Matrix - Ceramics Studio Recommended Personal Protective Key Hazardous Properties Storage Location Disposal Equipment Face Body Hands Protection Respiratory Respiratory Product Form / Phase Key Composition Combustible High Toxicity High Flash Point F Flash Point Plaster Room Plaster Sanitary Drain Sanitary Compressed Gas Compressed Strong Acid/Base Strong Non-Haz Disposal Non-Haz Non-Flam Cabinet Non-Flam Glaze Mixing Room Haz Waste Disposal Waste Haz Flammables Cabinet Flammable/Explosive Potentially SensitizingPotentially MSDS Strong Oxidizer / Reducer Oxidizer Strong Cartirdge Face Shield Nitrile Gloves Nitrile Use with Local Only Exhaust Ventilation with Use Non-Flam Cupboard / Shelving / Counter Cupboard Non-Flam Chemical Splash Apron Chemical Safety Glasses Safety Chemical Flame Resistant Lab Coat Lab Resistant Flame Half Face Respitator with P100 P100 with Respitator Face Half Chemical Protective Gloves per per Gloves Protective Chemical Acetone Liquid Acetone -4 X X X X X X X Albany Slip Powder Silty glacial clay used for pottery, contains up to 30% quartz free silica according to Columbus Clay web X X X X X X MSDS Alumina Hydrate Powder Alumina Hydrate X X X X X X Angelos Copperslip Liquid (thick) Copper oxide, frit 3110, CMC gum, bentonite X X Antimony oxide Powder Antimony oxide X X X X X X X X Baking Soda Powder Sodium bicarbonate X X X X X X X Bell Dark Ball Clay Powder Kaolinite, plus up to 30% quartz free silica X X X X X X Bernard Slip Clay Powder Clay, plus up to 30% silica, some considered respirable according
    [Show full text]
  • Origin of Intraformational Folds in the Jurassic Todilto Limestone, Ambrosia Lake Uranium Mining District, Mckinley and Valencia Counties, New Mexico by Morris W
    DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Origin of Intraformational Folds in the Jurassic Todilto Limestone, Ambrosia Lake Uranium Mining District, McKinley and Valencia Counties, New Mexico By Morris W. Green U.S. Geological Survey Open-file Report 82-69 1982 Contents Page Abstract................................................................ 1 Introducti on............................................................ 3 Stratigraphy and Environments of Deposition.............................3 The Formation of Intraformational Folds................................10 Todilto Uranium Deposits...............................................22 Exploration and Favorability...........................................24 References ci ted....................................................... 25 Illustrations Figure 1. Index map showing location of mineral belt, the Todilto study area, and adjacent areas.....................4 2. Index map of the Ambrosia Lake mining area...................5 3. Schematic diagram showing a segment of the Todilto depositional basin.........................................9 4. Remnants of a Summerville (Js) eolian dune overlying the Todilto Limestone (Jt)................................12 5. Schematic diagram showing the plastic and shear phases of Todilto load deformation...............................13 6. Large-scale, low amplitude intraformational fold within the Todilto Limestone.....................................14 7. Large-scale, high amplitude, intraformational fold within the Todilto Limestone..............................14
    [Show full text]
  • Halaman 1 Dari 30 Muka | Daftar
    Halaman 1 dari 30 muka | daftar isi Halaman 2 dari 30 muka | daftar isi Halaman 3 dari 30 Perpustakaan Nasional : Katalog Dalam terbitan (KDT) Miqat di Jeddah Tidak Sah? Penulis : Luki Nugroho, Lc 37 hlm ISBN 978-602-1989-1-9 Judul Buku Miqat di Jeddah Tidak Sah? Penulis Luki Nugroho, Lc. MA Editor Fatih Setting & Lay out Fayyad & Fawwaz Desain Cover Faqih Penerbit Rumah Fiqih Publishing Jalan Karet Pedurenan no. 53 Kuningan Setiabudi Jakarta Selatan 12940 Cet : Agustus 2018 muka | daftar isi Halaman 4 dari 30 Daftar Isi Daftar Isi ...................................................................................... 4 A. Permasalahan........................................................................... 7 a. Pangkal Masalah .............................................. 7 b. Perbedaan Pendapat Ulama ............................ 7 B. Pengertian Miqat ...................................................................... 8 1. Bahasa .............................................................. 8 2. Istilah ................................................................ 8 C. Miqat Makani ............................................................................ 9 1. Dzul Hulaifah .................................................. 12 2. Al-Juhfah ........................................................ 15 3. Qarnul Manazil ............................................... 15 4. Yalamlam ........................................................ 16 5. Dzatu ‘Irqin ..................................................... 17 D. Miqat Penumpang
    [Show full text]
  • Coral Reefs Within a Siliciclastic Setting, 1997
    Proc 8th Int Coral Reef Sym 2:1737-1742.1997 CORAL REEFS AND CARBONATE PLATFORMS WITHIN A SILICICLASTIC SETTING. GENERAL ASPECTS AND EXAMPLES FROM THE LATE JURASSIC OF PORTUGAL. Reinhold Leinfelder Institute of Geology and Paleontology, University of Stuttgart, Herdweg 51, D-70174 Stuttgart, Germany. ABSTRACT in the water (op. cit.). Additionally, terrigeneous influx is mostly accompanied by an unfavourable increase Both in the Modern and Ancient examples coral reefs and in nutrient and sometimes even freshwater influx. carbonate platforms occur frequently very close to or even directly within areas of siliciclastic sediment- ation. Particularly fine grained, often suspended terri- geneous influx is mostly problematic for the reef fauna due to lowering of illumination and oxygenation, in- TableÊ1: Possible negative effects of terrigeneous creasing nutrient values or directly settling on the influx on reefs: organims. The modern examples show that reef growth in such settings is only possible by the existence of sheltering mechanisms such as arid climate, structural REEFS AND SILICS? WHAT'S BAD ABOUT IT? and sedimentary traps or longshore currents. If not completely effective, reefs may still prosper under 1 . Increase of nutrient concentration reduced but noticeable siliciclastic sedimentation, but 2 . Freshwater influx both composition and diversity of the reefs changes drastically. The Ancient examples show that temporal 3 . Reduction of oxygen concentration relations are important as well: Autocyclic switches in 4 . Impoverished illumination depositional systems and especially allocyclic events 5 . Loss of hard substrates such as tectonic activation/deactivation or sea level 6 . Pollution / suffocation of reef organisms change may open and close reef windows through time.
    [Show full text]
  • Investor Presentation
    Investor update presentation September 2015 Content Introduction 4 Update on financial performance 6-11 Overview of E-Commerce initiatives 13-21 Update on Makkah investments 23-31 2 Section 1 Introduction Al Tayyar Travel Group Holding Co (ATG) at a glance • With market capitalization of about US$ 4.8 billion, ATG is the leading integrated travel service provider in the MENA region • ATG is the leading travel management service Top sales award Newly awarded Top agent award Silver award provider of corporate and government travel with (2009, 2010, 2011, Exclusive GSA (1999, 2002, 2004, (2010, 2011, interest in hospitality sector 2012, 2013) 2005, 2011, 2012 2012, 2013) • Enabled by a robust technology platform, ATG & 2013) serves its clients through a global network of more than 430 branches • ATG is building a strong position in the religious Passengers Sales Sale Excellence Top agent award Top sales agent fro tourism market in Makkah through a vertical award awards (2009, 2010, 2011, (2008, 2009, 2010, 2011, integration strategy owning large number of hotels (1994, 1995, 1996, (2009, 2010, 2011, 2012, 2013) 2012, 2013, 2014) in 2010, 2011, 2012 2012, 2013) Central province • ATG has consistently won prestigious awards and and 2013) recognitions from its partners and leading airlines Top low-cost carrier in the GCC ATG’s success story • IPO in June 2012 • Acquisition of • Acquisitions of • Acquisition of 100% of • Acquisition of Mawasim Elegant Resorts, Muthmerah Muthmerah Real CTM, and Al Hanove • Investment in Careem 2014 Estate company
    [Show full text]